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ABSTRACT

Attribute reduction through the combined approach of Rough Sets (RS) and algebraic topology is an open research
topic with significant potential for applications. Several research works have introduced a strong relationship
between RS and topology spaces for the attribute reduction problem. However, the mentioned recent methods
followed a strategy to construct a new measure for attribute selection. Meanwhile, the strategy for searching for
the reduct is still to select each attribute and gradually add it to the reduct. Consequently, those methods tended
to be inefficient for high-dimensional datasets. To overcome these challenges, we use the separability property
of Hausdorff topology to quickly identify distinguishable attributes, this approach significantly reduces the time
for the attribute filtering stage of the algorithm. In addition, we propose the concept of Hausdorff topological
homomorphism to construct candidate reducts, this method significantly reduces the number of candidate reducts
for the wrapper stage of the algorithm. These are the two main stages that have the most effect on reducing
computing time for the attribute reduction of the proposed algorithm, which we call the Cluster Filter Wrapper
algorithm based on Hausdorff Topology. Experimental validation on the UCI Machine Learning Repository Data
shows that the proposed method achieves efficiency in both the execution time and the size of the reduct.
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1 Introduction

The rapid development of technologies in data collection and integration increases the complexity
of data dimensions and noisy attributes [1,2]. Attribute reduction is indeed critical to selecting
attributes according to the most significant contribution in the dataset [3,4]. Some applications of
attribute reduction include data classification [1,2], and recommendation systems [5,6]. Recently, there
have been some effective applications of RST in decision making support, including the diagnosis
support in heart disease [7], COVID-19 (Corona Virus Disease 2019) [8], Chikungunya disease [9],
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Dengue fever [10] and data reduction [11]. From the original attribute set, attribute reduction aims
to find out a subset that satisfies given constraints. Rough set theory (RST) is an effective tool
for solving the attribute reduction problem for a long time [12–14]. RST-based attribute reduction
methods often define a measure as the criteria for selecting the attributes. Some measures include
fuzzy POS measure [15–17], intuitionistic fuzzy POS measure [18,19], fuzzy entropy measure [20–
22], intuitionistic fuzzy entropy measure [23], fuzzy distance [24], intuitionistic fuzzy distance [25].
These measures are all based on approximate space for definition, so these approaches are expensive
in storage and computation time.

Topological space is a powerful mathematical tool that is widely applied in many different areas
of life [26–28]. The structure of a topology not only expresses the relationships among the objects
in a set but also the relationships among the groups of objects in a set [29–31]. The reduct topology
concept, proposed by Lashin et al. [29], grasped the attention of researchers in recent years [30,31].
Based on the mechanical similarity between rough sets and topologies [29], researchers have proposed
many methods for building topologies according to the rough set approach, such as topology based
on the RST covering approach [31], β-covering based rough sets [32], by the fuzzy rough set approach
[33,34], by the intuitionistic fuzzy rough set approach [35,36] and by intuitionistic fuzzy approximate
space [37]. The researchers also pointed out when the operations in the inner and outer regions of the
topology are equivalent to the approximation operations of the rough set [38,39]. From the relationship
between approximation operations of RST and topology, new RST models on topological space have
been proposed [40]. The researchers also showed that the RST and topology are equivalent in the case
of approximate space. Fig. 1 shows the approaches to attribute reduction in a decision table.

Figure 1: Attribute reduction approaches

Apart from the research on the relationship between rough set theory models and topologies, the
methods used to build the Alexandrov topology structure regarding the rough set approach are also
concerned and developed, including Alexandrov topologies based on the fuzzy rough set approach
[33] and the intuitionistic fuzzy rough set approach [35].

Current attribute reduction methods based on algebraic topology approaches do not consider
the separability of the attribute space. When separating attributes into non-intersecting groups, it
will greatly reduce the number of candidate attribute sets that need to be processed. In this paper,
we propose a Hausdorff topology structure using the RST approach to construct a novel attribute
reduction method for decision tables. Unlike the structure of Alexandrov topologies, each element
in a Hausdorff topology always has an opposite element, i.e., two different objects can be always
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distinguished through their neighbors. Then, we can use the Hausdorff topological structure as the
standard structure for selecting the attributes. Furthermore, in 2014, Yun et al. [38] showed that two
covers of attributes are different, but their topologies can be the same. Then, we can group attributes
with the same topological structure. Based on those observations, a novel attribute reduction model,
using the Hausdorff topology approach, is introduced. This model has the following main steps:

(1) Selecting: Filter attributes related to the reduct based on the criteria of Hausdorff’s proposed
topological structure.

(2) Partitioning: Group the filtered attributes into groups based on the proposed co-structure
concept. It should be noted that these groups of attributes do not intersect. Therefore, the number of
groups will not be larger than the number of attributes obtained at the selection step.

(3) Wrapping: Wrapper the attribute groups obtained from the partitioning step to select the
attribute group with the highest accuracy and consider this group as the reduct.

The main contributions of this paper include:

(1) Propose the Hausdorff topological structure based on the RST approach on the attribute space.

(2) Propose a novel attribute reduction method on topological space.

Apart from the introduction and conclusion sections, the paper’s structure includes: Section 2
recalls some basic knowledge of topology and rough sets. Section 3 proposes the method to construct
a topology based on beta fuzzy approximation space. Section 4 studies the separability properties of
the Hausdorff topology. Section 5 presents the attribute reduction model according to the Hausdorff
topology structure. Section 6 presents some experimental results. The discussions are presented in
Section 7.

2 Preliminaries

This section recalls some basic knowledge of RS and topology [29,38] that is essential background
knowledge will be used in the next sections of this study.

The numeric decision table (shown in Table 1) is represented by the tuple DT = (U , C, D, f ),
where C ∩ D = ∅, U is a non-empty set of objects, C is a non-empty set of conditional attributes, and
D is a decision attribute. The function f determines a value for each u ∈ U corresponding to c ∈ C or
D. For convenience, we denote DT = (U , C, D).

Table 1: The numeric decision table

U a b c d e f D

u1 1.0 0.4 0.8 0.2 1.0 0.0 0
u2 1.0 0.4 0.2 0.4 0.2 0.8 1
u3 0.8 0.6 1.0 0.0 0.6 0.4 0
u4 0.2 0.6 0.8 0.2 0.0 1.0 1
u5 0.2 0.8 0.8 0.2 0.0 1.0 1
u6 0.2 0.8 0.2 0.8 0.0 1.0 0

Definition 1. Given a decision table DT = (U , C, D) and an equivalence relation R on U . The pair
(U , R) is an approximation space. Then the upper and lower approximation operations of X ⊆ U are
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defined by:

R (X) = {
x ∈ U| [x]R ⊆ X

}
(1)

R (X) = {
x ∈ U| [x]R ∩ X �= ∅

}
(2)

where [x]R is an equivalence class of x ∈ U according to the relation R or a subset of U that are the
same with x according to the R. Then R (X) is the set of objects in U that belong to X , and R (X) is
the set of objects in U that could belong to X .

Definition 2. The topological space is defined as a pair (U , T ) consisting of a family of U subsets
labelled T that satisfy the following conditions:

(1) ∅ ∈ T and U ∈ T ;
(2) T is closed under the finite intersection operation;
(3) T is closed under any union operation.

