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ABSTRACT

Unsupervised learning methods such as graph contrastive learning have been used for dynamic graph represen-
tation learning to eliminate the dependence of labels. However, existing studies neglect positional information
when learning discrete snapshots, resulting in insufficient network topology learning. At the same time, due to
the lack of appropriate data augmentation methods, it is difficult to capture the evolving patterns of the network
effectively. To address the above problems, a position-aware and subgraph enhanced dynamic graph contrastive
learning method is proposed for discrete-time dynamic graphs. Firstly, the global snapshot is built based on the
historical snapshots to express the stable pattern of the dynamic graph, and the random walk is used to obtain the
position representation by learning the positional information of the nodes. Secondly, a new data augmentation
method is carried out from the perspectives of short-term changes and long-term stable structures of dynamic
graphs. Specifically, subgraph sampling based on snapshots and global snapshots is used to obtain two structural
augmentation views, and node structures and evolving patterns are learned by combining graph neural network,
gated recurrent unit, and attention mechanism. Finally, the quality of node representation is improved by combining
the contrastive learning between different structural augmentation views and between the two representations
of structure and position. Experimental results on four real datasets show that the performance of the proposed
method is better than the existing unsupervised methods, and it is more competitive than the supervised learning
method under a semi-supervised setting.
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Dynamic graph representation learning; graph contrastive learning; structure representation; position
representation; evolving pattern

1 Introduction

Graphs are popular tools for representing relationships between entities and are widely used
in various application fields, such as recommender systems [1] and intelligent transport systems [2].
To analyze graph data, high-dimensional graph structures are often mapped to low-dimensional
representation vectors through graph representation learning to learn the structural and attribute
features and use them for downstream tasks. However, graphs often exhibit dynamics over time in the

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2024.056434
https://www.techscience.com/doi/10.32604/cmc.2024.056434
mailto:fengjian@xust.edu.cn


2896 CMC, 2024, vol.81, no.2

real world, and how to learn the representation of dynamic graphs has become a significant research
problem.

Based on the temporal granularity, the dynamic graphs can be categorized into continuous-time
and discrete-time. Fine-grained temporal information required for continuous time dynamic graphs
is often impractical due to privacy, noise, etc. Therefore, this paper studies Discrete-time Dynamic
Graph Representation Learning (DDGRL) based on a series of snapshots.

DDGRL often employs structural models represented by Graph Neural Networks (GNN) to learn
the topology of each snapshot and temporal models such as Recurrent Neural Networks (RNN) to
capture the evolving pattern of the structure over time. However, due to the difficulty in obtaining
labels, current studies often yield suboptimal performance via unsupervised learning. Recent studies
have applied Graph Contrastive Learning (GCL) to dynamic graphs [3–5], and the contrast between
views obtained through data augmentation shows comparable competitiveness to supervised methods,
but these methods rely on fine-grained temporal information. Therefore, the challenges of using GCL
for DDGRL still exist.

The challenges manifest in learning the topology of snapshots and their evolving patterns. Firstly,
when learning from snapshots, existing studies have tended to focus only on structural information and
ignore positional information. For example, Node 3 and Node C will learn the same representation
through GNN due to the same structure, which is shown in Fig. 1a after dimensionality reduction.
However, in terms of positions, Node 3 should be more like nodes belonging to the same component,
such as Node 2, as shown in Fig. 1b. Next, GCL tends to consider different nodes as negative examples,
which will further push the representation of Node 3 and Node 2 farther away from each other,
making the learned features overly concerned with structural information and ignoring positional
information. Secondly, current studies lack effective data augmentation, making it challenging to
capture the evolving patterns of snapshots. For example, snapshots can be treated as static graphs,
and data augmentation can be achieved through subgraph sampling. However, subgraphs sampled
independently from a series of snapshots have the potential to disrupt the evolving pattern of snapshots
over time.

