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ABSTRACT

By integrating deep neural networks with reinforcement learning, the Double Deep Q Network (DDQN) algorithm
overcomes the limitations of Q-learning in handling continuous spaces and is widely applied in the path planning of
mobile robots. However, the traditional DDQN algorithm suffers from sparse rewards and inefficient utilization of
high-quality data. Targeting those problems, an improved DDQN algorithm based on average Q-value estimation
and reward redistribution was proposed. First, to enhance the precision of the target Q-value, the average of multiple
previously learned Q-values from the target Q network is used to replace the single Q-value from the current
target Q network. Next, a reward redistribution mechanism is designed to overcome the sparse reward problem
by adjusting the final reward of each action using the round reward from trajectory information. Additionally,
a reward-prioritized experience selection method is introduced, which ranks experience samples according to
reward values to ensure frequent utilization of high-quality data. Finally, simulation experiments are conducted
to verify the effectiveness of the proposed algorithm in fixed-position scenario and random environments. The
experimental results show that compared to the traditional DDQN algorithm, the proposed algorithm achieves
shorter average running time, higher average return and fewer average steps. The performance of the proposed
algorithm is improved by 11.43% in the fixed scenario and 8.33% in random environments. It not only plans
economic and safe paths but also significantly improves efficiency and generalization in path planning, making
it suitable for widespread application in autonomous navigation and industrial automation.
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1 Introduction

In the topic of autonomous navigation of mobile robots, path planning is a hot issue. Its goal is to
search for a reliable and effective route from the initial location to the destination in an unknown
environment without collision [1]. Initial conventional algorithms for path planning encompassed
Rapidly-exploring Random Trees (RRT) algorithm [2], ant colony algorithm [3], A∗algorithm [4],
Dijkstrta algorithm [5], artificial potential field method [6] and genetic algorithm [7]. Nonetheless, the
majority of these algorithms are based on previously established environmental knowledge. In actual
environments, robots often cannot preemptively acquire all the environmental information. Therefore,
how to achieve mobile robots perceive unknown environments and make autonomous decisions has
evolved into a hot area of current research focus [8].

Compared to traditional path planning methods, the Reinforcement Learning (RL) based path
planning algorithm enables mobile robots to autonomously learn about their environments and adapt
to various complex and unknown situations [9]. Recently, an increasing number of studies have utilized
RL in planning the trajectory of mobile robots and achieved fruitful results. Wen et al. [10] proposed
a topological graph-based Multi-Sarsa algorithm, which adopts a two-level structure to improve the
planning efficiency, in the first level the topological region is generated by dynamic growth of the
region based on the grid graph, and in the second level the near-optimal paths are searched by using
the two-level Multi-Sarsa algorithm, in which the first Q-table is initialized by the artificial potential
field method to speed up the global path learning process, and the second Q-table is initialized by the
connectivity domain of the topological map to optimize the local path planning. The combination of
the two Q-tables realizes the synergy between the global and local levels. However, artificial potential
field methods may oversimplify complex spatial relationships, and they rely heavily on predefined
structures, which limits their ability to generalize in high-dimensional environments. Zhou et al. [11]
proposed an improved version of the Q-learning algorithm, which uses root-mean-square (RMS)
propagation to dynamically adjust the learning rate during the learning process, thus improving the
path planning efficiency. However, the algorithm was only experimented in two-dimensional grids, and
in more complex continuous spaces, the curse of dimensionality phenomenon occurs due to too many
combinations of states and actions, resulting in the algorithm failing to converge. Although the RL
based path planning algorithm has achieved lots of achievements in the domain of path planning for
mobile robots, it is still difficult to deal with high-dimensional complex environments and dynamic
environment changes.

Deep Reinforcement Learning (DRL) algorithms, through learning and optimization with deep
neural networks, can discover more complex strategies, thereby finding better solutions and enhancing
decision-making precision in intricate settings. In addition, DRL solves the problem that RL is prone
to dimensional disasters when making real-time decisions in complex environments [12]. Based on
the above advantages, DRL is now widely used in many fields, such as the rescue services [13],
autonomous navigation [14], forest fire monitoring [15], smart agriculture [16], robot control [17] and
so on. Especially in the robot path planning task, DRL plays a powerful advantage. Based on this, the
purpose of this paper is to improve the efficiency and accuracy of robot path planning by studying
the DDQN algorithm and improving the problems of sparse reward and low utilization of efficient
data in the DDQN algorithm. Therefore, a DDQN algorithm based on average Q-value estimation
and reward redistribution (AQRR-DDQN) was proposed. The major contributions of the paper are
as follows:
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(1) To address the problem that there are large errors in the estimation of the target Q-value during
the initial training phase, we proposed average Q-value estimation method, which involves
averaging the previously learned K target Q-values to replace original Q-value.