Definition 3. Let R be an equivalence relation on U . Then R is a fuzzy equivalence relation if:

(1) Reflexive: For all x ∈ U , R (x, x) = 1;
(2) Symmetric: For all x, y ∈ U , R (x, y) = R (y, x);
(3) Min-transitive: For all x, y, z ∈ U , min (R (x, y), R (y, z)) ≤ R (x, z).

Definition 4. Let R be a fuzzy equivalence relation on U , then R can be represented by the fuzzy
equivalence relation matrix M, where M = [i, j]|U|×|U|.

Then, to get the lower approximation and the upper approximation of X ⊆ U , instead of
using the approximation space (U , R) through the relation R, we can redefine the upper and lower
approximation as follows:

M (X) = {x ∈ U| M [x] ⊆ X} (3)

M (X) = {x ∈ U| M [x] ∩ X �= ∅} (4)

Definition 5. Let A,B be fuzzy equivalence relation matrices on U corresponding to A, B ⊆ C,
then the intersection of two matrices is defined as follows:

A [i, j] ∩ B [i, j] = min (A [i, j],B [i, j]), ∀i, j ∈ [1, |U|] . (5)

Definition 6. Let A,B be fuzzy equivalence relation matrices on U corresponding to A, B ⊆ C,
then the union of two matrices is defined as follows:

A [i, j] ∪ B [i, j] = max (A [i, j],B [i, j]), ∀i, j ∈ [1, |U|] . (6)

Proposition 1. [38] Let M be a relation matrix on U . For all X , Y ⊆ U

(1) M (X) = (
M (X c)

)c
, M (X) = (

M (X c)
)c

where X c = U � X
(2) M (U) = U , M (∅) = ∅

(3) M (X ∩ Y) = M (X) ∩ M (Y), M (X ∪ Y) = M (X) ∪ M (Y)

(4) If X ⊆ Y then M (X) ⊆ M (Y), M (X) ⊆ M (Y)

(5) M (X ∪ Y) ⊇ M (X) ∪ M (Y), M (X ∩ Y) ⊆ M (X) ∩ M (Y)
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Proposition 2. [38] Let M be a relation matrix on U . For all X , Y ⊆ U

(1) M is serial if for any X ⊆ U : M (X) ⊆ M (X) or M (U) = U
(2) M is reflexive if for any X ⊆ U : M (X) ⊆ X or X ⊆ M (U)

(3) M is symmetric if for any X ⊆ U : X ⊆ M
(
M (X)

)
or M

(
M (X)

) ⊆ X
(4) M is transitive if for any X ⊆ U : M (X) ⊆ M

(
M (X)

)
or X ⊆ U : M

(
M (X)

) ⊆ M (X)

Proposition 3. [38] Let M be a serial relation matrix on U . Then T = {
X ⊆ U|M (X) = M (X)

}
is a topology on U .

3 Topologies Induced by β Fuzzy Approximation

Based on the fundamental knowledge presented in Section 2, in this section, we will discuss how to
construct the topology from the β fuzzy approximation space. On that basis, we construct the algebraic
structure of the proposed topology. We first define the concepts of β fuzzy equivalence relation, β fuzzy
approximation space as below:

Definition 7. Let U be a non-empty set of objects in the interval [0, 1], the β fuzzy equivalence
relation on U denoted by Rβ is defined as the following:

For all x, y ∈ U

Rβ (x, y) =
{

1 − |x − y| if 1 − |x − y| ≥ β

0 if 1 − |x − y| < β. (7)

Definition 8. Given DT = (U , C, D), the β fuzzy approximation space is denoted by (U , Rβ),
where Rβ = {Rβ (x, y) |x, y ∈ U}.

For each c ∈ C, we have U different values. We denote the relation Rβ with respect c ∈ C by Rβ

c .

Definition 9. Given the decision table DT = (U , C, D) and Mβ

p , Mβ

q are β fuzzy equivalence
relation matrices corresponding to Rβ

p , Rβ

q , p, q ∈ C. Then:

(1) Mβ

p is less than (≺) Mβ

q if for all x, y ∈ U , Rβ

p (x, y) < Rβ

q (x, y);
(2) Mβ

p = Mβ

q if for all x, y ∈ U then Rβ

p (x, y) = Rβ

q (x, y).

Proposition 4. Let (U , Rβ) be a fuzzy approximation space. Then T = {
X ⊆ U : Rβ (X) = Rβ (X)

}
is a topology on U with respect Rβ .

Proof:

(1) Based on the second property of Proposition 1, we have Rβ (U) = U and Rβ (∅) = ∅, then
∅ ∈ T and U ∈ T . This satisfies the first condition in Definition 2.

(2) Assume that X , Y ∈ T , then Rβ (X) = Rβ (X), and Rβ (Y) = Rβ (Y), and more Rβ (X ∩ Y) ⊆
Rβ (X ∩ Y) and Rβ (X ∩ Y) ⊆ Rβ (X) ∩ Rβ (Y) = Rβ (X) ∩ Rβ (Y) = Rβ (X ∩ Y). Then
Rβ (X ∩ Y) = Rβ (X ∩ Y). It follows that X ∩ Y ∈ T . This satisfies the second condition
in Definition 2.

(3) Assume that Xk ∈ T |k ∈ K. Then Rβ (Xk) = Rβ (Xk), so for all k ∈ K , we have Rβ

(
∪

k∈K
Xk

)
=

∪
k∈K

Rβ (Xk) = ∪
k∈K

Rβ (Xk) ⊆ Rβ

(
∪

k∈K
Xk

)
. In more Rβ

(
∪

k∈K
Xk

)
⊆ Rβ

(
∪

k∈K
Xk

)
so Rβ

(
∪

k∈K
Xk

)
=

Rβ

(
∪

k∈K
Xk

)
. This satisfies the third condition in Definition 2.

From (1)–(3), we can conclude that T is a topology on U with respect Rβ . �
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Definition 10. Let DT = (U , C, D) and Rβ

a be a β fuzzy equivalence relation on U with respect
a ∈ C. Then topology of the attribute a ∈ C denoted by Ta is defined by:

Ta =
{

X ⊆ U|Rβ

a (X) = Rβ
a (X)

}
. (8)

Definition 11. Let Tp, Tq be two topologies with respect Rβ

p , Rβ

q . Then Tp ⊆ Tq if for all e ∈ Tp then
e ∈ Tq.

Proposition 5. Let Tp =
{

X ⊆ U|Rβ

p (X) = Rβ
p (X)

}
and Tq =

{
X ⊆ U|Rβ

q (X) = Rβ
q (X)

}
be two

topologies on U . Then Tp ⊆ Tq if Rβ

q ≺ Rβ

p .

Proof:

Assume that Rβ

p ≺ Rβ

q , so for all x ∈ U we have [x]βp ⊆ [x]βq . Then for all X ⊆ U , if [x]βq ⊆ X then
[x]βp ⊆ X , or in other words if X ∈ Tp then X ∈ Tq. Based on Definition 11, the Proposition has been
proved. �

Definition 12. Let Rβ be a β fuzzy equivalence relation on U , then Rβ is the smoothest if and only
if for all x, y ∈ U , Rβ (x, y) = 1 if x = y and Rβ (x, y) = 0 if x �= y. We denote the smoothest β fuzzy
equivalence relation as Rβ

1 .