Figure 1: Comparison of structure and position

To address the above challenges, a Position-aware and Subgraph enhanced Dynamic Graph
Contrastive Learning method (PSDGCL) is proposed. First, a global snapshot is generated for each
time slice based on the historical snapshot. Second, on the one hand, the positions of nodes are
captured from global snapshots by combining random walk and Multilayer Perceptron (MLP); on
the other hand, based on snapshots and global snapshots, the evolving patterns are expressed as short-
term changes and long-term stable structures, and after data augmentation by subgraph sampling from
them, the structures of nodes in different views are learned by combining GNN, Gated Recurrent
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Unit (GRU) and attention mechanism. Finally, structure representations are learned through inter-
view contrastive learning, and complementary information is learned from structure and position
representation to generate node representations. The main contributions of this paper are as follows:

• A dynamic graph contrastive learning method PSDGCL was proposed, which utilizes GNN
to learn node structures and captures node positions through random walk, thereby improving
the quality of node representation.

• A data augmentation method based on subgraph sampling was designed, which comprehen-
sively considers the short-term changes and long-term stable structures of dynamic graphs to
help learn evolving patterns.

• The experimental results on four real datasets show that the proposed method outperforms
representative unsupervised methods and exhibits comparable or even better competitiveness
compared to supervised methods.

The remaining sections of this paper are organized as follows. Section 2 reviews relevant studies.
In Section 3, we provides a detailed explanation of the proposed method. Section 4 presents our
experimental results on four datasets. Finally, Section 5 concludes the paper.

2 Related Works

This paper explores GCL for DDGRL. Therefore, this section discusses the relevant methods of
DDGRL and representative works of GCL.

2.1 Discrete-Time Dynamic Graph Representation Learning

DDGRL tends to generalize static graph representation learning methods to dynamic graphs by
adding designs that capture temporal features, usually categorized into three types: matrix decompo-
sition, random walk, and GNN.

The matrix decomposition methods can either perform matrix decomposition on each snapshot
and ensure the stability of the embedding through the time smoothing term in the loss function [6],
or perform tensor decomposition by increasing the time dimension [7]. Similarly, the random walk
methods perform random walks on each snapshot and concatenated them to obtain the final node
representation [8], or incrementally update the node representations by performing randoms walk
only for nodes affected by structural evolution [9]. However, these two methods are difficult to learn
high-order nonlinear relations as shallow encoders.

With the development of GNN, the current typical paradigm is to learn the topology of each
snapshot through GNN, and then learn the evolving patterns between snapshots through RNN [10].
On this basis, HTGN [11] has introduced hyperbolic spaces to learn the hierarchical characteristics,
and HGWaveNet [12] aggregates a wider range of neighbor information through diffusion convolution
and models temporal order using causal convolution. TTGCN [13] combines the K-Truss method to
learn structural and temporal information from subgraphs of different scales. However, most of the
above methods use graph reconstruction as the pretext task for unsupervised learning, and the model’s
good performance in graph reconstruction tasks is often difficult to transfer to downstream tasks
such as node classification. In contrast, some methods using labels often achieve better performance.
For example, SpikeNet [14] adoptes spiking neural networks (SNN) to replace RNN to reduce the
computational cost, and Dy-SIGN [15] compensates the information through the original features for
the discrete features obtained by SNN. SEIGN [16] makes it applicable to large-scale graphs through
parameter free message passing. DyGNNExplainer [17] uses structural causal model to improve the
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interpretability of model. However, labels are often expensive or difficult to obtain. Encouraged by
the success of contrastive learning, we hope to achieve performance comparable to or even better than
supervised methods through GCL.

2.2 Graph Contrastive Learning

GCL requires carefully designed augmentation [18], but existing methods are not suitable for
dynamic graphs due to ignoring temporal information. Therefore, Dynamic GCL (DGCL) often
performs data augmentation from the perspective of topology and temporal evolution. For example,
TGAC [3] prunes the original graph based on node centrality and edge existence time to generate
different views. DyTSCL [4] constructs contrastive pairs through sampled structural or temporal
related subgraphs. DyGCL [5] considers nodes with short time intervals as positive examples and
nodes with long time intervals as negative examples based on the time span. However, these methods
rely on fine-grained timestamps, so data augmentation needs to be designed for discrete snapshots.
Meanwhile, studies often learn node representations through GNN, where the message passing
paradigm combined with contrastive learning processes overly emphasizes structural information
while neglecting node positional information.

