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ABSTRACT

Currently, telecom fraud is expanding from the traditional telephone network to the Internet, and identifying
fraudulent IPs is of great significance for reducing Internet telecom fraud and protecting consumer rights. However,
existing telecom fraud identification methods based on blacklists, reputation, content and behavioral characteristics
have good identification performance in the telephone network, but it is difficult to apply to the Internet where IP
(Internet Protocol) addresses change dynamically. To address this issue, we propose a fraudulent IP identification
method based on homology detection and DBSCAN(Density-Based Spatial Clustering of Applications with Noise)
clustering (DC-FIPD). First, we analyze the aggregation of fraudulent IP geographies and the homology of IP
addresses. Next, the collected fraudulent IPs are clustered geographically to obtain the regional distribution of
fraudulent IPs. Then, we constructed the fraudulent IP feature set, used the genetic optimization algorithm to
determine the weights of the fraudulent IP features, and designed the calculation method of the IP risk value to give
the risk value threshold of the fraudulent IP. Finally, the risk value of the target IP is calculated and the IP is identified
based on the risk value threshold. Experimental results on a real-world telecom fraud detection dataset show that
the DC-FIPD method achieves an average identification accuracy of 86.64% for fraudulent IPs. Additionally, the
method records a precision of 86.08%, a recall of 45.24%, and an F1-score of 59.31%, offering a comprehensive
evaluation of its performance in fraud detection. These results highlight the DC-FIPD method’s effectiveness in
addressing the challenges of fraudulent IP identification.

KEYWORDS
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1 Introduction

Telecom fraud refers to the illegal acquisition and fraudulent use of public and private property
through the exploitation of telecommunications network technologies [1], employing methods such
as remote and non-contact approaches. It encompasses various forms, including telephone, network,
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and SMS (Short Message Service)-based fraud. The prevalence of telecom fraud cases has increased
significantly with the rapid advancement of information technology, resulting in substantial financial
losses for individuals. However, due to the intricate and intangible nature of communication networks,
the identification of telecom fraud has emerged as a pressing issue in need of resolution.

Telecom fraud identification (recorded as TFI) aims to analyze and identify abnormal behaviors
and patterns in communication networks, so that telecom fraud activities can be detected and
prevented. Recently, a series of researches have been conducted. Generally speaking, they can be
divided into four categories: 1) fraud identification based on blacklist systems, 2) fraud identification
based on reputation systems, 3) fraud identification based on identification based on content detection
techniques, 4) fraud identification based on behavioral profiling.

The fraud identification method [2] based on a blacklist system is currently the most commonly
used. By collecting suspicious phone numbers, IP addresses, and other user-reported information,
we create a blacklist and mark and block the listed data. Companies like 360 Security Center and
Tencent Security Center have developed and implemented such systems. Anti-spam organizations like
Project Honeypot [3] and Spamhaus [4] provide extensive IP blacklist databases to detect and prevent
spam, cyber fraud, and other malicious activities. While blacklist-based approaches are simple, easy
to implement, and maintain, they can only detect known fraud, making it challenging to identify new
types of fraud.

The fraud identification method [5] based on a reputation system provides users with a score
indicating the caller’s reputation, based on characteristics such as the number and frequency of calls.
Hu et al. [6] proposed a reputation system based on evidence theory for identifying abnormal phone
calls. This system uses user feedback and historical spam detection results to represent reputation
and synthesizes local reputations into a global reputation, ensuring reliability. Esquivel et al. [7]
introduced a pre-acceptance filtering mechanism based on IP reputation within a mail system. They
categorized Simple Mail Transfer Protocol (SMTP) senders into legitimate servers, end hosts, and
spam gangs, developing techniques to create customized IP reputation lists. Legitimate and spam
domains often use the Domain Name System (DNS) Sender Policy Framework (SPF) to pass simple
authentication checks. By collecting good and bad domains and their SPF resource records, good
and bad IP addresses are systematically identified. This method performs well in spam identification,
detecting 90% of spam messages. However, maintaining high accuracy requires continuous updates to
the IP reputation list.

Fraud identification based on content detection techniques employs Natural Language Processing
(NLP) to analyze call and chat content to identify fraudulent information. Zhao et al. [8] collected
descriptions of telecom fraud from news reports and social media and used machine learning
algorithms to analyze this data. They then applied NLP to extract features from the text and build
rules to recognize similar content in calls for further fraud identification. However, in practice, this
approach is challenging due to privacy concerns surrounding calls, text messages, and emails.

Fraud identification based on behavioral feature analysis [9] is one of the most researched
methods. It involves constructing user communication behavioral features and using machine learning
and deep learning models for training to distinguish between fraudulent and normal numbers, as
well as fraudulent and normal IPs. For fraudulent number identification, features such as time,
location, call frequency, and call duration are typically extracted for training and applied to detect
fraud, like shutdown operations for high-frequency calls and numbers that reach a certain threshold.
Huang et al. [10] used deep neural networks and convolutional neural networks (CNN) to ana-
lyze user behavior, developing a system for detecting phone fraud and fraudulent advertisements.
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Chu et al. [11] developed a fraud detection model based on spatio-temporal intertwined patterns of
user behavior. This model extends statistical and interaction features to dynamic call patterns and
builds a probabilistic model to simulate user call behavior. Sequential patterns reflecting individual
behavior are obtained through a hybrid Hidden Markov model, while structural patterns reflecting
user collaboration in a telecommunications network are derived using an attention-based graph SAGE
(Surrendering Accepting Gifting Extending) model. The model ultimately outputs a fraud score for
each user to identify potential fraudsters.