(2) The reward redistribution mechanism was designed. By dividing the final reward for each
action into immediate rewards and discounted episodic rewards, the issue of low learning
efficiency caused by sparse rewards can be addressed.

(3) Introduced a reward-prioritized experience selection method to address the issue of high-
quality sample loss in experience replay buffers by sorting the samples according to the reward
value and controlling the extraction probability to increase the retention and utilization of
high-quality experiences.

(4) A comparative analysis was performed to evaluate the efficiency of the AQRR-DDQN
algorithm by comparing it with other improved DDQN algorithms.

The subsequent sections of this article are structured thus: Section 2 presents related work.
Section 3 introduces the implementation of the improved algorithm. In Section 4, perform simula-
tion experiments and analyze the results. Section 5 puts forward summaries and prospects for the
future work.

2 Related Works

By combining deep learning and reinforcement learning, DRL solves the problem that it is not
feasible to use a table (such as Q-table) to store and update the value of each state-action pair due to
the large state space, provides a powerful tool for solving complex decision problems, and promotes
technological progress in many fields [18].

Since the introduction of DRL-based robotic path planning algorithms, many scholars have
made lots of improvements. Li et al. [19] raised an enhanced DQN algorithm that assigns weights to
stored samples and trains samples in priority order while removing highly similar sequences from the
experience replay buffer to improve its efficiency. However, the algorithm is tested in a static and simple
environment, and the algorithm lacks generalization ability. The problem of sparse reward for agents in
complex environments is still not solved. Deguale et al. [20] introduced an adversarial DQN algorithm
with reward modification and prioritized experience replay. The sparse reward problem is solved by
redesigning the reward function to include obstacle avoidance and distance to the target location, and
striking a balance between obstacle avoidance and moving towards the target. But the overestimation
problem of DQN in estimating action values is still not solved, resulting in slow convergence of the
algorithm. Zhao et al. [21] introduced a DQN algorithm reliant on time-sensitive reward mechanism,
the collision information is skillfully incorporated into the rewards that are ultimately earned. This
method alleviates the sparse reward problem prone to existing DQN algorithms. However, using the
method of encoding individual nodes to describe the state of a discrete space is inefficient, which only
applies to discrete spaces, and the computation time increases substantially as the complexity of the
environment increases.

In order to solve the reward sparse problem and overestimation problem in DQN, various
improved algorithms have been presented, especially for the DDQN algorithm [22]. DDQN alleviates
the problem of overestimation by separating the process of action selection and Q-value estimation
[23]. Therefore, a lot of studies about the robot path planning based on DDQN have been suggested,
and some improvements have been made to improve the efficiency of the algorithm. Wang et al. [24]
proposed an algorithm for dynamic path planning utilizing Tree DDQN, which optimized the tree
structure by discarding the over-detected and unfinished paths. And combined the DDQN with the
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tree structure approach, multiple search paths are provided. However, the DDQN algorithm used in it
adopted the way of experience replay to process experience samples, which may lead to some efficient
data not being fully utilized. Jiang et al. [25] evaluated the current robot’s actions by using a second-
order time difference approach, also the traditional experience pooling structure is replaced by a binary
tree structure to store the results, which can effectively organize and store experience data to ensure
that key and efficient data can be more utilized in the learning process. However, this also makes
the computational complexity of the algorithm increase significantly, and the computational cost
becomes higher. Yin et al. [26] proposed an adaptive operator selection paradigm based on the DDQN,
which separates the Q-network into state value and action advantage networks. This design allows the
algorithm to more frequently and accurately learn the state value function, thereby improving learning
efficiency in multi-objective optimization tasks. However, the operator selection in this method is
focused on historical rewards, which might limit its ability to fully balance exploration and exploitation
when applied to complex optimization problems. Zhao et al. [27] put forward a DDQN algorithm
combining optimal state classification and state splitting, which classifies, stores and processes multi-
dimensional state information such as environment information and agent location information,
thereby reducing the complexity of the state space and improving the convergence speed of the
algorithm. But during the training process, the sampling of empirical samples is uniformly random,
without prioritizing the samples according to their importance. This results in a low utilization of the
efficient data. Peng et al. [28] proposed a Multistep DDQN algorithm (MS-DDQN) that combines the
multistep update method with the DDQN algorithm. The multistep update method takes into account
the cumulative reward over the next n steps and replaces the single-step Q-value update process in
DDQN. This allows the algorithm to gather more information from longer-term rewards when faced
with sparse rewards, thus avoiding the slow learning speed caused by sparse reward. Zhang et al. [29]
put forward the idea of experience classification on the basis of MS-DDQN, proposed experience
classification multi-step DDQN (ECMS-DDQN) algorithm. By classifying the experience samples
and dynamically adjusting the sampling weight, the utilization efficiency of the obstacle-related
experience samples is improved. However, the reliance on prior knowledge in experience classification
makes the algorithm very sensitive to changes in the environment, limiting its generalization. Based on
the inspiration of the above methods, an AQRR-DDQN algorithm is proposed to improve the sparse
rewards problem and the utilization efficiency of experience sample. And the validity of the proposed
algorithm is verified by comparing with MS-DDQN and ECMS-DDQN.