Proposition 6. T is the largest topology (T1) if Rβ = Rβ

1 .

Proof:

It is clear that the topology defined on Rβ

1 is the family S ⊆ U such that [x]β1 ⊆ S. Furthermore,
since [x]β1 is the non-subset smallest of U then for all x ∈ U , the number of subset S ⊆ U such as
[x]β1 ⊆ S are

∣∣{2(U−x)
} ∪ {x}∣∣ = ∣∣{2(U−x)

}∣∣ = 2|U−1|, that is the family of subset largest. The Proposition
has been proved. �

Definition 13. Let Rβ be a β fuzzy equivalence relation on U , then Rβ is said to be coarsest relation
if and only if for all x, y ∈ U , Rβ (x, y) = 1. We denote the coarsest β fuzzy equivalence relation as Rβ

0 .

Proposition 7. T is the smallest topology denoted by T0 if Rβ = Rβ

0 .

Proof:

It is clear that the topology defined on Rβ

0 is the family S ⊆ U such that [x]β0 ⊆ S. Furthermore,
since [x]β0 = U is the non-subset largest of U then for all x ∈ U , the number of subset S ⊆ U such as
[x]β0 ⊆ S are

∣∣{2(U−x)
} ∪ {U}∣∣ = |{U}| = 1, that is the family of subset smallest. The Proposition has

been proved. �
Definition 14. Let DT = (U , C, D) and Rβ

{p,q} be a β fuzzy equivalence relation of p, q ∈ C on U ,
Rβ

{p,q} = Rβ

p ∩ Rβ

q . Then topology on Rβ

{p,q} is defined by:

T{p,q} =
{

X ⊆ U|Rβ

{p,q} (X) = Rβ

{p,q} (X)
}

(9)

4 Hausdorff Topology from Topology Space

Based on the topological structure proposed in Section 3 of the article. In this section, we study
the separability property of the Hausdorff topology. On that basis, we also examine the relationships
of objects in U to determine in which cases T is a Hausdorff topology on U .

Corollary 1. Given a topology T base on Proposition 4. If X ∈ T , then ∃Y ∈ T : Y = U � X .

Definition 14. Given a topology T with respect toRβ . Then the topology T is said to be Hausdorff
topology if every x �= y ∈ U always exists two open sets Vx, Vy ∈ T such that Vx ∩ Vy = ∅.
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Proposition 8. Given a topology T base on Proposition 4. If T is non-trivial topology then T is a
Hausdorff topology.

Proof:

Assume that T is non-trivial topology, which mean that T is not an empty set. Then, based on
Corollary 1, if X ∈ T then there always exists Y such that X ∩ Y = ∅. The proposition is proven. �

Thus, T is called Hausdorff topology if T is not empty in relation Rβ . The next question is how
to make a relation Rβ , so that T is not empty.

Definition 15. Let DT = (U , C, D) and Rβ be a β fuzzy equivalence relation on U . Then topology
T with respect Rβ is non-trivial topology if for all x ∈ U , exists y �= x ∈ U such that [x]Rβ ∩ [y]Rβ = ∅.

Proposition 9. Let Rβ be a β fuzzy equivalence relation on U . If x �= y ∈ U are two the smallest
elements and | [x]Rβ ∩ [y]Rβ = ∅ then topology T with respect Rβ is non-trivial topology.

Proof:

(1) Suppose x > y and [x]Rβ ∩ [y]Rβ = ∅, then according to Eq. (7) we have Rβ (x, y) = 0 or
1 − |x − y| < β.

(2) For all z ∈ U − {x, y}, if z > x then z > y, so 1 − |z − y| < β then Rβ (z, y) = 0.

From (1) and (2), we have ∀z ∈ U : z > x, [z]Rβ ∩ [y]Rβ = ∅. The Proposition has been proved. �

5 Attribute Reduction Based on Hausdorff Topology Space

Based on the topological structure proposed by Hausdorff, in this section, we propose an attribute
reduction model according to the Hausdroff topological approach. Differing from current attribute
reduction models, the proposed model includes three stages. In the first stage, we remove redundant
attributes based on the definition of redundant attributes in the Hausdorff topological approach. In
this stage, only properties with Hausdorff topological structure (based on Lemma 1 and Definition 16)
are selected. In the second stage, we group condition attributes with the same structure as the decision
attribute D based on the concept of D-homomorphism (based on Definition 16 and Definition 17).
The third stage is used to choose the best attribute group according to the method of wrapping the
attribute groups. To illustrate these stages, the evaluation of the proposed algorithm and illustrative
numerical examples are presented. Table 2 details the differences between the Hausdorff topology
attribute reduction method and the traditional approach.

Table 2: Comparing attribute reduction approaches

Hausdorff topology approach Traditional approach

Attribute search
method

Consider only attributes with Hausdorff
topological structure

Consider all possible attributes

Attribute
evaluation
method

Group condition attributes that have the
same structure as the decision attribute

Use dependency measures to construct
attribute importance measures

Method of
determining the
reduct

Use the wrapper method to determine
the subset with the best classification
accuracy

Use the conservative property of the
measure to complete the attribute
selection process
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Lemma 1. Let PD be a partition of the decision attribute D and T be a Hausdorff topology. Then
for every X ∈ PD, there always exists Y ∈ T such that X ∩ Y �= ∅.

Proof:

Based on Corollary 1 we have T �= ∅. For all X ∈ PD, suppose that ∃G ∈ T : G ∩ X = ∅, based
on Corollary 1 ∃ ∼ G = U � G ∈ T : ∼ G ∩ X �= ∅. �

Definition 16. Given a decision table DT = (U , C, D). Then c ∈ C is called a relative attribute if
the topology of c on U is a Hausdorff topology.

Therefore, the attributes that have a Hausdorff topological structure are all attributes that control
the decision set D, which is always contained in candidate reducts and is often called relative attributes.
The above property can help us deliver an attribute filtering step that is effected in the attribute
reduction model with a much more optimal computational cost than traditional attribute filtering
methods. Next, to wrap relative attributes effectively, we define some concepts to optimize candidate
reduct sets.

Definition 17. Given a decision table DT = (U , C, D) and Hβ is a family Hausdorff topology of
C base on Rβ . Then p ∈ Hβ is called homomorphic with q ∈ Hβ if Rβ

p = Rβ

q .

Definition 18. Given a decision table DT = (U , C, D) and Hβ is a family Hausdorff topology
of C base on Rβ . Then p ∈ Hβ is called D-homomorphic with q ∈ Hβ if Rβ

pD = Rβ

qD. Where Rβ

pD =
Rβ

p ∩ Rβ

D, Rβ

qD = Rβ

q ∩ Rβ

D.

Based on Definitions 16, 17, and 18, we propose an attribute reduction model using the Hausdorff
topology approach. The proposed model includes three main independent phases. 1) Filter phase
for relative attributes, 2) Phase grouping relative attributes, and 3) Phase wrapper groups of relative
attributes.