To address the above problems, this paper introduces GCL to DDGRL to avoid the use of
expensive labels. On the one hand, learning precise positional information is complex and difficult,
especially for large-scale graphs. Inspired by random walk, utilizing its ability to learn similar
representations for adjacent nodes, it is possible to approximately capture node positional information
without being limited by the size of the graph. On the other hand, based on the characteristics of
snapshots and the temporal information contained between snapshots, we consider strengthening the
temporal information between snapshots and fully utilizing the existing achievements of GCL to help
capture dynamic graph evolving patterns.

3 Method

In this section, the relevant definitions are first introduced, then the overall framework of the
PSDGCL is provided, and the modules are explained separately.

3.1 Problem Definition

The discrete-time dynamic graph G consists of a series of snapshots {G1, . . . , Gt, . . . , GT}, and T
is the number of snapshots. For the snapshot Gt = (V , At, Xt) corresponding to time slice t, where
V = {v1, . . . , v|V |} is the node set, At is the adjacency matrix of snapshot Gt, Xt is the node feature. The
goal is to find a mapping function f that learns node representation Z for all nodes in the dynamic
graph G for downstream tasks, as shown in Eq. (1):

Z = f (G1, . . . , GT) (1)

3.2 The Framework of PSDGCL

The framework of PSDGCL is shown in Fig. 2. It consists of four main modules: global snapshot
generation module, position learning module, structure learning module, and contrastive learning
module. Firstly, global snapshots are generated based on a series of snapshots, which are used as inputs
for the position learning module and structure learning module. Then, the position learning module
learns node representations from a position perspective. The structure learning module captures
the structure and evolving patterns. Finally, structure representation is learned through contrastive
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learning between views, while complementary information is learned through contrastive learning
between structure and position representation.

Figure 2: The framework of PSDGCL

3.2.1 Global Snapshot Generation Module

The global snapshot generation module aims to enhance the temporal information between
snapshots and generate global snapshots as inputs to subsequent modules. Because each snapshot
only records the interactions that occurred in the corresponding time slice, it is susceptible to random
interference during data augmentation. To this end, a corresponding global snapshot is generated for
each time slice based on the historical snapshot. Specifically, for time slice t, all node interactions up
to time step t are obtained from the historical snapshots and recorded through the global snapshot Ĝt,
which is computed as shown in Eq. (2):

Ât =
t∑

n=1

An (2)

where n denotes a time slice, An and Ât are the adjacency matrices of Gn and Ĝt, respectively.

In contrast, Gt contains the edges established within time slice t, while Ĝt records all edges
established up to time slice t. That is, {G1, . . . , Gt, . . . , GT} expresses the short-term changes of the
dynamic graph, while {Ĝ1, . . . , Ĝt, . . . , ĜT} expresses the long-term stable structure.

3.2.2 Position Learning Module

The position learning module aims to learn position-aware node features. Based on message
passing, GNN makes it difficult to learn the positional information. As shown in Fig. 3, GNN
performs message passing and aggregation based on the computational graph of each node. In this
process, the same structure between Node 3 and Node C will result in the same representation.
Meanwhile, although Nodes 2 and 3 are adjacent, different representations will be obtained due to
different computational graphs, and they will be pushed away in the contrastive learning process.
Therefore, node positions should be captured to learn the topology of the snapshot fully.



2900 CMC, 2024, vol.81, no.2

Figure 3: Message passing mechanism

Inspired by the characteristic of learning similar representations for adjacent nodes through
random walks, we adopt random walks to capture approximate positional information. Specifically,
random walks are first executed for each global snapshot, because the differences between global
snapshots are small compared to snapshots. Then, the representations obtained from each global
snapshot are added together, and the position representation Hp is generated through MLP. The
complete calculation process is shown in Eq. (3).

Hp = MLP
(

T∑
t

RandomWalk
(

Ĝt

))
(3)

It is worth mentioning that we used all global snapshots instead of directly using the final global
snapshot, in order to learn temporal information while capturing the positional information between
nodes. For example, adjacent nodes in the final global snapshot may establish edges in different snap-
shots, the summation operation can make the learned representation more discriminative. Meanwhile,
through MLP, the expressive power is enhanced without affecting the learned positional information,
thus facilitating subsequent contrastive learning.