In recent years, the integration of deep learning techniques in telecom fraud detection has
significantly advanced the field. Researchers have explored various deep learning architectures such
as recurrent neural networks (RNNs), long short-term memory (LSTM) networks, and graph neural
networks (GNNs) to enhance detection accuracy by capturing complex temporal and spatial depen-
dencies in telecom data. For instance, the study by Hu et al. [12] incorporated Graph Neural Networks
(GNNs) to analyze the intricate relationships within telecom networks. By leveraging the GNNs’
capability to model interconnected nodes and dynamic network structures, this approach facilitated
the detection of sophisticated fraud schemes that exploit network connectivity. The augmented GNNs
demonstrated significant potential in enhancing the precision and recall of fraud detection systems,
owing to their ability to learn and represent complex hierarchical relationships within the telecom data.
These approaches have demonstrated considerable promise in improving the precision and recall of
fraud detection systems by leveraging the deep learning model’s ability to learn hierarchical feature
representations. However, the challenge of interpretability and the need for large labeled datasets
remain key issues that need to be addressed to fully leverage these methods in practical telecom fraud
detection scenarios.

Although the above research on telecom fraud identification has made great progress and to a
certain extent can prevent telecom fraud incidents, the current research methodology still has some
limitations in the face of existing problems:

• Cannot cope with potential fraud. Although common fraud identification methods can identify
fraudulent numbers and fraudulent IPs, they can only identify known fraudulent numbers
and fraudulent IPs, and cannot effectively respond to newly emerged fraudulent numbers and
fraudulent IPs.

• IP reputation is difficult to score. For fraudulent phone numbers, the historical results of user
feedback and spam call detection can be utilized as a reputation representation. However,
fraudulent IP addresses lack these characteristics, and IP addresses are interchangeable, making
it difficult to determine the criteria for scoring IP reputation.

• High false alarm rate. Fraud identification methods may generate false positives, incorrectly
labeling legitimate users or entities as fraudulent users. High false alarm rates may cause
unnecessary inconvenience to users and disrupt business processes. Reducing the false alarm
rate is an important issue that needs to be addressed in telecom fraud detection methods.

To address the above problems, we combine blacklists with reputation systems based on the idea
of IP homology to solve the issues of potential fraud and the difficulty in scoring IP reputation. We
propose a fraudulent IP identification method based on homology detection, called DC-FIPD. First,
the paper analyzes the aggregation of fraudulent IP geographic locations and the homology of IP
addresses. The collected fraudulent IPs are then clustered geographically to determine their regional
distribution. Next, a feature set for fraudulent IPs is constructed, and the weights of these features are
determined using a genetic optimization algorithm. A calculation method for IP risk value is designed,



3304 CMC, 2024, vol.81, no.2

along with a risk value threshold for identifying fraudulent IPs. Finally, the risk values for the IPs to be
recognized are calculated, and IPs are identified as fraudulent or not based on the risk value threshold.

The main contributions of this study are as follows:

• Proposal of a New Fraudulent IP Identification Method: We introduce a fraudulent IP identifica-
tion method based on homology detection. This novel approach effectively identifies fraudulent
IPs and enhances users’ ability to prevent network fraud. Experimental results demonstrate that
the proposed method achieves an average identification accuracy rate of 86.64%.

• Analysis of Geographic Distribution of Fraudulent IPs: We analyze the geographic patterns
of fraudulent IPs using a clustering algorithm based on density optimization. This clustering
analysis reveals the regional distribution of fraudulent IPs and identifies several suspicious IP
areas. This method effectively expands the coverage of the fraudulent IP blacklist and addresses
potential fraudulent users.

• Construction of Fraudulent IP Feature Set and Risk Value Calculation: We construct a feature
set for fraudulent IPs and provide a method for calculating IP risk values. By combining the
fraudulent IP feature set with the weights of IP features, we can accurately calculate the IP
risk value. We then determine the IP risk value threshold based on the risk value differences to
identify the type of IP.

The rest of the paper is organized as follows: Section 2 describes the main steps of the DC-FIPD
method. In Section 3, the sources and evaluation metrics of the experimental dataset are described and
the performance of the fraudulent IP identification method of the paper is evaluated. Finally, Section 4
summarizes the paper.

2 DC-FIPD Method

To address the issues of low accuracy in fraudulent IP identification and the challenge of
identifying potential fraudulent IPs, the DC-FIPD method utilizes IP homology to detect potential
fraudulent IPs and assesses the risk of IP addresses using IP risk values.

2.1 Method Overview

For the IP address data used by users, this study addresses the issues of difficult identification
of potential fraudulent IP addresses and the imbalance in feature weight distribution leading to
low identification accuracy. The density-based DBSCAN clustering algorithm is employed to cluster
IP addresses, thereby identifying the regional distribution of fraudulent IPs and detecting potential
fraudulent IP addresses. Additionally, the genetic optimization algorithm, incorporating selection,
crossover, and mutation operations, is utilized to determine the feature weights of IP addresses, thereby
enhancing the accuracy of fraudulent IP detection. The framework for the fraudulent IP identification
method based on homology detection is illustrated in Fig. 1.

The main steps of the DC-FIPD method are as follows:

Step 1: Data Acquisition: Fraudulent IP data is obtained from various public sources (e.g., post-
ings, microblogs, forums). To ensure data accuracy, screening rules are formulated for preprocessing.
The fraudulent IP data is then combined with geographic location information from an IP geolocation
database to create a fraudulent IP blacklist database.
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Figure 1: Fraudulent IP identification method based on homology detection

Step 2: Suspicious Region Calibration. Based on the aggregation and homology characteristics
of fraudulent IPs, the DBSCAN clustering algorithm is used to cluster the fraudulent IPs, obtain the
regional distribution of fraudulent IPs, obtain the IP suspicious regions, and identify the potential
clusters existing in the suspicious regions. The fraudulent IP dataset consists of IP blacklists. Mean-
while, in order to reduce the influence of abnormal suspicious regions generated by clustering on the
results, a suspicious region reduction algorithm is proposed for removing abnormal suspicious regions.

