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ABSTRACT

The growing demand for energy-efficient solutions has led to increased interest in analyzing building facades,
as buildings contribute significantly to energy consumption in urban environments. However, conventional
image segmentation methods often struggle to capture fine details such as edges and contours, limiting their
effectiveness in identifying areas prone to energy loss. To address this challenge, we propose a novel segmentation
methodology that combines object-wise processing with a two-stage deep learning model, Cascade U-Net. Object-
wise processing isolates components of the facade, such as walls and windows, for independent analysis, while
Cascade U-Net incorporates contour information to enhance segmentation accuracy. The methodology involves
four steps: object isolation, which crops and adjusts the image based on bounding boxes; contour extraction,
which derives contours; image segmentation, which modifies and reuses contours as guide data in Cascade
U-Net to segment areas; and segmentation synthesis, which integrates the results obtained for each object to
produce the final segmentation map. Applied to a dataset of Korean building images, the proposed method
significantly outperformed traditional models, demonstrating improved accuracy and the ability to preserve critical
structural details. Furthermore, we applied this approach to classify window thermal loss in real-world scenarios
using infrared images, showing its potential to identify windows vulnerable to energy loss. Notably, our Cascade
U-Net, which builds upon the relatively lightweight U-Net architecture, also exhibited strong performance,
reinforcing the practical value of this method. Our approach offers a practical solution for enhancing energy
efficiency in buildings by providing more precise segmentation results.
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1 Introduction

As global efforts to improve energy efficiency intensify, interest in buildings, the primary con-
sumers of energy in urban environments, has surged. In the urban areas of advanced economies,
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buildings account for 38% of total energy consumption and 76% of electricity usage, underscoring
the significance of effective building energy management [1]. Thermal energy loss plays a critical role
in building energy consumption, significantly affecting heating and cooling costs while contributing
to overall carbon emissions. In 2022, buildings were responsible for 34% of global energy demand and
37% of energy and process-related carbon dioxide emissions [2]. This has led to a focus on research
aimed at identifying areas of thermal loss in building envelopes. By identifying areas vulnerable to
thermal loss in buildings, heat leakage can be reduced through solutions such as replacing materials
or adding insulation in targeted areas.

However, directly measuring thermal loss in building envelopes not only requires experts but is
also highly challenging and inefficient. Traditional methods such as in-situ thermal measurements,
blower door tests, and manual infrared thermography are time-consuming and labor-intensive. These
methods require specialized equipment and trained personnel, making them costly and impractical
for large-scale assessments. Additionally, accessing certain parts of a building, especially in high-rise
structures, can pose safety risks. To address this issue, recent studies have proposed a process for
detecting thermal loss through the analysis of building facade images. This process is also referred
to as building facades parsing [3]. Notably, Park et al. [4] segmented building facade images, applied
infrared images to the results, and analyzed the temperature distribution to detect abnormal thermal
losses in building envelopes.

A fundamental element of this study is the segmentation of building facade images, which
effectively differentiates between the building area and the non-building background, while also
pinpointing objects within the building area. This segmentation is critical, as it precisely isolates areas
of interest that are susceptible to thermal loss within the building. Using a segmentation algorithm
not only streamlines the process of identifying these key objects but also significantly improves the
efficiency of detecting thermal loss.

In the aforementioned research, the DeepLab V3+ [5], a prominent image segmentation method
based on convolutional neural network (CNN), was utilized. While this methodology demonstrates
commendable performance, achieving more accurate segmentation necessitates the development of an
improved algorithm that takes into account the unique characteristics of building facade images.

This study proposes a methodology aimed at achieving higher building image segmentation
performance. The input consists of building facade images taken from the front, while the output
is a segmentation map containing the background, building, and windows. We focus on windows
as key objects of interest, as they contribute significantly to thermal loss. This method features
two distinctive characteristics. The first is object-wise processing, which separately addresses the two
primary components of a building facade image: the building (or exterior wall of the building) and the
windows. We use two neural network models, rather than a single model, to focus on characteristics of
each object type. The second characteristic is the Cascade U-Net, which is a variation on the existing
U-Net [6] model. The Cascade U-Net comprises two consecutive U-Net structures and improves the
final segmentation performance by using contours of the objects as guide data for the model.