3.2.3 Structure Learning Module

The structure learning module aims to learn node representation from a structural perspective.
First, the data augmentation method based on subgraph sampling is designed to generate two views. In
order to better capture the evolving patterns of dynamic graphs, subgraphs are sampled from snapshots
and global snapshots to capture short-term changes and long-term stable structures. Meanwhile,
a hyperparameter α is added to control the sampling ratio. Assuming that the overall size of the
subgraphs is M nodes, the sizes of subgraph sampled from snapshots and global snapshots are
(1 − α) M and αM nodes, respectively.

Secondly, combining GNN and GRU to learn corresponding node representations for each time
slice. For a series of subgraphs sampled by node v in each view, taking time slice t as an example, the
process of GNN aggregating messages of neighbor nodes to update the representation of central nodes
is shown in Eqs. (4) and (5):

h(k)

v,t = COMBINE(k)
(
h(k−1)

v,t , h(k)

n,t

)
(4)

h(k)

n,t = AGGREGATION (k)

({
h(k−1)

i,t : i ∈ Nt (v)
}

,
{

h(k−1)

i,t : i ∈ N̂t (v)
})

(5)

where h(k)

v,t is the k-th layer representation of the node v in the time slice t, especially h(0)

v,t = xv,t. Nt(v)
and N̂t(v) denote the neighbor of node v in subgraph sampled from snapshot and global snapshot.
In this paper, COMBINE(k) and AGGREGATION (k) are selected to sum and mean, respectively. After
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the L-layer calculation, the output of the GNN is denoted by {H (L)

1 , . . . , H (L)

t , . . . , H (L)

T }, where H (L)

t =
{h(L)

v1,t|| . . . ||h(L)

v|V |,t} is the representation of all nodes of the time slice t corresponding to the snapshot.

GRU is used to learn the temporal features between snapshots. Taking H (L)

t as an example, the
calculation process is shown in Eqs. (6)–(9):

rt = σ
(
WrH (L)

t + Urht−1

)
(6)

zt = σ
(
WzH (L)

t + Uzht−1

)
(7)

nt = tanh
(
WhH (L)

t + rt

⊙
Uhht−1

)
(8)

ht = zt

⊙
ht−1 + (1 − zt)

⊙
nt (9)

where Wr and Ur, Wz and Uz, Wh and Uh are the weights of reset gate, update gate and tanh function,
respectively, ht−1 is the hidden state of the previous moment, and

⊙
denotes the Hadamard product.

The hidden state {h1, . . . , hT} of each time slice in GRU is used as the node representation after learning
the temporal information.

Finally, based on {h1, . . . , hT}, the structure representation Hs is obtained through the attention
mechanism for contrastive learning. The calculation process is as follows:

θ = softmax
(

(hT Wq)(HWk)
T

√
d

)
(10)

Hs = θ (HWv) (11)

where H = {h1|| . . . ||hT}, Wq, Wk, Wv are trainable parameters, and d is the dimension of vector
{h1, . . . , hT}. For the two different views generated, the results are recorded as H1

s and H2
s .

3.2.4 Contrastive Learning Module

The contrastive learning module contrasts the representations learned by the above modules
and optimizes the model while obtaining the final node representation. Specifically, firstly, for the
representations H1

s and H2
s under the two views of the structure learning module, the representations

from the same node are pulled closer, and the representations from different nodes are pushed away
to learn the distinguishable structure representation. Taking the corresponding representation H1

s (v)
and H2

s (v) of node v as an example, the following loss is adopted [19]:

L1 = − 1
|V |

∑
v∈V

log
exp(p(H1

s (v))T p(H2
s (v))/τ)

exp(p(H1
s (v))T p(H2

s (v))/τ)+ ∑
u�=v exp(p(H1

s (v))T p(H2
s (u))/τ) (12)

where p(·) is the projection function of MLP, and τ is the temperature parameter.

Secondly, there should be a complementary relationship between the position representation and
structure representation for the same node, so Hp is contrasted with the H1

s or H2
s . Taking H1

s as an
example, the contrastive learning of Hp(v) and H1

s (v) for node v is as follows:

L2 = − 1
|V |

∑
v∈V

log
exp(p(H1

s (v))T q(Hp(v))/τ)
exp(p(H1

s (v))T q(Hp(v))/τ)+ ∑
u�=v exp(p(H1

s (v))T q(Hp(u))/τ) (13)

where q(·) is a different projection function from p(·), because Hp and H1
s are in different representation

spaces. The total loss function is:

L = βL1 + (1 − β)L2 (14)
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Finally, Hs and Hp are concatenated to obtain the final node representation Z = [Hs, Hp].