3 Theoretical Foundations
3.1 DDQN Algorithm

Deep neural networks serve as function approximators in the DQN algorithm to estimate the
value function, which solves the problem of the dimensionality curse when there are too many states
[30]. But the selection of actions is determined by the current network Q (s, a; θ), the Q-value with the
optimal action is selected by max function in each iteration as the evaluation of the action. Due to the
radical selection of actions, the overestimation problem may occur, while the DDQN conducts action
selection and evaluation separately to alleviate the overestimation problem of Q-value [31].

First the Q-value contained every possible action is calculated through the current network
Q (s, a; θ), and the argmax function is used to select the action corresponding to the maximum Q-
value, as shown in Formula (1):

a′ = arg maxa′Q (s′, a′; θ) (1)
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In Formula (1), s′ is the new state reached after taking action a, a′ is the action chosen in the new
state s′, θ is the parameter of the model.

Then actions in the target network Q̂ (s, a; θ ′) is evaluated. The target Q-value is shown as
Formula (2):

Y DDQN = r + γ Q̂ (s′, arg max a′Q (s′, a′; θ) ; θ ′) (2)

In Formula (2), r represents the immediate reward for performing an action a, γ represents the
discount factor used to adjust the weight of future rewards, θ ′ represents the parameters of the target
Q network.

During the training, a part of the sample is randomly selected from the experience replay buffer,
the loss function is calculated by using the mean square error, and the network parameters are updated
by the random gradient descent method. The updating process is shown in Formula (3):

L (θ) = E
[(

r + γ Q̂ (s′, arg max a′Q (s′, a′; θ) ; θ ′) − Q (s, a; θ)
)2

]
(3)

The target value for updating parameters in the DDQN algorithm is shown as follows:

Y DDQN =
{

r is_done is true
r + γ Q̂ (s′, arg maxa′ Q (s′, a′; θ) ; θ ′) is_done is false

(4)

The only difference between the DQN and the DDQN algorithm lies in how the target Q-value is
computed. DQN algorithm chooses the action that aligns with the highest Q-value within the target
Q network and evaluates this action with the target Q network, while DDQN algorithm chooses the
action that aligns with the highest Q-value within the Q network and evaluates this action with the
target Q network. The detailed procedures for the DDQN algorithm are outlined as:

Step 1: Establish two same neural networks, designating one as the evaluation network and the
other as the designated target Q network; initialize parameters, and set initial state s.

Step 2: The robot selects action a randomly based on the current action selection mechanism and
executes a. And obtain new states s′ and immediate reward r from the environment.

Step 3: Store the state transition information (s, a, r, s′) in the experience replay buffer.

Step 4: Check whether the current number of steps is a multiple of the interval number C. If
so, the Q network’s parameters are replicated onto the target Q network so that its parameters are
regularly updated and synchronized, and then l samples (s, a, r, s′) are chosen at random for training
from the experience buffer. If not, l samples (s, a, r, s′) are chosen at random straight for training from
the experience buffer.

Step 5: Input the current state s from the state transition samples (s, a, r, s′) into the Q network.
And input the next state s′ into the target Q network.

Step 6: The Q network not only outputs predicted future reward value but also calculates the Q-
values for every possible action. Then, the argmax function serves to choose the action a′ that aligns
with the maximum Q-value. The target Q network uses the action a′ selected by the Q network to
calculate and output the target Q-value through Formula (4). Here, the action with the greatest Q-
value is chosen by the Q network and the target Q network assesses this action, which mitigate the
overestimation problem.

Step 7: Update Q network’s parameters by utilizing the network output values in Step 6.
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Step 8: Next state s′ is used to replace the current state s. If s′ is the terminal state, end the learning
process; otherwise, go back to Step 2.