Algorithm 1: Cluster filter wrapper based on hausdorff topology (CFW)
Input Decision Table DT = (U , C, D), Δ = {0.1, 0.2, . . . , 0.8, 0.9} and classification Model
Output: The reduct Red
Begin
1. Red ← ∅;
2. for all β ∈ Δ do
3. Hβ ← ∅; // Init Hausdorff attributes
4. CHβ ← ∅; // Init Hausdorff attribute groups
5. Redβ ← ∅; // Init a reduct at beta
6. for all c ∈ C do
7. Tc = {X ⊆ U|Rβ

c (X) = Rβ
c (X)};

8. if Tc �= ∅ then
9. Hβ ← Hβ ∪ {c};
10. end if
11. end for
12. for all p ∈ {Hβ − CHβ} do
13. Gp ← ∅; //Init Hausdorff attributs group
14. for all q ∈ {Hβ − CHβ − {p}} do

(Continued)
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Algorithm 1 (continued)
15. if Rβ

p ∩ RD = Rβ

q ∩ RD then
16. Gp ← Gp∪{q}; // Grouping relative attributes
17. end if
18. end for
19. CHβ ← CHβ ∪ Gp;
20. Redβ = G : Accuracy (Model, G) = max

G∈CHβ
{Accuracy (Model, G)};

21. end for
22. if Accuracy(Model, Rβ) > Accuracy(Model, R) then
23. Red ← Redβ ; //Wrapper β Groups
24. end if
25. end for
26. return Red
End.

In this algorithm, we denote Hβ as Hausdorff attributes selected from the original attribute set C
at β threshold. As mentioned, Hβ is a relative reduct set. CHβ are groups of attributes clustered from
Hβ , where each item Gp in CHβ is a group of homomorphic attributes with attribute p. Therefore,
the Hausdorff attribute wrapper phase is used to find the best reduct candidate at each β threshold.
In reality, the Hausdorff attributes may not exist. Therefore, we use the threshold β in the threshold
set Δ for adjustment. Then, for each value β, a different candidate reduct Redβ can exist. Therefore,
the β wrapper stage determines the best candidate reduct for R. Next, we evaluate the complexity of
the Algorithm 1 (CFW algorithm). Let |U| be the number of objects, |C| be the number of condition
attributes, |Hβ| is the number of relative attributes, and |CHβ| is the number of groups of relative
attributes. Then the complexity of 1) Steps 6–11 is O (2|U||C|); 2) Steps 14–18 is O

(|U|2|Hβ|). Let
T is the execution time of the Model classification, the complexity of Steps 20–22 is T. Then the
complexity of Steps 12–21 is O

(|U|2|Hβ|) + O (|CHβ|T). With |Δ| is very small, from 1) and 2),
we have the complexity of the algorithm is O (2|U||C|) + O

(|U|2|Hβ|) + O (|CHβ|T). The details of
CFW algorithm are presented in Fig. 2 below.

Fig. 2 shows the progress of the CFW algorithm. There are three stages in this algorithm. The first
stage is performed to filter Hausdorff attributes Hβ from the attribute set C in decision table DT . In
the second stage, a group of candidates CHβ is generated. In the last stage, the wrapper method is used
in order to define Redβ where Redβ is the reduct with the highest accuracy among the candidates in
CHβ . CFW algorithm stops when all values of beta in Δ are taken and the final reduct Red is found.
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Figure 2: The diagram of the CFW algorithm

Example

Let DT = (U , C, D) as Table 1 and β = 0.7 we have:

− Initialization steps: Red ← ∅; Hβ ← ∅; CHβ ← ∅; Redβ ← ∅;
− Filtering relative attributes:

1) The attribute a ∈ C has u3 = 0.6 �= u4 = 0.0 and
[u3] R0.7

a = [0.8 0.8 1 0 0 0]
[u4] R0.7

a = [0 0 0 1 1 1]

2) The attribute b ∈ C has u1 = 0.2 �= u3 = 0.4 and
[u1] R0.7

b = [1 1 0.8 0.8 0 0]
[u3] R0.7

b = [0.8 0.8 1 1 0.8 0.8]

3) The attribute c ∈ C has u1 = 0.6 �= u2 = 0.0 and
[u1] R0.7

c = [1 0 0.8 1 1 0]
[u2] R0.7

c = [0 1 0 0 0 1]

4) The attribute d ∈ C has u1 = 0.4 �= u3 = 0.2 and
[u1] R0.7

d = [1 0.8 0.8 1 1 0]
[u3] R0.7

d = [0.8 0 1 0.8 0.8 0]

5) The attribute e ∈ C has u2 = 0.2 �= u4 = 0.0 and
[u2] R0.7

e = [0 1 0 0.8 0.8 0.8]
[u4] R0.7

e = [0 0.8 0 1 1 1]
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6) The attribute f ∈ C has u2 = 0.2 �= u4 = 0.0 and
[u1] R0.7

f = [1 0 0 0 0 0]
[u3] R0.7

f = [0 0 1 0 0 0]
7) Base one the Definition 15 and Proposition 9 show that, only {a, c, f } attributes are

topology Hausdorff, so Hβ = {a, c, f }
− Group relative attributes:
1) Calculating the relational matrices for attributes in Hβ according to Eq. (7) we have:

R0.7
a =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 0.8 0 0 0
1 1 0.8 0 0 0

0.8 0.8 1 0 0 0
0 0 0 1 1 1
0 0 0 1 1 1
0 0 0 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎦

;

R0.7
c =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0.8 1 1 0
0 1 0 0 0 1

0.8 0 1 0.8 0.8 0
1 0 0.8 1 1 0
1 0 0.8 1 1 0
0 1 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

;

R0.7
f =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0.8 0.8 0.8
0 0 1 0 0 0
0 0.8 0 1 1 1
0 0.8 0 1 1 1
0 0.8 0 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎦

;

RD =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 1 0 0 1
0 1 0 1 1 0
1 0 1 0 0 1
0 1 0 1 1 0
0 1 0 1 1 0
1 0 1 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

.

2) According to Definition 18 we have:

Considering attribute a, we see R0.7
a ∩ RD = R0.7

c ∩ RD =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0.8 0 0 0
0 1 0 0 0 0

0.8 0 1 0 0 0
0 0 0 1 1 0
0 0 0 1 1 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

Then Ga = {a, c}, so CHβ = CHβ ∪ Ga = {{a, c}}.
Gf = {f }, so CH = CH ∪ Gf = {{a, c} , {f }}; Assuming the attribute group {a, c} has the highest

classification accuracy on Model, we get Red0.7 = {a, c}. Suppose the candidate reduct at value β = 0.7
is the candidate with the highest classification accuracy on Model. Then we obtain the reduct Red =
Red0.7 = {a, c}.
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The Hausdorff topology does not always exist for every fuzzy approximation space. Therefore, the
beta value is used to change the smoothness of the fuzzy partitions. According to Propositions 5 and 6,
we can see the relationship between the topology structure and the smoothness of the fuzzy partition.
The smoother the fuzzy partition, the larger the size of the topology, which means the possibility of
the Hausdorff topology appearing is greater. In the experiment, we set the step value to 0.1 to clarify
the difference after each change in beta value.