Step 3: Calculation of Feature Weights. The fraudulent IP features set includes whether the IP
address is within suspicious area, the autonomous area, and the last route. These features can reflect
the degree of influence on the risk value of the IP address, and the genetic optimization algorithm
is used to perform selection, crossover, and mutation operations on the fraudulent IP features to
determine the weights of the fraudulent IP features.
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Step 4: Calculation of IP Risk Value. The IP risk value quantifies the likelihood of an IP being
involved in fraud. It is calculated using the weights of fraudulent IP features and the IP features
themselves. A threshold for distinguishing fraudulent IPs from normal IPs is determined based on
the risk value approximation algorithm. IPs with risk values exceeding this threshold are classified as
fraudulent; otherwise, they are classified as normal.

Step 5: Identification of Fraudulent IPs. The identified IP addresses are evaluated by calculating
their risk values. IPs are classified according to the risk value threshold to determine if they are
fraudulent or normal.

2.2 Data Acquisition

Due to limitations in data sources and delays in data collection, ensuring the validity and real-time
nature of data can be challenging with passive collection methods. To address this, this study adopts
a proactive approach to collecting fraudulent IP data.

2.2.1 Data Collection

We extract comment and reply data from public channels such as Baidu Posting Bar and Weibo,
classifying them into two categories: text data and image data. For text data, regular expressions
are used to extract fraudulent contact information from comments and replies. For image data, text
is extracted using optical character recognition (OCR) technology, and then processed to extract
fraudulent contact information. Our study of comment data from platforms like posting bars and
forums reveals that fraud data is more prevalent in comments related to “part-time jobs, beautiful
women, same city” compared to other types of comments.

2.2.2 Data Preprocessing

Due to the presence of a significant amount of unusable data in the original contact dataset, there
is a considerable additional time cost in the experimental process. To address this, this study formulates
specific rules to screen the data. Contact data that meets these rules is stored in the database and users
are added in batches. The relevant rules are outlined in Eq. (1).{

6 ≤ L (QQ) ≤ 10
WeChat [0] �= d, 6 ≤ L (WeChat) ≤ 20 (1)

where L (QQ) represents the length of the QQ number, L (WeChat) represents the length of the WeChat
number, and WeChat [0] represents the first place of the WeChat number.

We use Wireshark software to capture the pcap network packets with fraudsters and analyze the
network packets to obtain the IP addresses of fraudsters. To prevent fraudsters from using proxy
software (such as second dialing or Virtual Private Network) to mask their real IP addresses, we
employ the risk portrait identification method [13] to detect whether the IP belongs to a data center. In
addition, network entity identification [14] is used to determine whether the IP is from a PC (Personal
Computer), Phone, or other devices. By applying these two methods to screen for abnormal IPs, we
obtain the user’s real IP address, reduce redundant data, and provide accurate IP data for constructing
the IP blacklist, thus reducing the false alarm rate in the experiment.

2.2.3 Construction of Fraudulent IP Blacklists

In constructing the fraudulent IP blacklist, IP location information is determined using IP
geolocation technology [15–18]. We query location data from commercial databases such as MaxMind
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[19], IP2Location [20], and IPIP [21] for each IP address. The obtained IP location data is formatted
as follows: IP=<ip|longitude|latitude|country|province|city|risk>.To ensure the accuracy of the IP
location data, we validate the geographic location by comparing results from multiple commercial
databases [22]. If the location results are consistent across databases, the geographic location of the IP
is confirmed. Conversely, if the results differ, the geographic location is deemed unreliable, and the IP
is removed from the fraudulent IP blacklist. Details of the specific operations are provided in Table 1.

Table 1: IP geolocation verification

IP Database Longitude Latitude Country Province City

113.200.137.89 IP2Location 108.9286 34.2583 CN Shanxi Xi’an
IPIP 111.2231 34.7515 CN Henan SanMenxia
MaxMind 111.2571 34.7432 CN Henan SanMenxia
Result 111.2231 34.7515 CN Henan SanMenxia

Between March 2023 and June 2024, we collected 13,369 fraudulent IP addresses and queried
one of the IPs listed in Table 1 (113.200.137.89) using IP2Location, IPIP, and MaxMind commercial
databases. We found that the location data from IP2Location was inconsistent with the results from
IPIP and MaxMind. Therefore, we selected the location data obtained from IPIP and MaxMind as
the final IP location results. Based on IP geolocation verification rules, we construct a fraudulent IP
blacklist.

2.3 Suspicious Area Calibration

We analyze the fraudulent IPs in the blacklist and observe that their geographical distribution
exhibits aggregation and homology [23]. Based on these characteristics, we analyze the address location
features of the fraudulent IPs and use a clustering algorithm [24] to group them. This clustering reveals
the regional distribution of fraudulent IPs and identifies suspected fraudulent regions, helping to
uncover potential fraudulent IPs.

2.3.1 Suspicious Region Acquisition

In this section, we use IP geolocation features and a density optimization-based clustering method,
specifically the DBSCAN clustering algorithm, to cluster fraudulent IPs. The DBSCAN algorithm
classifies data into core, boundary, and noise points based on the density of data points, determining
the clustering results.