3.2 Improved DDQN Algorithm

Compared with other algorithms, the DDQN algorithm has significant advantages in solving
complex decision-making problems in path planning. This paper proposes an improved DDQN
algorithm, which enhances the accuracy of target value estimation by accumulating and averaging
multiple Q-values learned from target network instead of Q-value learned from a single target network.
Additionally, a reward redistribution strategy is introduced to address the issue of sparse rewards,
dividing the rewards into immediate and discounted episodic rewards to make the learning process
more efficient. Also reward-prioritized experience selection method is proposed to improve traditional
experience replay. The diagram of structure is shown in Fig. 1.

Figure 1: Schematic diagram of overall process

Among them, a neural network with a 4-layer DNN architecture is employed. The composition
includes an output layer, an input layer, and two hidden layers. Two hidden layers contain 64 neurons
and employ ReLU for its activation function. The 10 neurons in the input layer receive 10 input states
from the agent. The output layer has 5 neurons and outputs the Q-values of 5 actions of the agent.
The diagram of the model structure is shown in Fig. 2.

3.2.1 Average Q-value Estimation Method

In the DDQN algorithm, the Q-value is obtained by target Q network learning. When the early
network parameter deviation is large, there might also be a significant variation in the target Q-value,
resulting in low training efficiency [32]. Based on the DDQN algorithm, this paper proposed an average
Q-value estimation method. By averaging of K Q-values previously learned from the target Q network
to replace the current Q-value, so as to reduce the error of target values. Equation can be represented
as follows:

Q̂A
T (s, a) = 1

K

∑K

k=1
Q̂ (s, a; θT−k) (5)
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where Q̂A
T (s, a) represents the average value of the K Q-values of target Q network. K should be set in

conjunction with the actual situation and application scenarios, and whether the setting is reasonable
or not will directly affect the specific speed of training.

Figure 2: The diagram of neural network

3.2.2 Reward Redistribution Mechanism

In RL, the robot relies on the reward function for action evaluation to complete the entire path
search process [33]. Therefore, a reasonable reward function is important for the learning effect of
agent. Collision behavior and the behavior of reaching the target position are the core factors for the
robot to engage in environmental interactions. Considering only the core factors, the reward function
can be designed as Formula (6):

rt =
⎧⎨
⎩

−r1 collision
r2 get_target
0 else

(6)

where r1 and r2 are both positive numbers, The agent receives a reward of −r1 after a collision and a
reward of r2 upon reaching the target. In this reward function, many actions receive a reward of 0, which
does not accurately reflect the quality of all actions, making it difficult to effectively fit the optimal
value function to the subsequent neural network. This paper introduced a reward redistribution
mechanism, where the mobile robot receives different rewards for different actions. When the reward
redistribution mechanism is used, the final reward for each behavior is divided into two parts: the
immediate reward and the discounted round reward. Immediate reward is the reward value of the
current action, and the discount round reward is expressed by a weighted sum of the reward values of
future time steps, as shown in Formula (7):

Re (τ ) =
T−t∑
k=1

γ krt+k (7)
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where t represents the current time step, T is the number of time steps required to complete an episode,
Re (τ ) represents the discount round reward from the current time step t to the end of the round time
step T . γ is the discount factor. rt+k represents the reward at future time step t + k.

The final reward for each action is expressed by the sum of the immediate reward and the discount
round reward, which can be expressed as Formula (8):

r′
t = rt + Re (τ ) (8)

where r′
t is the final reward value for each action, rt is the immediate reward of the current state. These

rewards are applied to the neural network updates, thus enhancing its ability to more accurately align
with the value function. The steps for how the reward redistribution applies to specific part of the
DDQN are as follows:

(1) Calculation and assignment of rewards: the rewards are divided into two parts: immediate
reward rt and discounted episodic reward Re (τ ).

(2) Storage in the experience replay buffer: After each interaction with the environment, a tuple
(s, a, rt, Re (τ ) , s′) is created and stored in the experience replay buffer.

(3) Calculation of the target Q-value (integration with DDQN): the target Q-value is calculated
by combining the immediate reward and the discounted episodic reward as Formula (9):

Qtarget = rt + Re (τ ) + γ Q (s′, a′; θ) (9)

(4) Neural network update: The parameter of evaluation network is updated based on experiences
sampled from the replay buffer. Then the loss is calculated using the mean squared error, and parameter
θ is updated by gradient descent.

The reward redistribution mechanism, by combining immediate reward and discount round
reward, enhances the accuracy of the target Q-value calculation, enabling the neural network to better
align with the value function. But it also increases the computational complexity, especially in complex
or dynamic environments. However, it can effectively improve the sparse reward problem and improve
the learning efficiency of the algorithm, and the performance improvement brought by this mechanism
is worth it in the long run.