6 Experiments
6.1 Experimental Scenarios

The goal to evaluate the algorithm’s performance when applied to real datasets and to be the
basis for affirming the theoretical foundation we propose is entirely reasonable. The following is the
experimental plan for the proposed algorithm. Step 1: Choose the best β value for the algorithm on
each dataset. This experimental process aims to choose the most suitable β value for each dataset,
where β is in the [0, 1] range with each step of 0.1. Step 2: Compare the proposed algorithm with
other attribute reduction algorithms. After choosing the best beta value of the proposed algorithm for
each dataset, compare the proposed algorithm with some attribute reduction algorithms: (1) Attribute
reduction algorithm according to the rough set (VPRS) approach [41]; (2) Attribute reduction
algorithm according to the fuzzy rough set (FRS) approach [42]; (3) Attribute reduction algorithm
according to the fuzzy information entropy (IFE) approach [21]; (4) Attribute reduction algorithm
according to the fuzzy distance (FD) approach [24].

Each algorithm experiments on 90% of randomly selected data from each dataset for evaluation.
Perform this evaluation 10 times with Support Vector Machine classification (SVM) and k-Nearest
Neighbors models (kNN, k = |D|) for finding the best reduct. Each model uses precision measurement
and the 10-fold cross-validation method. The result of evaluating the classification accuracy of the
reduct is the average accuracy (expressed as a percentage) of 10 different times. Before performing
the attribute reduction algorithm, we standard all datasets to the range [0, 1]. We use Python for
all algorithms on the Anaconda 3.6 platform running on a Windows 10 operating system with an
i5 Processor and 8 GB of RAM (Random Access Memory). All algorithms were performed on 16
datasets from UCI [43].

All the datasets are numeric data types. The details of the experimental data sets are in Table 3,
with |U| as a sample number and |C| as the number of condition attributes arranged in ascending
order. |D| as the class number of decision attributes. Especially in the UFDC and Sonar datasets that
contain noise data, the model’s classification accuracy is low when used to train the model. Criteria
to evaluate the effectiveness of algorithms include the computation time (in seconds), the size of the
reduct (number of attributes), and classification accuracy (in percentage). Besides, the ability of the
algorithms to handle noise is also considered.

Table 3: Dataset description

ID Data Describe |U| |C| |D|
1 Wine Wine 178 13 3
2 Heart Statlog (Heart) 270 13 2
3 CMSC Climate model simulation crashes data set 540 18 2
4 PDS Parkinsons data set 196 22 2

(Continued)
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Table 3 (continued)

ID Data Describe |U| |C| |D|
5 BCWD Breast cancer wisconsin (Diagnostic) 569 30 2
6 BCWP Breast cancer wisconsin (Prognostic) 198 33 2
7 IS Ionosphere 351 34 2
8 UFDC Ultrasonic flowmeter diagnostics (C) 181 43 4
9 UFDD Ultrasonic flowmeter diagnostics (D) 181 43 4
10 SHDC SPECTF heart data set 267 44 2
11 UFDB Ultrasonic flowmeter diagnostics (B) 92 51 3
12 DPDS Divorce predictors data set 170 54 2
13 Sona Connectionist bench 208 60 2
14 Musk Musk 476 166 2
15 VRB Voice rehabilitation (Binary) 126 310 2
16 VRG Voice rehabilitation (Gender) 126 310 2

6.2 Analysis the β Value for the Algorithm on Each Dataset

Before comparing the reduct with other algorithms, we need to find the β value such that the
CFW algorithm gives the best reduct. For each experimental dataset, we perform the algorithm with
different β values. We can get the best result for each β value in terms of size or classification accuracy.
In this study, we choose the option that balances classification accuracy and the size of the reduct. The
reduct obtained with the algorithms may differ for each classification model. Moreover, each β value
may exist or not the reduct and these reducts have the size and classification accuracy different.

In Fig. 3, we can see the best β value for each dataset on the SVM classification model. Fig. 4
shows the best β value for each dataset on the kNN classification model. The results show that there
is no linear relationship between the size and classification accuracy of the reduct with β, there is no
linear relationship between the size and classification accuracy of the reduct.

Figure 3: (Continued)
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Figure 3: The chart analyzes the relationship between the size and classification accuracy of the reduct
at each specified value of β on the SVM classification model

Figure 4: The chart analyzes the relationship between the size and classification accuracy of the reduct
at each specified value of β on the kNN classification model
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Tables 4 and 5 describe the effects of the beta parameter on the size of the reduction, the
classification accuracy and the running time of the CFW algorithm.

Table 4: Analysis beta on SVM classification model

Dataset Analysis Beta

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Wine
Reduct size (|R|) 0 0 0 0 12 8 8 7 10
Accuracy (%) 0 0 0 0 98 90 90 90 96
Computing time (s) 0 0 0 0 0.05 0.05 0.05 0.05 0.05

Heart
|R| 3 3 4 6 13 13 13 13 13
Accuracy (%) 72 72 76 86 84 84 84 84 84
Computing time (s) 0.05 0.05 0.05 0.05 0.08 0.08 0.1 0.1 0.1

CSMC
Reduct size (|R|) 0 0 0 0 1 1 1 8 1
Accuracy (%) 0 0 0 0 92 92 92 95 92
Computing time (s) 0 0 0 0 0.28 0.28 0.38 0.4 0.42

PDS
|R| 0 0 0 0 13 5 5 5 8
Accuracy (%) 0 0 0 0 81 84 84 86 84
Computing time (s) 0 0 0 0 0.17 0.2 0.27 0.27 0.27

BCWD
Reduct size (|R|) 0 0 0 1 5 3 3 2 9
Accuracy (%) 0 0 0 62 95 94 93 92 97
Computing time (s) 0 0 0 0.67 0.67 0.7 0.77 0.77 0.77

BCWP
Reduct size (|R|) 0 0 0 0 1 2 3 1 1
Accuracy (%) 0 0 0 0 76 76 76 76 76
Computing time (s) 0 0 0 0 0.71 0.71 0.71 0.81 0.81

IS
Reduct size (|R|) 1 1 1 1 1 2 1 5 1
Accuracy (%) 75 75 75 75 82 82 82 78 82
Computing time (s) 0.2 0.2 0.2 0.2 0.6 0.6 0.7 0.73 0.73

UFDC
Reduct size (|R|) 1 1 1 6 14 13 12 11 8
Accuracy (%) 30 30 30 53 54 59 54 46 36
Computing time (s) 0.05 0.05 0.05 0.05 0.11 0.11 0.22 0.22 0.22

UFDD
Reduct size (|R|) 0 0 1 1 15 15 14 10 5
Accuracy (%) 0 0 31 31 66 66 64 64 63
Computing time (s) 0 0 0.07 0.07 0.18 0.18 0.2 0.3 0.3

SHDC
Reduct size (|R|) 0 0 0 0 9 3 4 5 8
Accuracy (%) 0 0 0 0 79 79 79 79 79
Computing time (s) 0 0 0 0 0.45 0.45 0.55 0.55 0.55

UFDB
Reduct size (|R|) 0 2 3 2 4 3 4 1 1
ACC 0 53 53 79 90 91 96 79 79
Computing time (s) 0 0.2 0.2 0.2 0.56 0.56 0.66 0.7 0.7

DPDS
Reduct size (|R|) 0 0 0 0 1 1 1 2 2
Accuracy (%) 0 0 0 0 98 98 98 98 98
Computing time (s) 0 0 0 0 0.82 0.82 0.9 09 0.9

(Continued)
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Table 4 (continued)

Dataset Analysis Beta

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Sonar
Reduct size (|R|) 0 0 0 1 3 4 1 6 11
Accuracy (%) 0 0 0 53 72 73 75 72 72
Computing time (s) 0 0 0 0.63 0.63 0.63 0.75 0.75 0.75