The methodology unfolds over four stages. In the first stage, we isolate the building and windows
in bounding boxes from the input images by object detection. In the second stage, edge detection is
employed to extract the edge map within the bounding boxes and to identify the contour, which is
a closed curve that encompasses the largest area. Subsequently, the edge map serves as input data
while the contour serves as guide data for the Cascade U-Net, our proposed image segmentation
network. Finally, the results for the building and windows are synthesized to generate the ultimate
segmentation map.
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To evaluate the effectiveness of the method, we conducted experiments on a dataset of 586
Korean building images. The results demonstrated that our methodology surpasses the segmentation
performance of end-to-end methods, including DeeplLab V3+. The results indicated that processing
target objects individually proved to be more effective than attempting to segment areas across the
entire image in a single step. Furthermore, incorporating contours as additional information within
the Cascade U-Net demonstrated clear advantages: by using contours as direct guidance, it was evident
that the network was able to produce segmentation outcomes more aligned with our objectives. We
anticipate that improving the segmentation of building facade images through our methodology will
significantly aid in thermal loss detection and, consequently, in building energy management.

In summary, the contributions of this research are summarized as follows:

e We propose an object-wise processing methodology that isolates building facades and windows
using bounding boxes, enhancing segmentation focus and accuracy.

e We introduce the Cascade U-Net with contour guidance, which leverages contour data to
improve segmentation performance through a two-stage U-Net network.

e We demonstrate superior performance compared to end-to-end methods on a dataset of Korean
building images. Additionally, we provide detailed evaluations of the contributions of each
component to validate our methodology and its practical applications.

This section precedes Section 2, which provides a review of existing image segmentation models.
Section 3 delves into our methodology in greater detail, followed by a discussion of the experimental
results in Section 4. The paper concludes with Section 5, where we discuss the study’s implications and
outline directions for future research.

2 Related Work
2.1 Image Segmentation Methods

Image segmentation is the process of dividing a given image 7 into N segments S;, S, ..., Sy,
where each segment represents different objects or regions within the image. The primary objective is
to determine which segment S; each pixel p(x, y) in the image I belongs. This can be mathematically
expressed as follows:

where, S;NS; = @ for all i # j (i.e., no two segments overlap), and each S; is a set of contiguous pixels.

In a pixel-wise classification approach to segmentation, the goal is to learn a function f that assigns
a label [, to each pixel:

low = (x, ) )

Here, [, ,, 1s the label of the pixel p(x, y), and f is a function that takes a pixel as input and outputs
the label of the segment it belongs to.

Typical image segmentation models utilize an end-to-end architecture that takes an image as input
and outputs a segmentation map through a deep learning model, specifically using a CNN. While these
models perform well, each has its own distinct advantages and limitations. U-Net introduced a novel
approach by adding intermediate feature maps from its contracting path (encoder) to its expanding
path (decoder) using skip connections. This model uses a patch-based recognition approach instead of
the conventional sliding window method to improve speed and accuracy. U-Net has been utilized in
studies such as automated crack segmentation, demonstrating strong performance [7]. U-Net has the
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advantage of a simple architecture and is highly effective when working with limited data. However, it
tends to lose fine boundary details, particularly in complex or noisy images. DeepLab V34, which is
an improved version of DeepLab V3 [8], minimizes the loss of original image information and enriches
pixel representation through the implementation of depth-wise separable convolution and the Atrous
Spatial Pyramid Pooling (ASPP) module in its decoder. DeepLab V3+ offers superior performance
by capturing multi-scale context, but its increased complexity and higher computational demands
make it less suitable for resource-constrained environments. High-Resolution Network (HR-Net) [9]
features a unique architecture that avoids downscaling, thereby preserving information fidelity. It
maintains high-resolution feature maps while concurrently applying lower-resolution maps, facilitating
continuous inter-scale information exchange within subnetworks. This model is optimally utilized
for addressing heat map-based problems, such as pose estimation. However, a downside of HR-Net
is its increased memory and computational demand, as high-resolution features must be preserved
throughout the network. This can pose challenges for scalability and efficiency.

Such models, while powerful, may not fully address the challenges posed by building facade
images, which often contain repetitive patterns and subtle features. Performance limitations arise
when models rely solely on raw images as input, as they may struggle to accurately segment fine
details and boundaries. This observation motivates the exploration of methods that incorporate
supplementary information to enhance segmentation accuracy. Advancements like Bounding Box
UNet (BB-UNet) [10] and Holistically-nested Edge Detection UNet (HED-UNet) [1 1] build upon
U-Net’s foundational strengths, introducing additional information for performance. BB-UNet, based
on U-Net’s structure, uses bounding boxes as masks to enhance the segmentation of specific areas.
It concatenates these masks to the skip connections for decoding. While this approach improves
segmentation for pre-identified regions, its performance may be limited when objects lack clear
bounding boxes or when precise localization of the region of interest is challenging. HED-UNet also
uses U-Net, emphasizing the importance of contour information in segmentation results. It predicts
contours and segmentation results together, applying contour prediction results to the segmentation
outcome in the form of attention [12] to achieve the final area segmentation. However, like BB-UNet,
the reliance on additional contour data increases the complexity of model training and may not be
applicable to datasets where contour annotations are scarce or difficult to obtain.