3.2.3 Reward-Prioritized Experience Selection Method

In a traditional experience replay buffer, when it reaches maximum capacity, older experiences
are discarded based on the first-in-first-out principle, which may result in high-reward experiences not
being fully utilized. To address this issue, a reward-prioritized experience selection method is proposed.
First, sample a set of experiences equal to or more than the batch size to form an expanded experience
set Bextend. Then, Bextend is sorted based on reward values. From the sorted expanded experience set
B′

extend, a certain proportion of high-reward experiences are selected, while the remaining samples are
randomly selected from the rest to maintain exploration of the environment. The reward-prioritized
experience selection method is illustrated in Fig. 3.

The method sets two parameters: the expansion factor c and the selection probability h, which
control the extent of new experience extraction and the proportion of high-reward experiences selected,
respectively. The value range of the expansion coefficient c is c ≥ 1, and l represents the count of
samples used in batch gradient descent. The selection probability h determines the proportion of high-
reward experiences selected from the sorted expanded set Bextend, with a value range of 0 ≤ h ≤ 1. This
method ensures that high-reward samples are fully utilized while balancing the update of both high
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and low reward experiences in the buffer. It not only stops the algorithm from being trapped in local
optimum, but also avoids the problems of overfitting.

Figure 3: Schematic diagram of reward-prioritized experience selection method

3.2.4 Design of Improved DDQN Algorithm

When using DDQN algorithm to realize the path planning of robot, rewards are only obtained
when agent encounters an obstacle or reaches the target position, leading to sparse rewards. Addi-
tionally, when the experience buffer reaches its maximum capacity, the first-in-first-out principle is
executed, resulting in insufficient utilization of high-quality sample data. Therefore, based on the above
improvements, Fig. 4 displays the flowchart for the improved algorithm, outlining the precise steps as
follows:

Step 1: Establish two same neural networks, designating one as the Q network and the other as
the designated target Q network; initialize parameters.

Step 2: Set the initial state s.

Step 3: Agent chooses and carries out an action a according to the current action selection
mechanism, and gets the new state s′.

Step 4: Determine if the episode has ended. If the episode has not ended, obtain an immediate
reward r; if the episode has ended, obtain both an immediate reward r and an episode reward Re (τ ).

Step 5: Replace the current state s with the next state s, and go to Step 2.

Step 6: After the episode ends, recalculate the rewards for all actions in the episode using
Formula (10) to get the final reward r′ for each action.

Step 7: Store the state transition information (s, a, r′, s′) into the experience buffer D.

Step 8: Randomly sample a batch of experiences Bextend of size l × c from the buffer D, sort them
based on the reward values to form new experiences B′

extend. Then, select l ×h experiences from B′
extend in

order of highest to lowest reward to store in the final experience set B. Finally, randomly select a size
l × (1 − h) of experiences from the remaining B′

extend samples to add to the final experience set B.

Step 9: Input the current state s from the state transition sample (s, a, r′, s′) into the Q network,
and input the next state s′ into the target Q network.
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Step 10: The Q network outputs not only the predicted future return value but also calculates the
Q-values for every possible action a, then selects the action a′ that aligns with the highest Q-value using
the argmax function. Calculate the average Q-value using average Q-value estimation method. Finally,
calculate the target Q-value by the average Q-value and the actions selected by the Q network.

Step 11: Update the parameters θ of Q network according to the network output value in Step 10.
And the Q network’s parameters are sent to the target Q network every C steps.

Figure 4: Algorithm flowchart
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4 Simulation Results and Analyses
4.1 Design Experiment

(1) Simulation environment

The experimental operating system is Windows10. CPU is i5-8300H, 8 GB memory, 4 GB video
memory. GPU is NVIDIA GeForce RTX 3060, CUDA 12.1, The version of Python used is 3.8, the
versions of libraries employed during coding: numpy 1.24.4, pytorch 2.1.2, Matplotlib 3.7.4, gym
0.12.5, pickle, collections.deque, random. The CartPole-v1 environment provided by OpenAI Gym
was used for testing. The actions of the agent are divided into: turn left 30°, turn left 15°, turn right
30°, turn right 15° and keep straight. The simulation environment is a square two-dimensional plane
with a side length of 25 m, 5 to 7 obstacles are randomly generated in the environment. And the start
and target positions are randomly generated.

(2) Reward function design

Reward is a kind of “reinforcement signal” provided by the environment in the process of path
planning, which is an evaluation of every behavior. In order to improve the efficiency of the interaction
between the agent and the environment and make it better use of the reward to adjust the action
strategy, more detailed reward feedback is adopted in the design of the reward function. The reward
value is debugged and validated several times in different scenarios.