Musk
Reduct size (|R|) 0 0 2 2 35 11 19 23 5
Accuracy (%) 0 0 56 56 71 71 70 71 72
Computing time (s) 0 0 1.15 1.15 2.26 2.26 3.2 3.2 3.3

VRB
Reduct size (|R|) 2 10 25 1 14 9 2 12 24
Accuracy (%) 67 67 67 67 84 83 76 78 87
Computing time (s) 0.85 0.85 0.85 0.85 0.85 1.7 2.2 2.2 2.2

VRG
Reduct size (|R|) 2 10 25 3 11 5 4 9 48
Accuracy (%) 57 58 57 57 75 73 74 80 78
Computing time (s) 0.92 0.92 0.92 0.92 0.92 1.93 2.3 2.3 2.3

Table 5: Analysis beta on kNN classification model

Dataset Analysis Beta

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Wine
Reduct size (|R|) 0 0 0 0 12 8 8 7 10
Accuracy (%) 0 0 0 0 96 91 91 94 89
Computing time (s) 0 0 0 0 0.07 0.07 0.07 0.07 0.07

Heart
|R| 3 3 4 6 13 13 13 13 13
Accuracy (%) 53 53 61 61 78 74 75 74 74
Computing time (s) 0.05 0.05 0.05 0.05 0.1 0.1 0.1 0.1 0.1

CSMC
Reduct size (|R|) 0 0 0 0 1 1 1 8 1
Accuracy (%) 0 0 0 0 67 83 80 92 85
Time 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26

PDS
|R| 0 0 0 0 13 5 5 5 8
Accuracy (%) 0 0 0 0 85 83 83 81 87
Computing time (s) 0 0 0 0 0.09 0.09 0.09 0.09 0.09

BCWD
Reduct size (|R|) 0 0 0 1 5 3 3 2 9
Accuracy (%) 0 0 0 63 93 93 91 90 94
Time 0 0 0 0.49 0.49 0.49 0.49 0.49 0.49

BCWP
Reduct Size (|R|) 0 0 0 0 1 2 3 1 1
Accuracy (%) 0 0 0 0 78 76 78 81 78
Computing time (s) 0 0 0 0 0.57 0.57 0.57 0.57 0.57

IS
Reduct size (|R|) 1 1 1 1 1 2 1 5 1
Accuracy (%) 71 71 71 71 84 88 84 86 86
Computing time (s) 0.21 0.21 0.21 0.21 0.21 0.43 0.43 0.43 0.43

(Continued)
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Table 5 (continued)

Dataset Analysis Beta

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

UFDC
Reduct size (|R|) 1 1 1 6 14 13 12 11 8
Accuracy (%) 42 42 42 83 93 83 93 96 72
Computing time (s) 0.12 0.12 0.12 0.12 0.49 0.49 0.49 0.49 0.49

UFDD
Reduct size (|R|) 0 0 1 1 15 15 14 10 5
Accuracy (%) 0 0 54 54 78 81 78 78 78
Computing time (s) 0 0 0.2 0.2 0.62 0.62 0.62 0.62 0.62

SHDC
Reduct size (|R|) 0 0 0 0 9 3 4 5 8
Accuracy (%) 0 0 0 0 71 70 72 70 75
Computing time (s) 0 0 0 0 0.85 0.85 0.85 0.85 0.85

UFDB
Reduct size (|R|) 0 2 3 2 4 3 4 1 1
ACC 0 95 97 95 100 97 97 97 97
Computing time (s) 0 0.25 0.25 0.25 0.25 0.77 0.77 0.77 0.77

DPDS
Reduct size (|R|) 0 0 0 0 1 1 1 2 2
Accuracy (%) 0 0 0 0 98 98 98 97 97
Computing time (s) 0 0 0 0 1.06 1.06 1.06 1.06 1.06

Sonar
Reduct size (|R|) 0 0 0 1 3 4 1 6 11
Accuracy (%) 0 0 0 48 64 71 67 62 66
Computing time (s) 0 0 0 0.52 0.52 0.52 0.52 0.52 0.52

Musk
Reduct size (|R|) 0 0 2 2 35 11 19 23 5
Accuracy (%) 0 0 56 56 74 76 73 76 75
Computing time (s) 0 0 0.07 0.07 1.55 1.55 1.55 1.55 1.55

VRB
Reduct size (|R|) 2 10 25 1 14 9 2 12 24
Accuracy (%) 44 56 72 75 75 76 75 76 75
Computing time (s) 1.02 1.02 1.02 1.02 2.12 2.12 2.12 2.12 2.12

VRG
Reduct size (|R|) 2 10 25 3 11 5 4 9 48
Accuracy (%) 52 65 65 65 75 68 68 96 69
Computing time (s) 3.25 3.25 3.25 3.25 7.67 7.67 7.67 7.67 7.67

Table 4 shows the results of using SVM. Time consuming of CFW depends on the existence
of reduct (|R| �= 0 or |R| = 0). When |R| = 0, it means that we cannot find the reduct by Topo
Hausdorff approach or we cannot find the attributes satisfying Hausdorff properties by Definition
15 and Proposition 9. In this situation, the time consumption of the proposed algorithm equals zero.
On selected datasets, the reducts are almost not defined when the beta is less than 0.5. When beta ≥0.5,
the size of final reducts is different. The values of beta also affect the smoothness of partitions. The
larger value of beta is, the higher the smooth in partitions is.

The results obtained by applying kNN are presented in Table 5 with similar characteristics as in
Table 4.

From the results in Tables 4 and 5, the accuracy and size of reduct depend on the classification
model applied in CFW algorithm.
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6.3 Compare the Proposed Algorithm with Other Attribute Reduction Algorithms

After choosing β for the proposed algorithm, which has the best size and classification accuracy
of the reduct. We compare the results of the proposed algorithm to other algorithms. Comparison
standards include classification accuracy, the size of reducts, and the computation time. The average
value of accuracy, the reduct’s size, and the computation time of the algorithms are denoted by | − |.

6.3.1 Evaluation of Algorithms on SVM Classification Model

The experimental results of the algorithms on the SVM classification model are presented in
Tables 6, 7 and 9. Observing the results in the tables, we can see that the average classification
accuracy on 16 datasets is not significantly different from the original dataset and the VPRS and
FRS algorithms. However, the reduct’s size and the computation time are much better than the VPRS
and FRS algorithms. The VPRS and FRS algorithms use the dependency measure according to the
POS approach of the extended rough set model. The remaining IFE and FD algorithms using entropy
and distance measures give the weakest average results regarding computation time and classification
accuracy.