Motivated by the recent insight that leveraging supplementary information can significantly
improve segmentation outcomes, our research aims to harness contour information of objects within
images for enhanced segmentation accuracy. In addition, by isolating objects within the images, we
focus the segmentation process on each object individually, allowing for more concentrated and
accurate segmentation results.

2.2 Edge Detection Methods

The methodology proposed in this study involves extracting edge maps and obtaining contours
from images. For edge detection, studies have used algorithm-based methods like Canny edge detection
[13], as well as deep learning-based models such as Holistically-nested Edge Detection (HED) [14], and
Dense Extreme Inception Network for Edge Detection (DexiNed) [15].

Canny edge detection remains the most prevalent algorithm for contour detection due to its
efficiency and independence from training. It operates through multiple stages, initially focusing on
noise reduction—a crucial step as noise significantly affects contour detection. It uses a Gaussian filter
to minimize image noise, followed by the application of Sobel kernels in both horizontal and vertical
directions to compute the gradient magnitudes. By establishing a threshold, it discerns the significant
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gradient variations among neighboring pixels, thereby isolating the precise edges. While effective
at detecting clear object contours in low-noise images, its performance diminishes with increased
background noise.

Xieet al. [14] sought to address comprehensive image learning and prediction challenges, including
multi-level feature learning, through their contour detection model. The HED model they proposed
learns hierarchical representations to mitigate the ambiguity often encountered in contour and object
boundary detection. Demonstrating commendable performance on the Berkeley Segmentation Data
Set 500 (BSDS 500) dataset [16]—a benchmark for contour detection—it stands out for its speed
(0.4 s per image), surpassing many contemporary CNN-based algorithms in efficiency.

DexiNed is a state-of-the-art deep learning model for contour detection, notable for producing
finer contours compared to predecessors like HED. Structurally, DexiNed comprises an encoder with
six blocks, each linked through convolutional blocks, and includes an auxiliary network enabling
information exchange among these blocks.

Due to the need for clean edge maps and precise contours in this research, DexiNed was chosen
for its superior noise reduction and contour detection capabilities, making it a crucial part of our edge
detection process.

3 Building Facade Image Segmentation Methodology

This section provides a detailed explanation of our algorithm, which is distinguished by two
principal innovations. The first innovation is object-wise processing; instead of using the original
images directly, the approach employs object-wise bounding boxes as inputs. Unlike end-to-end
models, the facade and window are processed separately and combined together in the final step
for a comprehensive segmentation output. The second key innovation is the use of a neural network
structure called Cascade U-Net, which improves on the conventional U-Net model by integrating
two U-Net architectures. This configuration utilizes contours extracted from the images as guiding
data, enhancing the segmentation performance of the model. Fig. | presents an overview of the
proposed methodology, illustrating the process from the initial building facade image to the final
segmentation map.

The methodology is composed of four stages, with each step playing a specific role:

Object Isolation: In this initial stage, an object detection model is used to isolate the building’s
facades and windows using bounding boxes, followed by resizing to standardize the input data for
further processing.

Edge and Contour Extraction: Subsequently, an edge map is generated, facilitating the identifi-
cation of precise contours within the delineated object boxes, thus laying the groundwork for detailed
segmentation.

Object-Wise Segmentation: Central to our methodology, the Cascade U-Net structure incorpo-
rates two sequentially connected U-Net networks. The initial network is tasked with refining object
contours for accuracy, while the subsequent network leverages these refined contours to execute the
segmentation.

Output Synthesis: The final stage integrates the segmented outputs for facades and windows
processed through the respective Cascade U-Net, culminating in a unified segmentation map that
accurately reflects the architectural elements of the building facade.
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Figure 1: Overview of proposed method

3.1 Object Isolation

In the object isolation step, the facade and window objects are separated from the original image
and ready to be processed in parallel for the next step. This step begins with object detection for
the target objects. The bounding box obtained as a result of object detection represents the minimal,
rectangular-shaped area enclosing the object, consisting of a position defined by x and y coordinates, as
well as width and height. Here we assume that each input image contains only one building; therefore,
because of object detection, we obtain one bounding box for the facade and multiple bounding boxes
for the windows.