First, we extract the latitude and longitude features of IPs from the IP blacklist. Using the
DBSCAN algorithm, we cluster these latitude and longitude features. We then identify the core point
and the farthest boundary point of each cluster. Each core point serves as the center of a suspicious
region, with the distance between the core point and the boundary point defining the radius. This
marks multiple IP suspicious regions, representing the geographic areas where fraudulent IPs are likely
to exist. Fig. 2 illustrates the schematic diagram of fraudulent IP clustering and the resulting suspicious
regions.
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Figure 2: Suspicious areas obtained by DBSCAN clustering (blue dots indicate the location of IPs and
red circles indicate suspicious areas)

2.3.2 Suspicious Region Reduction

By analyzing the results of suspicious regions obtained from clustering, we identified two key
issues: Larger Suspicious Regions Containing Multiple Smaller Regions: Larger suspicious regions
often encompass multiple smaller suspicious regions, leading to a broader and less precise identifi-
cation area. Dispersion of Data: The dispersion of data can result in discrete points being classified
as overly large suspicious regions, which can introduce significant errors between the obtained and
actual suspicious regions. To address these issues, the DC-FIPD method proposes a suspicious region
reduction algorithm designed to handle abnormal suspicious regions and improve the accuracy of the
identified regions.

To address the issue of larger suspicious regions containing multiple smaller suspicious regions.
Algorithm 1 involves aggregating smaller suspicious regions into a broader superclass region, thereby
refining the classification and reducing the complexity of handling multiple overlapping or nested
suspicious areas.

Algorithm 1 : Doubtful region reduction algorithm 1
Input: R - Suspicious area set
Output: reduceR - Simplified set of suspicious areas
1: reduceR ← Ø // Initialization parameters
2: for r in R do
3: Contained ← False // Initialize the Contained flag
4: for each r∗ in R do // Iterate over areas other than the current one
5: if r∈r∗ then // Determine whether r is contained in r∗

6: Contained ←True
7: end if
8: end for
9: if Contained is False then

(Continued)
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Algorithm 1 (continued)
10: reduceR = reduceR∪{r} // If r is not included, add r to reduceR
11: end if
12: end for
13: return reduceR // Returns the reduced set

To address the problem where data dispersion results in the creation of large anomalous suspicious
regions, the region reduction algorithm removes those suspicious regions whose radius exceeds the
average radius. Algorithm 2 helps eliminate outliers and refine the accuracy of the suspicious regions
by focusing on more representative and consistent areas.

Algorithm 2 : Doubtful region reduction algorithm 2
Input: R - Suspicious area set
Output: reduceR - Simplified set of suspicious areas
1: (lat_x, lon_x) is the latitude and longitude of the center of the suspected area.
2: (lat_x_edge, lon_x_edge) is the latitude and longitude of the farthest boundary point of the

suspected area.
3: Radius is the radius of the suspected area
4: reduceR ← R // Initialization parameters
5: for r in R do
6: Radius = Haversine((lat_i, lon_i ) , (lat_i_edge, lon_i_edge))
7: SumRadius = SumRadius + Radius
8: end for
9: AveRadius = SumRadius / number(R)
10: for r in R do
11: Radius = Haversine((lat_i ,lon_i ) , (lat_i_edge, lon_i_edge))
12: if Radius >= AveRadius ∗ n then
13: reduceR \ {r} // Remove regions with unusually large radii from reduceR
14: end if
15: end for
16: return reduceR

Fig. 3 illustrates the effect of the suspicious reduction algorithm. Assuming that we find a specific
cluster of IPs associated with fraudulent activity in a region that contains many IP addresses, we
can further narrow the scope of our investigation by subdividing it into smaller regions through the
reduction algorithm. Such an approach allows us to locate potential fraudulent IPs more precisely and
improve the accuracy of fraudulent IP identification.
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Figure 3: (a) Without using the region reduction algorithm, (b) with the region reduction algorithm
(the green areas indicate the deleted suspicious regions)

2.4 Calculation of Feature Weights

In fraudulent IP identification, relying solely on geographic location features can result in a high
rate of misjudgment. To address this issue, the DC-FIPD method incorporates additional features to
enhance identification accuracy. By evaluating the risk level of IPs more comprehensively, the DC-
FIPD method reduces misjudgment rates and improves overall identification accuracy.

2.4.1 Feature Selection

Although clustering IPs into blacklists has yielded some results in identifying IP types, this
approach may not be practical in real-world situations, as it often leads to a high false alarm rate.
This is because many legitimate IPs located in suspicious regions are misclassified as fraudulent. To
address this, we sought to extract additional features of fraudulent IPs.

Initially, we considered extracting features related to malicious attack IPs, such as historical
behaviors, network traffic, domain-related information, and Whois information. However, since
fraudulent IPs often belong to more stationary personal computers (PCs) and mobile phones,
obtaining these features is challenging or even infeasible. Thus, we did not use the characteristics of
malicious attack IPs.

Upon further analysis, we identified two crucial features for improving fraudulent IP identification
accuracy: the Autonomous System Number (ASN) and the last-hop feature obtained from route
tracing.

• AS Autonomous System Number: An ASN is a unique identifier assigned to Internet Service
Providers (ISPs) by the Internet Assigned Numbers Authority (IANA). Each ISP has a unique
ASN used to identify its location and network range on the Internet. The ASN provides valuable
information about the ISP’s ownership and administration, which is crucial for identifying
fraudulent IPs. By checking the ASN, we can determine whether an IP address belongs to a
trusted ISP or is associated with known fraud.
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• Last-Hop Feature: The last hop refers to the router or network device closest to the target
IP address. In network communication, packets traverse multiple nodes to reach the target
IP, with the last-hop node being the exit point from the source network and entry point
to the target network. Analyzing the last hop provides insights into the network type (e.g.,
enterprise network, data center network) and geographic location, which helps in assessing the
trustworthiness and potential risk of the IP address.