1) When the direction changes, a reward of −0.01 points will be obtained.

2) When agent comes close to obstacles, a reward of −0.1 points will be obtained within a certain
range of obstacle.

3) A reward of −1 points will be obtained when a collision occurs.

4) A final reward of 10 will be obtained when reaching the target position.

5) At each step, the agent receives a base reward of 10 × Δdis, where Δdis represents the distance
difference between two consecutive time steps, normalized by the diagonal length of the environment.

The specific reward function is as follows:

r =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

10 × Δdis base_reward
−0.01 direction_changed
−0.1 near_the_obstacles
−1 collision
10 reach_the_goal

(10)

(3) Simulation parameters

According to the Reference [34], set εinit = 0.99, εmin = 0.01; according to the Reference [35]
set the reward decay factor γ = 0.6, set the learning rate α = 0.001. Through several experiments
and results comparison, set the update step interval C = 100, average estimation coefficient K = 5,
expansion factor c = 1.5, selection probability h = 0.5. The maximum number of steps per episode
Stepmax = 1000, the maximum capacity of the experience replay buffer Mcapacity = 20,000, the maximum
number of iterations Tmax _episodes = 100, the minimum exploration number Nexplore = 500, and the batch
size Nbatchsize = 128. The parameters are shown in Table 1.
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Table 1: Simulation parameter

Parameters Settings

Initial exploration factor 0.99
Minimum exploration factor 0.01
Reward attenuation factor 0.6
Learning rate 0.001
Update step interval 100
Average estimation coefficient 5
Expansion factor 1.5
Selection probability 0.5
Maximum number of steps per episode 1000
Maximum number of iterations 100
Replay buffer size 20,000
Minimum exploration number 500
Batch size 128

(4) Evaluation metrics

The four algorithms DDQN, MS-DDQN, ECMS-DDQN and AQRR-DDQN algorithm are
trained respectively in fixed-position scenarios and random environments. Determine the algorithm
performance based on the following indicators:

1) Total reward per episode: the higher the total reward, the better the algorithm performed at the
task. It can be calculated as follows:

Rtotal =
T∑

t=1

rt (11)

where rt is the reward at moment t, T is the total number of time steps in the round. Higher rewards
indicate that the algorithm performs better in performing the task.

2) the average time taken: the time of agent reaches to target point, the calculation formula is:

Taverage = 1
N

N∑
i=1

Ti (12)

where Ti is the time for the intelligence to reach the target in the i-th round and N is the total number
of rounds.

3) the average return value: the average of the total reward values every round. The higher the
average return the more favorable it is for the intelligence to reach the target point. The calculation
formula is as follows:

Raverage = 1
N

N∑
i=1

Ri
total (13)
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4) the average number of steps: the average number of steps required by agent to complete the
task in each episode. The lower the average number of steps, the shorter the path planned by agent.
indicating higher efficiency. The calculation formula is as follows:

Saverage = 1
N

N∑
i=1

Si (14)

where Si is the number of steps in the i-th round.

5) the average reward per step: the average reward value earned by agent at each time t. Higher
average reward per step indicates that agent is more efficient and performs better. The calculation
formula is as follows:

PRaverage = 1
N

N∑
i=1

Ri
total

Si

(15)

4.2 Performance Simulation and Analyses

4.2.1 Test Result in Fixed Position Environment

The size of the experimental scene is a 25 m × 25 m planar continuous space, with five obstacles
of fixed size and position, the yellow circle at the bottom left is the starting position, and the red circle
at the top right indicates the target position. The visualization scene is shown in Fig. 5.

Figure 5: Fixed position environment

In the fixed position environment, by comparing the classical DDQN, MS-DDQN, ECMS-
DDQN and AQRR-DDQN algorithm, it is evident that all four algorithms are able to plan a pathway
to successfully get to the target location without collision at the end of training. And Fig. 6 displays
the reward curves of the four algorithms, where the number of iterative episodes as the horizontal
coordinate, and total rewards of each episode as the vertical coordinate.
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Figure 6: Comparison of return curves in fixed position environment

From Fig. 6, it can be seen that every algorithm is eventually able to converge, but there are clear
differences in speed and stability. ECMS-DDQN algorithm shows the fastest initial rise in rewards,
but fluctuates slightly in later stages, likely due to sensitivity to exploration-exploitation balance.
The MS-DDQN algorithm also experiences fluctuations towards the end. In contrast, the AQRR-
DDQN algorithm, though not the fastest initially, achieves the most stable performance with minimal
fluctuations throughout the training. This stems from the improvement of the reward function, which
introduces a reward redistribution mechanism to avoid the problem of sparse rewards, at the same time
being less fluctuating and more stable than other algorithms in later training. With more consistent
reward feedback, the agent was able to maintain a high level of strategic stability in the later stages
of training. Fig. 7 shows the planned paths of the four algorithms after one training, in which blue,
orange, green and red represent the paths of classical DDQN, MS-DDQN, ECMS-DDQN and
AQRR-DDQN algorithm separately.