After identifying the bounding boxes for the objects, these areas are cropped from the original
image, and their coordinates in the image are recorded. This record-keeping is crucial for the final
step, where the final segmentation map is synthesized.

Given the variability in the sizes of the cropped object images, a standardization process is
undertaken to resize them to a uniform input shape suitable for deep learning analysis. We chose
the shape to approximate the average size of the cropped images, resizing facade images to 512 x 512
pixels and window images to 64 x 64 pixels. The rationale behind these specific resizing decisions is
further elaborated upon in Section 4.

This strategy to use bounding boxes as inputs for the model, rather than the original images, was
inspired by the previous works including BB-UNet [10], Kervadec et al. [17], and Lee et al. [18].

To maintain clarity and focus on our explanation, illustrations and examples provided henceforth
will primarily address the processing of facade. It should be noted, however, that the same procedural
framework is applied to windows as well.

3.2 Contour Extraction

In this step, the contours of objects are extracted. A contour is the out-most closed curve that
represents the target object, which we consider as a key latent factor for segmentation. The contour
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serves as guiding data in the subsequent Cascade U-Net stage to enhance the accuracy of building
image segmentation. Fig. 2 displays the intermediate outputs of this process.

e —

(a) Cropped Image (b) Edge Map (c) Contour

Figure 2: Contour extraction

We extract the edge map from the object image using DexiNed [15], the edge detection model
that demonstrates the best performance. We utilized weights trained on the Berkeley Segmentation
Dataset, specifically BSDS500 for this model.

We select DexiNed not only because it represents the state-of-the-art but also because it proved to
be the most suitable for the building facade image dataset in experimental results. The Canny method
[13] has the advantage of not requiring training, but it performed poorly due to its sensitivity to
various noises, such as power lines or clouds around buildings. Deep learning-based contour detection
models like HED [14] and HED-UNet [1 1] were also tested; though they were less sensitive, they often
produced outputs with gaps instead of closed curves in experiments. Therefore, DexiNed was selected
as the edge detection model for this study. Among the detected edges, we choose the closed curve with
most extensive area as the object’s contour using the OpenCV library [19]. This approach of contour
extraction is based on the assumption that the closed curve with the largest area within the bounding
box of the target object is most likely to represent the object.

The second and the third images in Fig. 2 illustrate the edge map and the resulting contour of the
target object, respectively. As can be seen in the area marked with a red circle (Fig. 2¢), the contour of
the object is not accurate due to the background noises present in the building image. In the subsequent
step, the front network of the Cascade U-Net will address this issue.

3.3 Object-Wise Segmentation

The Cascade U-Net builds on the traditional U-Net architecture but introduces two distinct
differences. First, instead of using a single U-Net, it connects two networks in sequence to refine the
process and generate intermediate results, aiming for improved performance. Another difference is
the utilization of contours as guide data to steer the results in the desired direction for each network.
Cascade U-Net is illustrated in Fig. 3.

The Cascade U-Net progresses through two sub-tasks. First sub-task is contour modification
generates a refined contour from edge map, using the contour derived from the previous step. The
next sub-task is image segmentation, which produces a segmentation map from a grayscale image,
using the modified contour as guiding data.

The first network of the Cascade U-Net, called the contour refinement network, aims to refine
the contours representing the object. The contour found in the previous step is used as guiding data
to derive the modified contour from the edge map.
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Figure 3: Cascade U-Net

This network fundamentally follows the U-Net model, taking an edge map as input and outputting
a modified contour. The distinctive aspect proposed in this study is the use of the contour as guide
data, adding it twice: once at the input part of the encoding path and again at the predict layer, as
indicated by orange arrows in Fig. 3.

The second network, the image segmentation network, aims to produce an accurate segmentation
map for the input object. Its overall structure including the application of guide data mirrors the
Contour Refinement Network. However, the input for the network is changed to the grayscale image
from the edge map. Additionally, the guide data here is the refined contours from the former network
to ensure results are aligned with the segmentation objective.

In both networks, the guide data is concatenated with the primary input along the channel
dimension at the encoder’s input layer. This concatenation increases the number of input channels
from one to two, allowing the network to process both the image intensity and contour information
simultaneously.