2.4.2 Feature Definition

In this paper, IP features are modeled with the following final selected features:

• IP: Indicates whether the IP is within the suspicious area generated by clustering. If the IP is in
the suspicious area, this feature is set to 1; otherwise, it is set to 0.

• Clustering Result: Represents the percentage of the Autonomous System (AS) number of the
target IP among the AS numbers of all blacklisted IPs.

• Autonomous Area Percentage: Denoted as the percentage of the last-hop routing IPs of the IPs
probed by the probes among all the blacklisted IPs.

• Last Hop Routing IP Percentage: Denoted as the percentage of last-hop routing IPs of the IPs
probed by the probes among all the blacklisted IPs.

• Fraudulent IP Indicator: Indicates whether the IP is a fraudulent IP. If it is a fraudulent IP, this
feature is set to 1; otherwise, it is set to 0.

IPFeature denoted as:

IPFeature = {ip|clust.|asn.|hop.|risk} (2)

2.4.3 Feature Weight Calculation Based on Genetic Optimization Algorithm

To obtain the last-hop IPs, the experiment utilizes a server in Heyuan, Guangdong Province, to
perform route tracing of IPs in the IP blacklist using Scamper software. This process yields the last-hop
IP features. Subsequently, we query the Autonomous System region information for these IPs through
the APNIC Whois database [25]. We then construct the training set, which includes both fraudulent
and normal IPs. Normal IPs are sourced from governmental organizations and universities, while
fraudulent IPs are drawn from previously collected fraudulent IP data. The suspicious region, ASN,
and last-hop features of IPs in the training set are extracted using the same methods applied to the
IP blacklist. We calculate the occurrence ratio of ASN and last-hop data features in the training set
relative to the IP blacklist to construct the fraudulent IP features.

We determine the optimal weights for each feature and calculate the IP risk value using Eq. (3).

R.S = ω1clust. + ω2asn. + ω3hop. (3)

where ω1, ω2 and ω3 are the weight coefficients of clust., asn. and hop., respectively. These weighting
coefficients determine the importance of each feature in the overall judgment [26]. By adjusting the
weight coefficients, the contribution of different features to the IP risk value can be balanced.

In this study, the calculation of feature weights based on the genetic optimization algorithm is
illustrated in Fig. 4.
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Figure 4: Flowchart of genetic optimization algorithm for solving optimal weights of features

The execution of the genetic algorithm begins with parameter initialization. The initial population
consists of multiple individuals, each representing a potential solution—specifically, a combination of
feature weights in this study [27]. The initial population is typically generated randomly but can also
be initialized using prior knowledge to expedite convergence. The population size is determined by
balancing computational efficiency and search space diversity. The fitness function plays a crucial
role in evaluating the quality of each individual. In this study, the accuracy of IP identification is
used as the fitness function, with the goal of maximizing this metric. The fitness function evaluates
the performance of each weight combination in identifying fraudulent IPs, where higher accuracy
corresponds to a better fitness score.

Crossover operations are critical for generating new individuals in the genetic algorithm. This
process involves exchanging parts of the genes (weight coefficients) between two parent individuals to
produce new offspring. In this study, a real-valued encoding scheme is employed, where each feature
weight coefficient is represented as a real number. A higher crossover rate helps to increase the diversity
of the search space but must be balanced to avoid negatively affecting well-adapted solutions. Mutation
operations introduce further diversity by randomly altering some genes in the individuals. A lower
mutation rate ensures stability of the generated individuals while preventing the algorithm from falling
into local optima.
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The genetic optimization algorithm iteratively applies selection, crossover, and mutation oper-
ations to evolve the population towards an optimal solution. This iterative process continues until
a predefined number of generations is reached or convergence is observed, meaning that fitness
improvements are no longer significant. This iterative process ensures both the efficiency and accuracy
of the fraud detection method.

Parameter Settings: The specific parameter settings for the genetic optimization algorithm in this
study are as follows:

Population Size: Set to 50 individuals. This size is chosen to maintain diversity within the
population while avoiding excessive computational overhead.

Max Generations: Set to 20 generations. Experimental validation shows that this number of
generations allows the algorithm to converge within a reasonable timeframe.

Crossover Rate: Set to 0.8, meaning 80% of individuals undergo crossover to produce offspring.
This higher rate helps accelerate the evolution of the population.

Mutation Rate: Set to 0.01, indicating that 1% of genes will undergo random mutations in each
generation. This lower rate maintains individual stability while introducing moderate diversity to avoid
local optima.

Selection Pressure: Implemented through a roulette-wheel selection method, where individuals
with higher fitness scores have a greater chance of being selected.

Ultimately, the optimal weight coefficients ω1, ω2, . . . , ωn are obtained through the iterative process
of the genetic optimization algorithm to achieve the trade-offs and optimization of clust., asn. and hop.
features.

2.5 Identification of Fraudulent IPs

The core problem of the fraudulent IP identification method lies in the determination of the IP
risk value threshold and the IP type identification [28].

2.5.1 Calculation of Value-at-Risk Threshold

First, the DC-FIPD method computes the features of the IPs in the training set, including clust.
,asn. , and hop. These features are then multiplied by the optimal weights obtained through the genetic
optimization algorithm to determine the risk value of each IP. Next, the training set data is divided
into two groups: one with normal IP addresses and the other with fraudulent IP addresses. For each
group, the IP risk value is calculated separately. Finally, the risk value thresholds for normal IPs and
fraudulent IPs are determined using a risk value approximation-based approach. The risk values of the
IPs in the training set are arranged in a distribution according to different categories, and a weighted
average method is used to calculate the separating value between normal IPs and fraudulent IPs as
the IP risk value threshold. The threshold based on risk-value approximation is calculated using the
formulas in Eqs. (4–6).