Table 6: The size of the reduct obtained for each algorithm

ID |C| |R|

CFW-SVM CFW-kNN VPRS FRS FIE FD

1 13 10.8 7.6 11.8 10.4 10.6 7.1
2 13 6.7 5.5 11.5 13.9 10.2 6.7
3 20 8.2 8.7 9.5 20.3 20.1 3.5
4 22 5.2 4.4 9.4 8.5 10.8 4.3
5 30 3.2 3.6 14.8 7.6 12.1 4.1
6 32 2.9 2.2 8.9 12.6 12.4 5.8
7 34 2.1 2.1 20.9 11.3 19.6 6.1
8 43 13.9 4.3 15.3 8.7 11.7 5.2
9 43 5.1 3.6 19.9 6.6 8.3 3.3
10 44 3.1 2.2 44.3 10.3 14.7 5.9
11 51 4.1 3.4 8.9 5.8 11.9 5.2
12 54 2.5 1.6 8.4 15.7 24.4 4.4
13 60 4.6 7.4 44.3 17.5 25.2 7.6
14 166 5.7 11.4 86.6 23.9 29.5 8.8
15 310 9.1 4.3 56.6 18.9 35.8 7.5
16 310 9.6 2.1 72.4 16.5 36.4 10.6

| − | 77.81 6.05 4.65 27.71 13.03 18.35 6.02
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Table 7: The classification accuracy of each algorithm on each dataset with the SVM classification
model

ID |C| Classification accuracy (%)

CFW-SVM VPRS FRS FIE FD

1 98 ± 0.7 96 ± 0.9 99 ± 0.6 99 ± 0.3 93 ± 0.1 96 ± 0.8
2 84 ± 0.8 86 ± 0.6 84 ± 0.3 84 ± 0.3 82 ± 0.9 80 ± 0.7
3 95 ± 0.8 95 ± 0.4 92 ± 0.4 95 ± 0.1 95 ± 0.8 92 ± 0.6
4 84 ± 0.7 86 ± 0.6 84 ± 0.7 85 ± 0.9 84 ± 0.7 75 ± 0.8
5 98 ± 0.6 94 ± 0.7 94 ± 0.2 96 ± 0 96 ± 0.8 94 ± 0.7
6 77 ± 0.3 76 ± 0.3 76 ± 0.6 76 ± 0.2 76 ± 0.8 76 ± 0
7 88 ± 0.5 82 ± 1 88 ± 0.9 87 ± 0.5 87 ± 0.3 89 ± 0.6
8 44 ± 0.8 59 ± 0.7 45 ± 0.5 49 ± 0.1 49 ± 0.6 50 ± 1
9 68 ± 0.8 63 ± 0.5 68 ± 0.1 64 ± 1 63 ± 0.7 62 ± 0.5
10 79 ± 0.5 79 ± 1 79 ± 0 79 ± 0 79 ± 0.6 79 ± 0.3
11 100 96 ± 0.9 100 100 92 ± 0.8 100
12 98 ± 0.6 98 ± 0.3 98 ± 0.3 98 ± 0.6 98 ± 0.4 98 ± 0.5
13 65 ± 0.8 73 ± 0.2 65 ± 0.2 70 ± 0.7 64 ± 0 58 ± 0
14 75 ± 0.3 72 ± 0.2 74 ± 0.8 61 ± 0.4 61 ± 0.1 55 ± 0.4
15 83 ± 0.1 83 ± 0.2 88 ± 0.6 91 ± 0.4 80 ± 0.8 86 ± 1
16 85 ± 0.9 80 ± 0.2 91 ± 0.7 82 ± 0.5 67 ± 0.2 68 ± 0.4

| − | 83 ± 0.4 82 ± 0.3 83 ± 0.4 82 ± 0.6 79 ± 0.2 79 ± 0.8

Fig. 5 explains the algorithms’ performance with the SVM classification model. Each figure
illustrates the relationship between the reduct size and the classification ability of each algorithm on
each dataset. We can see the difference in the reduct’s size from each algorithm and its classification
accuracy. The proposed algorithm is superior in time to the other algorithms. The classification
accuracy of the reduct from the algorithm method is also better on datasets Heart, CMC, PDS,
BCWP, UFDC, SHDC, DPDS, Sonar, classification accuracy increased from 44% to 59% for noisy
datasets UFDS, Sonar.

In general, on the SVM classification model, the proposed algorithm for the reduct is significantly
better than the remaining algorithms, and the computation time is superior. Moreover, the proposed
algorithm improves the classification accuracy for noise datasets.
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Figure 5: The diagram analyzes the relationship between the reduct’s size and classification accuracy
at each algorithm on the SVM classification model

6.3.2 Evaluation of Algorithms on kNN Classification Model

The experimental results of the kNN classification model of the algorithms are described in detail
in Tables 6, 8 and 9. Observing the effects on each dataset with each evaluation criterion showed that
12 out of 16 datasets gave significantly better results than SVM classification model.

Table 8: The classification accuracy of each algorithm on each dataset with the kNN classification
model

ID C Classification accuracy (%)

CFW-kNN VPRS FRS FIE FD

1 96 ± 0.2 94 ± 0.1 94 ± 0.1 96 ± 0.9 91 ± 0.4 94 ± 0.6
2 77 ± 0.5 78 ± 0.1 77 ± 0.3 77 ± 0.3 76 ± 0.2 69 ± 0.7

(Continued)
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Table 8 (continued)

ID C Classification accuracy (%)

CFW-kNN VPRS FRS FIE FD

3 84 ± 0.1 92 ± 0.1 86 ± 0.2 84 ± 0.6 84 ± 0.9 71 ± 0.1
4 85 ± 0.7 85 ± 0.3 88 ± 0.9 87 ± 0.1 84 ± 0.3 74 ± 0.5
5 95 ± 0.2 93 ± 0.1 93 ± 0.9 93 ± 0.9 94 ± 0.7 93 ± 0.7
6 78 ± 0.8 81 ± 0.9 74 ± 0.6 79 ± 0.6 79 ± 0.6 75 ± 0.6
7 85 ± 0.6 88 ± 0.6 86 ± 0.9 88 ± 0.7 88 ± 0.4 89 ± 0.4
8 82 ± 0.1 96 ± 0.2 82 ± 0.1 74 ± 0.9 78 ± 0.1 76 ± 0.2
9 81 ± 0.5 81 ± 0.9 77 ± 0.9 77 ± 0.5 82 ± 0.6 72 ± 0.7
10 66 ± 0.1 75 ± 0.7 66 ± 0.5 69 ± 0.8 67 ± 1 72 ± 0.6
11 98 ± 0.8 100 100 100 98 ± 0 98 ± 0.5
12 98 ± 0.4 98 ± 0 98 ± 0.3 98 ± 0.4 96 ± 0.9 98 ± 0.2
13 68 ± 0.3 71 ± 0.3 64 ± 0.5 62 ± 0.7 60 ± 0.7 55 ± 0.3
14 77 ± 0.5 76 ± 0.7 77 ± 0.1 75 ± 1 69 ± 0.4 64 ± 0.3
15 68 ± 0.3 76 ± 0.6 77 ± 0.1 81 ± 0.3 65 ± 0.1 73 ± 0.1
16 70 ± 0.8 96 ± 0.4 75 ± 0.8 76 ± 0.9 61 ± 1 60 ± 0.9
| − | 82 ± 0.7 86 ± 0.6 82 ± 0.6 82 ± 0.4 80 ± 0.2 77 ± 0

Table 9: The computation time of each algorithm

ID Computation time (s)