In summary, the edge map and initial contour flow into the first U-Net, which outputs a refined
contour. This refined contour then flows into the second U-Net along with the grayscale image to
produce the segmentation map.

The process of incorporating guide data occurs twice, utilizing a layer named the Merging and
Prediction Layer (MPL) before the prediction layer (Fig. 4). The traditional U-Net’s prediction layer,
indicated in blue (output of U-Net), carries a feature map of width x height x 64, which is processed
through a 3 x 3 convolution layer and a 1 x 1 convolution layer (i.e., fully connected layer) to produce
the final segmentation output. In this study, to effectively reflect the guide data, the feature map of
width x height x 64 is reduced to two channels (width x height x 2) through a convolution layer,
concatenated with guide data of width x height x 1, and then passed through two 3 x 3 convolution
layers and a fully convolution layer in the MPL.
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Figure 4: Merging and prediction layer

This MPL layer ensures that the guide data directly influences the final predictions, improving the
network’s ability to accurately segment object boundaries.

As the final step, output synthesis process is conducted to compile the final results. This stage
reverses the process of object isolation. After passing through the Cascade U-Net, the results for each
object, namely the segmentation map of the facade and the windows, are obtained. The segmented
results for each object are restored to their original sizes, and then pasted back into their original
positions, respectively. The sequence involves first attaching the exterior wall and then overlaying the
windows onto them. The last segmentation map in Fig. | displays this integrated final output.

4 Experiment
4.1 Experimental Design

To demonstrate the effectiveness of the proposed methodology, we compare its performance
against other methodologies using a dataset of Korean building images captured from the front.

4.1.1 Dataset

The CMP FACADE dataset [20] is a benchmark dataset frequently used for building image
analysis. However, FACADE presented challenges for use in this study for three main reasons. Firstly,
it is uncommon for the images within FACADE to capture the entire building, which is crucial
for our study as it requires contour extraction and images showing the complete outline of the
building facade. Secondly, the dataset predominantly features European-style buildings, which often
include architectural elements not typically found in Korean buildings, such as column-like structures.
Also, the dataset lacks features common in Korean buildings, such as external air conditioning
units. Therefore, it was not suitable for out method which targets Korean building images. Lastly,
inaccuracies in the segmentation ground truths within the FACADE dataset, particularly due to the
ambiguous facades of older buildings could lead to incorrect identification of object types or areas on
the segmentation maps. These factors made the dataset impractical for our purposes.

As a result, we collected our dataset, consisting of 586 images of Korean buildings, carefully
selected to ensure each image included the complete outline of the buildings. Additionally, we included
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a diverse range of building types commonly seen, such as commercial shops, villas, and office buildings,
to ensure a comprehensive dataset. Fig. 5 showcases examples from the dataset we utilized.

Figure 5: Data examples

For the Cascade U-Net, we cropped images of facades or windows as inputs, using 586 cropped
facade images and 1420 cropped window images. We employed the open-source tool labelIMG (https:/
github.com/tzutalin/labellmg (accessed on 08 August 2024)) for manually marking the locations of
objects in a box shape on the training data. We applied a margin of 5 pixels around the bounding
boxes during cropping to avoid accidentally cutting parts of the objects.

For data augmentation, we used only flip and rotate techniques. While blur [21], mixup [22], and
cutmix [23] are popular in recent studies, they generate images in ways that could conflict with our
study’s requirement for detecting a single object within a box.

We split the dataset into training, validation, and test sets with an 8:1:1 ratio. For segmentation
labeling, domain experts manually annotated the images to provide ground truth. For contours, we
used the edges of the segmentation labels.

4.1.2 Evaluation Metric

To assess segmentation performance, we utilized widely recognized metrics: pixel-wise accuracy
(PA) and intersection over union (IoU). Pixel-wise accuracy measures how correct each pixel is by
comparing the predicted image with the ground truth, calculated as follows:

k
A= 2P
Zi Z/’ Py

where, p; denotes the total count of pixels predicted as class j when they actually belong to class i.

(€)
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IoU evaluates the proportion of overlap between the predicted and actual areas, calculated as
follows:

[P NG|
|PU G|

IoU = 4)

Here, P represents the predicted area, and G is the ground truth area. Both metrics yield values
between 0 and 1, with higher scores indicating either more accurately predicted pixels or greater
overlap between the predicted and actual areas, thus denoting superior performance. Specifically, we
differentiated our IoU analysis into mean IoU and wall IoU, where mean IoU averages the individual
IoU scores for exterior walls and windows, and wall IoU exclusively focuses on the exterior wall’s loU
score.