T.S = αR.S + βR.S′

(α + β)
(4)

R.S, R.S′ = ω1clust. + ω2asn. + ω3hop. (5)

T.S = α (ω1clust. + ω2asn. + ω3hop.) + β
(
ω1clust.′ + ω2asn.′ + ω3hop.′

)
(α + β)

(6)
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Here, R.S and R.S′ denote the risk values of normal IPs and fraudulent IPs; α denotes the
proportion of risk values taken from normal IPs and β denotes the proportion of risk values taken
from fraudulent IPs.

2.5.2 Identification of IP Types

For the IP to be identified, the DC-FIPD method calculates the product of its features and the
optimal feature weights to obtain the risk value of the target IP. Based on the IP risk value thresholds
derived from the training set, the IP is categorized and identified as either fraudulent or normal.
Algorithm 3 is the detailed steps for IP type identification.

Algorithm 3: Value-at-risk calculation and IP type identification
Input: IP feature set {IPFeature}
Output: IP Risk Value and IP Type
1. for each Batch in Training set {IPFeature} do
2. R.S ← ω1clust. + ω2asn. + ω3hop. // Calculation of IP Value at Risk
3. if R.S >= T.S then
4. D = 1 // Mark the IP as a risky IP
5. elseif 0< R.S <= T.S then
6. D = 0 // Mark the IP as normal IP
7. return D, R.S
8. end for

Where, ω1, ω2 and ω3 denote the weight coefficients; R.S denotes the IP risk value; T.S denotes
the IP risk value threshold; D denotes the label of IP classification (1 and 0), if the calculated IP risk
value is greater than the threshold T, then D is equal to 1 (the IP is a fraudulent IP), otherwise, D is
equal to 0 (the IP is a normal IP).

3 Experimentation and Evaluation

To verify the effectiveness of the fraudulent IP identification algorithm, we conducted experiments
on IP aggregation analysis, clustering algorithm selection, and suspicious region reduction, followed
by an analysis of the experimental results. This section addresses the following questions regarding
the method: (1) the rationale behind fraud IP aggregation; (2) the impact of different parameter pairs
on the accuracy of the fraud IP identification algorithm; and (3) the accuracy of the fraudulent IP
identification algorithm used in this method.

3.1 Experimental Data

After a year of continuous data collection, we have accumulated a dataset of 13,369 fraudulent IP
addresses. To obtain a dataset of normal IP addresses, we conducted searches on the domain names of
governments, schools, and major companies worldwide. Through DNS, we performed reverse queries
to obtain the corresponding IP address data. Eventually, we collected 100,000 normal IP addresses.
Considering that the number of normal IPs globally far exceeds the number of fraudulent IPs, our
experiments utilized the entire fraudulent IP dataset from the blacklist, as well as n (n > 1) times the
number of normal IPs, to form the training set.
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To evaluate the accuracy of our method, we randomly selected 30% of the data from the training
set as the test set. The retained validation method was applied to validate the test set. The number of
IPs in the IP blacklist, training set, and test set are summarized in Table 2.

Table 2: Experimental data set

Area Fraudulent IP Normal IP

IP blacklists 13369 –
Training set 13369 100000
Test set F < 13369 N < 100000

3.2 Experimental Settings

Parameter setting: firstly, during data preprocessing, only IP data with the existence of more than
2 IPs with the same location data are retained. In all experiments, ablation experiments are used to
train the algorithms by adjusting some parameters to ensure good stability of the algorithms.

The DBSCAN clustering method used in the paper is implemented using the Scikit-Learn module.
The input to the DBSCAN algorithm is a geolocation vector based on the fraudulent IPs, where the
neighborhood radius Eps is set to 1, and the minimum number of points included in the neighborhood
Minpts is set to 2. The algorithm is based on the geolocation vector of the fraudulent IPs.

Evaluation metrics: To evaluate the success rate of the experimental method under different
parameters, we use multiple metrics to evaluate the performance of the method. One of them is
Accuracy, which represents the overall success rate of the method in terms of identification; to
address the imbalance that there are far more normal IPs than fraudulent IPs in the dataset of this
method, we introduce Precision, Recall, and F1-score as evaluation metrics for the method. Low
Precision implies that the method tends to classify IPs as fraudulent, while low Recall indicates the
method’s failure to correctly identify fraudulent IPs. The F1-score, a harmonic mean of Precision and
Recall, comprehensively considers the method’s accuracy and completeness, aiming to balance the
relationship between Precision and Recall. In real fraud detection scenarios, a high F1-score signifies
that the model can accurately identify fraudulent IPs while maintaining a lower false positive rate (the
proportion of normal IPs wrongly classified as fraudulent).

Accuracy = TP + TN
TP + TN + FP + FN

(7)

Precision = TP
TP + FP

(8)

Recall = TP
TP + FN

(9)

F1 = 2 × Precision × Recall
Precision + Recall

(10)

The following symbols are used in Eqs. (7–10):

TP: True Positives, the number of IPs correctly classified as fraudulent

TN: True Negatives, the number of IPs correctly categorized as normal IPs
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FP: False Positives, number of IPs incorrectly classified as fraudulent

FN: False Negatives, number of misclassified normal IPs

3.3 IP Homology Analysis

We conducted experiments on global fraudulent IP homology analysis, focusing primarily on the
in-depth analysis of geographic location clustering of fraudulent IPs.