CFW-SVM CFW-kNN VPRS FRS FIE FD

1 0.05 0.07 0.7 1.27 0.58 0.3
2 0.08 0.1 1.08 0.79 1.03 0.63
3 0.28 0.26 6.19 18.28 6.14 3.79
4 0.17 0.09 1.24 3.09 1.23 0.6
5 0.67 0.49 11.19 23.01 10.69 7.3
6 0.71 0.57 1.81 4.13 2.14 1.04
7 0.6 0.43 6.13 12.17 6.08 3.17
8 0.11 0.49 4.23 6.73 2.49 1.17
9 0.18 0.62 4.84 5.43 2.11 1.12
10 0.45 0.85 2.41 9.16 4.8 2.29
11 0.56 0.77 1.22 1.39 1.22 0.38
12 0.82 1.06 2.41 6.42 4.34 1.31
13 0.63 0.52 7.8 11.63 6.65 2.25
14 2.26 1.55 124.48 216.6 73.32 32.31
15 1.7 2.12 36.25 28.67 28.59 4.1
16 1.93 7.67 131.24 26.09 29.11 3.63
| − | 0.70 1.10 21.45 23.43 11.28 4.09
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The remaining datasets have similar classification accuracy results, but the reduct’s size and
computation time are superior. Fig. 6 provides an in-depth breakdown of the performance of several
methods when applied to the kNN classification model. The scaler on each graph illustrates the
relationship between the reduct’s size and the classification accuracy. We can notice the difference
in classification accuracy and the difference in the reduct’s size achieved by each algorithm for each
dataset. The proposed attribute reduction method is superior to the other algorithms.

Figure 6: The diagram analyzes the relationship between the reduct’s size and classification accuracy
at each algorithm on the kNN classification model

In addition, the reduct from the proposed method has a higher level of accuracy Heart, CMCS,
BCWP, IS, UFDC, UFDD, SHDC, UFDB, DPDS, Sonar, Musk, VRG. In particular, performance
has been improved for the noise dataset VRG, with an improvement in accuracy from 70 to 96 percent.

In general, on the kNN classification model, the proposed algorithm for the reduct is significantly
better than the remaining algorithms. In addition, the computation time and classification accuracy
are superior to those of the compared algorithms that are depicted in Fig. 7.
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Figure 7: The diagram analyzes the relationship between the computation time and |U| (left), between
the computation time and |C| (right) of algorithms

7 Discussion

The experimental results presented in Section 6 of this study show that the proposed algorithm
is superior to others. But the question is, what factors make the algorithm efficient regarding
the computation time, the classification accuracy, and the reduct’s size? We will first analyze the
computation time.

7.1 The Computation Time of the Proposed Algorithm

As presented in the introduction of this study, the proposed algorithm is significantly better than
other algorithms in theoretical computation time. Most traditional attribute reduction methods use a
filter with one-by-one attributes to create the reduct, which is ineffective for large-dimensional datasets.

Furthermore, traditional attribute reduction methods are based on granular computation, which
has to use approximation spaces to process. Then, large datasets will have a significant computational
load on this approximation space. Most of all have a complexity of O

(|U|2|C|2
)
. In contrast, the

complexity of the proposed algorithm is O (2|U||C|)+O
(|U|2|Hβ|)+O (|CHβ|T). Two special phases

significantly improve the computation time, which the filtering phase of Hausdorff attributes with
complexity is O (2|U||C|) and the cluster phase clustering the same structure Hausdorff attributes
with complexity O

(|U|2|Hβ|), where |Hβ| is much smaller than the original |C|. The effectiveness of
time running of algorithms is presented in Fig. 7.

7.2 The Classification Accuracy of the Reduct from the Proposed Algorithm

Most of the traditional attribute reduction methods based on the rough set approach use the
measure to evaluate the significance of the attribute. But those measures still have the disadvantage of
only considering the similarity of two subsets based on the total components without considering the
similarity for each element. Meanwhile, the topology approach allows us to evaluate the component’s
similarity through the structure of that components. In this study, we use the Hausdorff topology
structure because of distinguishable components in the Hausdorff topology. It is also why the
traditional rough set model works so well on categorical datasets. So, we use the distinguishable
concept in the rough set model for the topology space.
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7.3 Size of the Reduct from the Proposed Algorithm

As mentioned above, the topology approach to distinguish attributes is better than the traditional
approach. Yu et al. [38] have also shown that two different granular can have the same topology based
on the rough set method. Therefore, the higher the similarity, the more attributes in the same group
and vice versa. The attribute wrapper method is especially suitable for attribute reduction based on
the topology approach. Suppose that the cluster phase divides the subset of the original attribute into
many clusters. In that case, the resulting reduct will have a small size and a higher ability to choose a
group of attributes with the best accuracy, and vice versa.

7.4 Two-Way ANOVA Analysis

After getting the experiment results from applying the proposed structure using 9 different values
of beta in the range of [0, 1], two-way ANOVA (Analysis of Variance) is used in order to demonstrate
the significance of the differences in performance metrics across various datasets. The significant level
in this analysis is alpha = 0.05. Hypotheses, in this case, include Null hypothesis (H0): The means
of accuracy on the datasets are the same. Alternative hypothesis (H1): There is at least one different
value.

The summary results on kNN are presented in Table 10 below.

Table 10: Two-way ANOVA with different values of beta on kNN

ANOVA

Source of variation SS df MS F p-value F crit

Values of beta 10.7290 8 1.3412 35.1660 4.85157E-28 2.0164
Datasets 2.6419 15 0.1761 4.6183 6.74521E-07 1.7505
Error 4.5765 120 0.0381
Total 17.9480 143

From two first rows in Table 10, the values of F are larger than F crit in both Values of beta and
Datasets. This means that the different values of beta will lead to different levels of accuracy. Thus, in
our experiments, the best value of beta is selected and applied to the topology. Moreover, the different
datasets will get different values in accuracy.

The summary results of ANOVA analysis from applying SVM are presented in Table 11.

Table 11: Two-way ANOVA with different values of beta on SVM

ANOVA

Source of variation SS df MS F p-value F crit

Values of beta 10.5067 8 1.3133 33.3907 4.02614E-27 2.0164
Datasets 2.42462 15 0.1616 4.1096 5.00269E-06 1.7505
Error 4.71988 120 0.0393
Total 17.6512 143
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Due to the values of F being larger than F crit in both aspects in Table 11, we can state that by
applying SVM in our topology, the different values of beta will lead to different levels of accuracy.
Thus, the best value of beta is selected and applied to the topology.

8 Conclusion

As mentioned in the introduction, attribute reduction is an important problem widely applied in
many fields related to knowledge processing. However, most current attribute reduction algorithms
using the measure approach have the complexity of O

(|U|2|C|2
)
, so it is unsuitable for large datasets.

The proposed method has a theoretical complexity of O (2|U||C|) + O
(|U|2|Hβ|) + O (|CHβ|T) that

much faster than the traditional attribute reduction method. The proposed algorithm is entirely new
in both approach and design method, including:

1) Use the Hausdorff topology as a criterion to select relative attributes. This stage generates Hβ of
relative reducts and has complexity O (2|U||C|), significantly improving the selection time of relative
attributes.

2) Use the concept of dependent D-isomorphism to generate candidate reducts. This stage
generates CHβ groups of candidate reducts that do not intersect and have complexity O

(|U|2|Hβ|),
significantly minimizing the number of candidate reducts.

In the future, we can develop new algorithms based on the distinguishing properties of Hausdorff
topology, such as the cross-exchange method, cluster computation method, core computation method,
dependent topological structure selection method, and some hybrid methods.
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