In Fig. 7, the DDQN algorithm appears to lack purposiveness, and although it can reach the target
location, it is also convoluted and inefficient. Because the initial direction is detoured, ECMS-DDQN
algorithm has been trying to adjust the direction. In the initial stage, MS-DDQN and the AQRR-
DDQN algorithm choose to move directly towards the target position without going far around. When
facing obstacles near the target position, the AQRR-DDQN algorithm chooses to adjust the direction
and avoid approaching the obstacles. On the whole, the path given by the AQRR-DDQN algorithm
has fewer turns, and the direction is adjusted in time when approaching obstacles to avoid collision
with obstacles, which is relatively safe on the whole and does not have too much detour phenomenon.

Due to the randomness of the experiment, the relevant data of a single training may not be able to
effectively show the performance differences of different algorithms. In this study, 100 times of path
planning experiments were trained, and compare their performance. The items compared included
the average time taken per algorithm, the average number of steps, the average reward per step and
the average return value. The data for the last two comparison items were selected from the last 10
episodes of every training. The comparison results are displayed in Table 2.
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Figure 7: Comparison of optimal paths in fixed position environment

Table 2: Comparison of the performance of different algorithms

Algorithm DDQN MS-DDQN ECMS-DDQN AQRR-DDQN

The average time taken (s) 501.315 451.244 454.601 440.312
The average return 8.854 9.045 9.027 9.337
The average number of steps 94.656 91.567 91.571 89.103
The average reward per step 0.093 0.098 0.099 0.105

Table 2 shows that the AQRR-DDQN algorithm has the shortest average time, which is about
61, 11 and 14 s less than the average time of DDQN, MS-DDQN and ECMS-DDQN algorithms,
respectively. This improvement is closely related to the introduction of the average Q-estimation,
which can accelerate the learning process by avoiding the policy bias caused by over-estimation of
Q-value. AQRR-DDQN is the best in terms of the average number of steps, with an average of 89.103,
which is significantly lower than other algorithms. This advantage can be attributed to the reward-
prioritized experience selection, which reduces ineffective exploration by prioritizing the learning of
high-value experiences so that the intelligences can learn effective strategies faster. The average return
of MS-DDQN, ECMS-DDQN and the AQRR-DDQN algorithm surpasses significantly the DDQN
algorithm, but AQRR-DDQN performs the best. The AQRR-DDQN algorithm has the best average
return at 9.337, significantly outperforming DDQN at 8.854, and MS-DDQN and ECMS-DDQN at
9.045 and 9.027, respectively. In terms of the average reward per step, DDQN has maximum reward,
ECMS-DDQN and MS-DDQN have little difference in reward, DDQN algorithm has the lowest
reward. The average reward per step can better represent the algorithm’s performance. Based on the
average reward per step of the DDQN algorithm, the performance of MS-DDQN, ECMS-DDQN
and the AQRR-DDQN algorithm are improved by about 5.38%, 6.45% and 11.43%, respectively,
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showing obvious advantages of the AQRR-DDQN algorithm. This result demonstrates the efficiency
of AQRR-DDQN’s actions thanks to the reward redistribution mechanism, which can provide more
fine-grained reward feedback for the agent to make more reasonable choices at each time step.

4.2.2 Experiment and Result Analysis in Random Environment

The size of this experimental scene was a planar continuous space, and the number of obstacles
was randomly generated from 5 to 7. In each episode, the obstacle positions for the intelligences are
set randomly, with the start position randomly set in the upper region of the experimental scene and
the target position randomly set in the lower region of the experimental scene. In a training with a
maximum number of iterations of 100, the initial situation of each episode is random. Fig. 8 shows a
random environment.

Figure 8: Example of random environment

In the random experimental scenario, by comparing the classical DDQN, MS-DDQN, ECMS-
DDQN and AQRR-DDQN algorithm, it is evident that all four algorithms are able to plan a pathway
to successfully arrive the target location without collision at the end of training. And Fig. 9 displays
the reward curves of the four algorithms.