4.2 Results
4.2.1 Quantitative Analysis

In the quantitative analysis, we compared the segmentation map generated by each algorithm
against the ground truth and evaluated performance. For baseline models, we selected end-to-end
architectures: U-Net, DeepLab V34, and HED-UNet. These models were given a grayscale version
of the original images without object isolation (i.e., cropping into bounding boxes) as an input. For
the training, U-Net and our proposed method were set to run for 100 epochs. In contrast, DeepLab
V3+ and HED-UNet followed the training parameters recommended in their original publications.

The outcomes of these evaluations are summarized in Table 1. In the table, our method (the
Cascade U-Net with object isolation) demonstrated the highest performance among the tested models.
Compared to the U-Net, there was a significant improvement in performance. Specifically, it achieved
a 2.90% increase over DeepLab V34 and a 1.88% increase over HED-UNet based on the Wall IoU
metric. These results clearly illustrate the superiority of the Cascade U-Net over traditional models.

Table 1: Performance comparison with baseline models

Method Segmentation model PA (%) Wall IoU (%) Mean IoU (%)
U-Net 63.4 65.0 65.6

End-to-end segmentation DeepLab V3+ 68.7 66.1 70.7
HED-UNet 70.8 67.1 70.8

Ours Cascade U-Net 72.3 69.0 73.8

Here, DeepLab V3+ also outperformed the standard U-Net when applied in an end-to-end
manner. However, for our proposed methodology, we selected U-Net to construct the Cascade U-Net
architecture instead of cascading DeeplLab V3+. This was because U-Net has a simpler and more
straightforward architecture with fewer parameters compared to DeepLab V3+4. When cascading
networks for each object, computational complexity and resource demands increase significantly.
Utilizing U-Net allows us to cascade two networks without rendering the model impractically large
or slow.

To gain a deeper understanding of our methodology, we conducted experiments to evaluate the
impact of each component of the methodology on performance. The results are summarized in Table 2,
with descriptions for each setting as follows:
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Table 2: Performance impact of methodology components (Overall) (OD: Object Detection, OI:
Object Isolation, CE: Contour Extraction, OS: Output Synthesis, ISN: Image Segmentation Network)

Method PA (%) Wall TIoU (%) Mean IoU (%)
(1) 0D 66.2 58.8 55.0
(2) OI, U-Net (grayscale) 69.2 63.6 67.6
(3) OI, CE, OS 66.3 53.8 60.0
(4) OI, CE, U-Net (edge map) 71.9 67.8 71.2
(5) OI, CE, ISN (contour, grayscale), OS 71.8 67.0 71.1
(6) OI, CE, Cascade U-Net without MPL, OS 72.0 67.7 71.4
(7) OI, CE, Cascade U-Net, OS 72.3 69.0 73.8

(1) Bounding boxes obtained through object detection in the Object Isolation stage were consid-
ered as the object areas themselves. (2) The part of the building’s bounding box obtained through
Object Isolation was converted to grayscale and fed into U-Net to obtain a segmentation map. (3)
The internal areas of contours obtained for buildings and windows were considered as the areas of
each object, and synthesizing these yielded a segmentation map. (4) An edge map of the building’s
bounding box obtained through Object Isolation was fed into U-Net to obtain a segmentation map.
(5) Only the Image Segmentation Network part of Cascade U-Net was used to obtain and synthesize
the segmentation map. (6) Cascade U-Net was applied, but without the additional application of MPL
to guide contours. (7) Our methodology was fully applied.

Bounding boxes obtained through object detection showed poor performance (1), and contours
alone were insufficient for segmentation (3). U-Net performs better when receiving an edge map rather
than a grayscale image (2, 4), indicating the value of edge maps as additional information aiding
segmentation. However, directly feeding contours extracted from the edge map into U-Net introduced
noise, reducing performance (4, 5). Providing more accurate contours through contour refinement led
to higher performance (6) and reflecting guidance in the last layer through MPL further improved
performance (7).