Fig. 5 illustrates the global distribution of the collected fraudulent IPs. The blue dots represent
the fraudulent IPs, while the red circles indicate the suspicious regions of the IPs obtained through
the clustering algorithm. It is evident that most of the fraudulent IPs are concentrated in specific
regions. This concentration can be attributed to the tendency of fraudulent individuals to aggregate
and utilize IP addresses located within similar network segments. Furthermore, the spatial aggregation
of fraudulent IPs follows a clear pattern due to the allocation practices of the Internet Addressing
Network Allocation (INNA) organization. INNA typically assigns similar IP segments to the same
regions when allocating IP ranges.

Figure 5: Fraud IP aggregation analysis

To delve deeper into the global homology of fraudulent IP, we focus on the distribution of these
IPs across different countries. In Fig. 6, we present the number of fraudulent IPs collected from the
top 10 countries globally. This figure clearly illustrates that certain countries exhibit higher levels of
fraudulent IP activity, helping us pinpoint key areas of concern. Notably, the United States and China
have significantly more fraudulent IP than other countries, with the United States accounting for
30.5% and China for 11.7%. Together, these two countries comprise one-third of the total fraudulent
IP, indicating a higher concentration of online fraudulent activities in these regions. However, further
analysis of the IPs in the United States reveals that some fraudulent IPs have not been detected by the
IP risk profile, and a portion of them are still proxy IPs, contributing to the higher number of U.S. IPs.
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Figure 6: Percentage of State-Level Fraud IP

3.4 Comparison of Clustering Methods

The DC-FIPD method assesses the effectiveness of different clustering methods for fraudulent IP
clustering by comparing them. The evaluated clustering methods include the K-Means algorithm, the
Gaussian Mixture Model (GMM) algorithm, and the DBSCAN algorithm. Through this comparison,
a suitable clustering algorithm is selected for the method. Figs. 7 and 8 present the IP identification
accuracy of each clustering method under different parameter combinations.

Figure 7: The IP identification accuracy for different numbers of clusters for K-Means and GMM
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Figure 8: Effect of different parameters of the DBSCAN algorithm on the accuracy of the DC-FIPD
method, where (a) is the effect of different minpts parameters and (b) is the effect of different eps
parameters

From Fig. 7, it is evident that the IP identification accuracy of both the K-Means algorithm and
the GMM algorithm increases as the number of clustered clusters grows, eventually stabilizing within
a certain range. Specifically, the K-Means algorithm achieves the highest accuracy of 87.42% when
the number of clusters is around 300. On the other hand, the GMM algorithm performs best with an
accuracy of 87.64% when the number of clusters is approximately 320.

Fig. 8 demonstrates the impact of different Eps and Minpts parameters in the DBSCAN algorithm
on the accuracy of fraud IP identification. When Minpts is fixed, increasing the Eps value tends to
decrease the model’s accuracy. This is because as the neighborhood radius increases, more points are
included within each cluster, potentially leading to the merging of distinct clusters and thus reducing
the algorithm’s ability to distinguish between normal and fraudulent IPs. This trend is particularly
noticeable when Eps exceeds a certain threshold, where the clustering becomes too coarse, leading to a
decline in performance. Despite this, the overall identification accuracy remains relatively stable, with
the highest performance observed when Eps is set to 1, where the IP identification accuracy reaches
90.57%. On the other hand, when Eps is held constant, the value of Minpts plays a critical role in
determining the model’s performance. Our analysis shows that Minpts values closer to 2 yield the
best results, as this allows the algorithm to effectively identify small, dense clusters of fraudulent IPs.
Increasing the value of Minpts too much can cause smaller clusters or isolated points to be ignored,
which negatively impacts accuracy. As a result, Minpts = 2 provides the optimal balance between
detecting fraudulent IPs and minimizing false positives, maximizing the identification accuracy.

The interplay between Eps and Minpts directly affects the density of the clusters detected by the
DBSCAN algorithm. Smaller values of Eps and Minpts allow for finer clustering and higher sensitivity
to outliers, which is particularly useful in detecting sparse and isolated fraudulent IPs. However,
as either parameter increases, the algorithm becomes less capable of identifying smaller fraudulent
clusters, leading to a decrease in performance. The best overall performance was observed when Eps
is 1 and Minpts is 2, achieved an IP identification accuracy of 90.57%.

Table 3 provides a comparison of the average identification results for these three clustering
methods under different parameters. The average identification accuracy for the K-Means, GMM,
and DBSCAN algorithms is 83.22%, 82.74%, and 86.64%, respectively. In addition to accuracy, the
DBSCAN algorithm significantly outperforms the other two methods in terms of precision (86.08%)
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and recall (45.24%), resulting in a higher F1-score (59.31%). These comprehensive experimental results
indicate that the DBSCAN algorithm is better suited for this method.

Table 3: Average identification results of three clustering algorithms

Clustering algorithm Accuracy Precision Recall F1-score

K-Means 83.22 70.42 38.15 53.73
GMM 82.74 60.95 35.88 45.16
DBSCAN 86.64 86.08 45.24 59.31

3.5 Experimental Effect of Simplicity in Suspicious Areas

The DC-FIPD method utilizes clustering techniques to cluster fraudulent IPs and obtain their
regional distribution. To improve the accuracy of identifying suspicious IP regions and eliminate
regions with anomalies, this method incorporates two reduction Algorithms: Reduction Algorithm
1 and Reduction Algorithm 2.