As seen in Fig. 9, throughout the entire training phase, every algorithm’s total return values have
some fluctuations. But with the rise in the count of iteration episodes, the fluctuation becomes smaller
and smaller and gradually converges. MS-DDQN algorithm fluctuates greatly in the middle period,
and the remaining three algorithms are more stable obviously. And in the later stage, AQRR-DDQN is
more stable than the other three algorithms, mainly because reward redistribution can better balance
short-term and long-term returns and avoid over-reliance on short-term returns. This mechanism helps
the model be more stable during exploration and reduces unnecessary reward fluctuations.
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Figure 9: Return curves of four different algorithms for random environment

To verify the performance of the algorithms, test four algorithms in different random environ-
ments. Fig. 10 showed experimental results of the four algorithms in six random environments. The
blue, orange, green and red curves are the path of DDQN algorithm, MS-DDQN algorithm, ECMS-
DDQN algorithm and AQRR-DDQN algorithm separately.

In Fig. 10, the trajectory planned by DDQN algorithm is the most tortuous, and in the envi-
ronment with fewer obstacles, it is greatly affected by random disturbance, and obvious devolution
phenomenon appears. The path steps planned by MS-DDQN, ECMS-DDQN, and the AQRR-
DDQN algorithm are not obviously different. Every algorithm can successfully find the target
location. In general, the AQRR-DDQN algorithm gives a smoother path.

(a) Environment 1                         (b) Environment 2

Figure 10: (Continued)
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(c) Environment 3                          (d) Environment 4

(e) Environment 5                          (f) Environment 6

Figure 10: Paths planned by four algorithms in six random environments

Train the agent 100 times with different algorithms and compare the performance of different
algorithms. Table 3 shows the results.

Table 3: Comparison of the performance of different algorithms

Algorithm DDQN MS-DDQN ECMS-DDQN AQRR-DDQN

The average time taken (s) 371.51 369.436 359.37 313.34
The average return 9.492 9.493 9.501 9.517
The average number of steps 66.15 63.767 63.32 60.63
The average reward per step 0.143 0.148 0.151 0.156
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In Table 3, the AQRR-DDQN algorithm spent the shortest average time, while the DDQN
algorithm spent the longest average time. The difference in time consumption between MS-DDQN and
ECMS-DDQN is about 10 s. In terms of the average return, there is a small difference between DDQN
and MS-DDQN, and the AQRR-DDQN algorithm has the highest average return. DDQN need the
most average steps in path planning, and the difference between MS-DDQN and ECMS-DDQN
is very small. The AQRR-DDQN algorithm is marginally ahead of the ECMS-DDQN by about 3
steps. From the point of view of the average reward per step, which can better reflect the algorithm’s
performance, DDQN as a reference, the performance of MS-DDQN and ECMS-DDQN improved by
about 3.50%, 5.59%, and the AQRR-DDQN improved by 8.33%, showing the best performance. The
AQRR-DDQN algorithm achieves the expected results in different evaluation metrics. This is because
adding discount round reward into the final reward of each action, which reduces the drawback of
sparse reward. Meanwhile, sort the samples in the experience replay buffer according to reward value
and prioritize the extraction of high-quality samples for learning reduces ineffective exploration and
the exploration progress is speeded up.

5 Conclusions

Path planning is a key task in many autonomous intelligent systems, especially in complex and
uncertain environments, effective path planning is crucial to the efficiency of task execution. The main
route of this paper is to improve the path planning ability of the agent in a more efficient learning
process by improving the DDQN algorithm. When using DDQN to realize path planning, agents
often face two main challenges: slow convergence caused by sparse rewards, and insufficient use of
high-quality experience limits the learning effect of agents. This paper solves the problem using the
following methods: Average Q-value estimation is introduced into the DDQN algorithm to enhance
the precision of the target Q-value. And a reward redistribution mechanism is proposed to redistribute
the final reward of each action using trajectory information so that the agent can obtain feedback in
time, which improves the learning efficiency. Furthermore, a reward-prioritized experience selection
method is introduced to enhance the utilization efficiency of high-quality experience data to improve
the algorithm’s performance.

To verify the effectiveness of this method, several experiments are carried out in the simulation
environment. By comparing DDQN, MS-DDQN, ECMS-DDQN, and the AQRR-DDQN algorithm,
the results indicated that the AQRR-DDQN algorithm is superior to the other three algorithms in the
average time taken, the average return, the average number of steps, and the average reward per step,
which improves the efficiency of path planning. However, although this paper conducts experiments
in stochastic simulation environments, the complexity of these environments is still relatively simple
compared to the real world. In practical applications, complex scenarios often contain more dynamic
variables, such as moving obstacles and changing environmental characteristics, which are not fully
simulated in current experiments. Future studies will consider testing it in more complex dynamic
environments to improve its adaptability and generalization.
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