The experimental results demonstrate that each component incrementally contributes to the
overall performance improvement.

e Object Isolation (OI): By cropping images to focus on individual objects, we reduce background
noise and allow the model to concentrate on relevant features, leading to an initial performance
boost.

e Contour Extraction (CE): Extracting contours provides structural information about the
objects, which is essential for accurate boundary delineation.

e Cascade U-Net Architecture: Introducing a two-stage U-Net allows for the refinement of
contours before they are used as guide data in the segmentation process. This sequential
processing ensures that the guidance provided to the segmentation network is accurate and
reliable.

e Merging and Prediction Layer (MPL): The MPL enhances the model’s ability to integrate guide
data effectively. By merging the refined contours with the network’s feature maps, it ensures that
the final segmentation output benefits from precise boundary information.
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By analyzing each component’s contribution, we confirm that the combination of object-wise
processing, contour refinement, and guided segmentation in the Cascade U-Net architecture leads to
significant improvements.

4.2.2 Qualitative Analysis

For a qualitative comparison, we juxtaposed the segmentation ground truths with the results from
DeepLab V3+ and our proposed method, as depicted in Fig. 6.

Input Image Ground Truth DeeplLab V3+ Guided U-NET

Figure 6: Qualitative analysis results comparing the ground truth with outcomes from DeepLab V3+
and our method

A notable observations from the qualitative analysis is the continuity within the predicted areas.
Observing the second row of DeepLab V3+’s results in Fig. 6 reveals white spaces indicating the
background surrounded by the building and windows. Since buildings typically lack openings in
the middle, such discontinuities detract from the overall performance. In addition, when there are
reflections on the windows, the performance gap between DeeplLab V3+ and our methodology
becomes more pronounced. Specifically, in cases where other buildings are reflected on the windows,
DeeplLab V34 tends to misinterpret those areas as part of the building’s exterior wall. Similarly,
when the sky is reflected, it often mistakes those regions for the background outside the building.
Additionally, using bounding boxes reduces unnecessary window detection, enhancing prediction
precision. Thus, we conclude that our method achieves results that accurately reflect the common
characteristics of building facade images.
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4.2.3 Hyperparameter Optimization

Experiments were conducted on two key optimizable parameters: the input size of windows and
the number of convolution layers within the MPL.

Due to the variability in bounding box sizes of objects, a standardized square input size is needed
for the Cascade U-Net model. We experimented with window size w set to 32, 64, and 128 pixels,
maintaining two layers in the MPL throughout. The experiments utilized these window sizes as inputs
specifically for the window component of our proposed model. As shown in Fig. 7, the optimal
performance was observed with w = 64, yielding the highest wall IoU across the model. Performance
was significantly lower with w = 32, at 60.7%. At w = 128, there was a slight performance decrease
to 68.6%.

75.0

72.5

69.0 68.6

Wall loU (%)
(=3]
w
(=]

32 64 128
Image Size of Windows

Figure 7: Performance relative to window image size

To ascertain why 64 x 64 offered the best performance, we checked the pixel count of win-
dow images cropped from the original images. The window images’ average pixel count was 3339
pixels, closely aligning with the 64 x 64 size. This suggests that downsizing the window images to
32 x 32 compressed the information too much, leading to worse performance. This underscores the
importance of tailoring the input bounding box size to accurately reflect the specific traits of the target
dataset.

For the number of convolution layers, we explored the optimal number needed to merge the
U-Net’s standard output of w x & x 64 with the guide data of w x & x 1 for accurate segmentation.
To avoid potential bias from directly concatenating the original U-Net’s 64-channel output with the
contour, we reduced it to 2 channels.

The experimental setup was designed to assess performance across one to four 3 x 3 convolution
layers. The outcomes are depicted in Fig. 8. The scenario with a single layer, although closest to the
original U-Net configuration, was inadequately trained with the addition of guide data, hence not
shown in Fig. 8. The findings revealed that two convolution layers delivered the best performance,
achieving a wall ToU of 69.01%. Introducing three or four layers led to performance reductions of
approximately 2% and 7%, respectively. As the number of layers increased, performance declined, likely
due to the unnecessary complexity causing information loss, consistent with insights from He et al. [24].
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Figure 8: Performance with respect to number of convolution layers

4.2.4 Practical Scenario: Window Thermal Loss Classification

We explored the practical application of the proposed methodology by classifying windows based
on their vulnerability to thermal loss. Fig. 9 illustrates an example of how we analyzed thermal loss in
windows using the segmentation map generated from our research and infrared images.