Fig. 9 and Table 4 present a comparison of IP identification accuracy before and after employing
the reduction algorithms. Without applying any reduction algorithm, the IP identification accuracy
is 83.28%. After incorporating Reduction Algorithm 1 and Reduction Algorithm 2 separately, the
accuracy improves to 84.90% and 83.36%, demonstrating an enhancement in IP identification accu-
racy with both algorithms. Notably, when both reduction algorithms are applied simultaneously, the
method achieves the highest average identification accuracy of 86.64%. In addition, the combination of
both algorithms significantly improves precision, recall, and F1-score to 86.08%, 45.24%, and 59.31%,
respectively. These results validate the effectiveness of the reduction algorithms in substantially
improving the accuracy and overall performance of fraudulent IP identification.

Figure 9: IP identification accuracy at different values of M
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Table 4: The average IP identification results for Algorithm 1 and Algorithm 2 under different
scenarios

Method Accuracy Precision Recall F1-score

– 83.28 75.34 34.39 47.22
Algorithm 1 84.90 74.95 36.45 49.04
Algorithm 2 83.36 75.26 34.39 47.20
Algorithms 1 and 2 86.64 86.08 45.24 59.31

3.6 Method Evaluation

To investigate the impact of dataset size on the DC-FIPD method, we conducted experiments
by randomly deleting or modifying features and deleting a portion of the data in the IP blacklist.
The purpose was to evaluate the stability of the DC-FIPD method under different scenarios, with
data deletion and modification ratios of 0%, 5%, 10%, and 15%. Accuracy was used as the evaluation
metric, and the experimental results are summarized in Table 5.

Table 5: Effect of deleting some data on the experiment

Method Delete proportion Accuracy Precision Recall F1-score

DC-
FIPD

0% 86.64 86.08 45.24 59.31
5% 86.20 85.71 44.33 58.43
10% 86.19 84.59 44.50 58.31
15% 85.30 79.13 43.65 56.26

In the case of the original dataset, the identification accuracy demonstrated minimal impact
during the initial stages as the percentage of data deletion increased. However, as data deletion
surpassed a certain threshold, the identification accuracy for fraudulent IPs exhibited a notable
downward trend. Specifically, a 15% data deletion had the most substantial impact on the experimental
results, leading to a decrease in average accuracy to 85.30%. In contrast, a 5% data deletion had a
relatively minor impact, resulting in only a 0.44% decrease in identification accuracy compared to the
original dataset.

Beyond accuracy, the impact of data deletion on other performance metrics, including precision,
recall, and F1-score, was also evaluated. For instance, with no data deletion, the DC-FIPD method
achieved a precision of 86.08%, recall of 45.24%, and an F1-score of 59.31%. As data deletion
increased, these metrics showed varying degrees of degradation:

With a 5% data deletion, precision slightly decreased to 85.71%, and with a 10% data deletion,
it further dropped to 84.59%. The most significant decrease in precision occurred with a 15% data
deletion, where it fell to 79.13%. This reduction in precision suggests that the model becomes less
capable of correctly identifying fraudulent IPs as the dataset size diminishes. Recall, which measures
the model’s ability to capture all relevant fraudulent IPs, experienced a smaller decrease compared
to precision. Initially, the recall was 45.24% with no data deletion. This metric slightly decreased
to 44.33% with a 5% data deletion and to 44.50% with a 10% data deletion. A 15% data deletion,
however, led to a more noticeable drop in recall to 43.65%. The relatively stable recall with moderate
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data deletion suggests that the model maintains a fairly consistent ability to identify fraudulent IPs,
even with some data loss.

The F1-score, which is the harmonic mean of precision and recall, demonstrated a similar pattern.
Initially, the F1-score was 59.31% with no data deletion. This score decreased to 58.43% with a 5%
data deletion and to 58.31% with a 10% data deletion. A 15% data deletion had a more significant
impact, reducing the F1-score to 56.26%. The decrease in F1-score indicates that both precision and
recall are affected by data deletion, leading to a general decline in the model’s overall performance.

These findings suggest that while the accuracy of the DC-FIPD method is closely linked to the
quantity of available data, it is not the only metric that is impacted by data deletion. Precision,
recall, and F1-score also experience degradation, with precision being particularly sensitive to data
loss. In scenarios with significant data loss or smaller datasets, the method’s ability to maintain
high performance across all these metrics is compromised. Therefore, for optimal fraudulent IP
identification, it is crucial to ensure the availability of a sufficiently large and complete dataset.

4 Conclusions and Future Work

To mitigate network fraud incidents and accurately assess the IP risk and category of IPs, we
propose the DC-FIPD method. This method is based on homology detection and aims to identify
fraudulent IPs effectively. The DC-FIPD method employs a clustering algorithm to calibrate the
range of suspicious IP areas using a pre-existing fraudulent IP blacklist. It selects a set of potentially
fraudulent IP features, processes the feature data, and utilizes a genetic optimization algorithm to
calculate the weights of these features specific to fraudulent IPs. Ultimately, the method determines the
risk value of IPs, enabling the identification of IP types. The DC-FIPD method addresses the challenge
of low identification accuracy resulting from the difficulty in identifying potential fraudulent IPs and
the imbalance in the allocation of feature weights in the network. It offers stability even in datasets
with missing or modified data, demonstrating the superiority of its approach. However, the DC-FIPD
method does not fully resolve the issue of high false positive rates. High false positive rates can lead
to resource wastage, security vulnerabilities, and a subsequent decline in the quality of the security
system’s services. This can result in privacy breaches and ultimately erode user trust. In future research
work, we plan to utilize the historical IP risk value and combine them with potential IP features such
as time change and IP activity, to realize dynamic and real-time IP risk value calculation and IP type
identification, while reducing the impact of false positives on users.
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