Infrared Image Segmentation Map
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Figure 9: Window thermal loss classification based on infrared imaging and cascade U-Net
segmentation
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In this scenario, the infrared image was divided into 279 distinct classes representing relative
temperature levels, and the pixel frequencies for each class were visualized in a histogram. Since
there is no predefined threshold for thermal loss, we selected the midpoint of the observed bimodal
distribution as the threshold. Using this threshold, we classified windows based on the proportion
of pixels in the segmented window regions that exceeded the threshold. Specifically, if more than
20% of a window’s pixels were classified above the threshold, the window was considered highly
vulnerable to thermal loss. Windows with 5%-20% of pixels above the threshold were classified as
moderately vulnerable, while those with fewer than 5% were classified as having minimal thermal loss.
We applied this method to several buildings for which we had infrared images, confirming the potential
of this approach for practical use. This demonstrates that our methodology can be used in real-world
applications, such as identifying areas of concern in building energy management.

5 Discussion

As shown in Table 1, the proposed methodology demonstrated superior performance over other
methodologies, including DeepLab V34, on our constructed dataset of 586 images. Notably, the
segmentation of building area exhibited high performance, with a mean IoU of over 73%.

The superior performance of our methodology over end-to-end models suggests that object-wise
processing, which separates target objects into smaller bounding boxes rather than processing the
original input image, is more effective. Furthermore, we explored the benefits of utilizing contours
with the cascade U-Net. Contours, a key latent information embedded within the input image, act
as a direct guide for the segmentation model, steering the segmentation process towards the desired
outcomes.

Furthermore, our qualitative analysis revealed that the segmentation map produced by our model
exhibited greater continuity compared to those from other models. Once again, this success can be
attributed to the use of object-wise processing, generating cropped images by bounding boxes in the
object isolation step.

It is important to note that the dataset used in this study is relatively small compared to standard
benchmark datasets. Future efforts should focus on expanding the dataset for further testing. It
is deemed valuable to not only increase the count of building facade images but also to examine
the performance on non-frontal images, including side view images and partially obscured building
images.

Despite achieving high performance, our methodology carries certain drawbacks. The use of two
interconnected U-Net structures for the segmentation of walls and windows introduces increased
complexity in the model architecture, a greater number of parameters to train, and extended training
durations. While these may be minor issues when prioritizing performance, future studies should
explore solutions to alleviate these challenges.

6 Conclusion

In this study, we proposed a methodology enhancing the segmentation of the building and the
windows within building facade images designed to facilitate the analysis of thermal loss in buildings.
Our method has two key characteristics.

Firstly, instead of directly extracting the final segmentation map from the input image, we utilized
a method that separately segments the objects comprising the facade image before synthesizing
them. This object-wise processing confines the input image to bounding boxes, allowing the image
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segmentation model to focus on the target object’s features. It also aids in maintaining the continuity
of areas in the segmentation output.

Secondly, we proposed the Cascade U-Net, composed of two consecutive U-Nets. It treats
contours as a key latent factor in image segmentation and uses them as guide data. This approach
steers the model towards producing the desired outcomes.

Our experiments on the custom-built dataset of Korean building images demonstrated that
these features contributed to achieving higher segmentation performance. If this approach enables
better segmentation of building facade images, it is anticipated to greatly assist in building energy
management when linked with thermal loss detection.

The main advantage of our methodology is its improved segmentation accuracy, outperforming
other end-to-end methodologies including DeepLab V3+. By object-wise processing, each model was
able to concentrate on specific objects, leading to further improvements in segmentation performance.
Additionally, the incorporation of contours as guide data significantly enhanced the model’s ability to
accurately delineate object boundaries, a critical aspect of image segmentation.

However, our approach also presents some disadvantages. Although U-Net is considered a
relatively lightweight model compared to more recent architectures, the use of multiple Cascade
U-Net structures for different objects increases the model’s complexity, resulting in a larger number of
parameters to train and higher computational demands. This added complexity also results in longer
training and inference times compared to simpler models, which may limit its use in scenarios requiring
fast processing. Moreover, the success of our method relies on accurate contour extraction, meaning
that it may require larger and more diverse datasets to generalize effectively across different building
types and conditions.

For future research directions, we are considering the diversification of input images and the
variety of objects to be detected. The input images in this study were building facade images that
fully encompass the front of the buildings, but there’s no guarantee that buildings will always be
photographed in this manner. Moreover, since there are various objects constituting the building
envelope beyond just windows, we plan to research methods capable of segmenting into multiple classes
based on a wider variety of inputs. Finally, to ensure the practicality of this approach in real-world
scenarios, we plan to evaluate the model’s performance on edge devices. While we select U-Net due to
its lightweight nature, we did not conduct specific experiments on such devices. This evaluation will
be crucial in determining its efficiency and feasibility in real-time applications in resource-constrained
environments.
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