4 Experiments

In order to verify the effectiveness of the model PSDGCL, experiments are designed to answer
the following questions:

Question 1: Does PSDGCL outperform competing baselines?

Question 2: Are the critical components of PSDGCL helpful for improving the quality of learned
representations?

Question 3: What are the impacts of hyperparameters on PSDGCL?

Question 4: How about the time complexity and space complexity of PSDGCL?

4.1 Datasets and Experiment Settings

4.1.1 Datasets

Table 1 shows the dataset used in the experiment, including bitcoin trading dataset Bitcoinotc,
movie rating dataset ML1M, citation dataset DBLP, and tax transaction dataset TAX51.

Table 1: Datasets

Dataset # nodes # edges # snapshots # classes

Bitcoinotc 5881 35,592 15 3
ML1M 9062 800,261 22 5
DBLP 28,085 236,894 27 10
TAX51 132,524 467,279 19 51

4.1.2 Baselines

Six dynamic graph representation learning methods were selected as the baseline, including one
supervised method and five unsupervised methods, in order:

1. SpikeNet [14]: The supervised method combines GNN and SNN to learn the structural
features and temporal features in the dynamic graph.

2. MNCI [20]: Mining the influence of neighborhood and community, and updating the node
embeddings after interaction through GRU.

3. TGAT [21]: On the basis of a graph attention network, time information is incorporated
through a time embedding function.

4. EvolveGCN [10]: Modeling the evolution of GNN parameters through GRU to capture
dynamics from the evolving parameters.

5. HTGN [11]: Following the classic frameworks of GNN and GRU, hyperbolic space is intro-
duced to capture the hierarchical structure of the network.

6. HGWaveNet [12]: Diffusion convolution is used to increase the receptive field, and causal
convolution is used to ensure that the temporal modeling order is not violated.
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4.1.3 Implementation Details

The node classification task is used to verify the validity of the model. For the unsupervised
method, after using graph reconstruction as a pretext task to obtain the node representation, a
classifier is trained with 20% labels. For supervised methods, end-to-end models are trained using
different proportions of labels under semi-supervised settings. For multi-classification tasks, the
evaluation index selects Micro-F1 to consider the number of samples of different classes and adapt
to the uneven distribution of classes.

4.2 Experiment 1: Comparative Experiment

For Question 1, Experiment 1 compares the performance of PSDGCL with each baseline. Table 2
shows the comparison results on the four datasets. It is worth noting that the supervised method
SpikeNet uses different proportions of labels for training. The bolded results in the table are the
optimal results, and the underlined results are sub-optimal results.

Table 2: Performance comparison

Method Bitcoinotc ML1M DBLP TAX51

SpikeNet (20%) 0.5675 0.6119 0.6750 0.3896
SpikeNet (25%) 0.5770 0.6240 0.6891 0.3946
SpikeNet (30%) 0.5839 0.6388 0.6981 0.3964
MNCI 0.5577 0.5914 0.6608 0.3819
TGAT 0.5896 0.6246 0.6681 0.3812
EvolveGCN 0.5486 0.6027 0.6593 0.3878
HTGN 0.5683 0.6184 0.6432 0.3853
HGWaveNet 0.5409 0.5808 0.6287 0.3246
PSDGCL 0.6017 0.6392 0.7734 0.4738

From Table 2, we can see that PSDGCL outperforms all baselines. In unsupervised methods,
MNCI uses GRU to capture neighbor interactions, which performs worse than other GNN based
methods. EvolveGCN uses GRU to model GNN parameter changes, which is more flexible but
not as effective as directly learning temporal features. The HTGN based on hyperbolic space fully
learns the hierarchical structure of nodes, which helps with node classification to some extent, while
HGWaveNet perform poorly due to its focus on modeling edges. Although TGAT performs well, it
uses graph reconstruction as the pretext task like the above methods, and the good performance in the
graph reconstruction task is difficult to migrate to the node classification task. In contrast, PSDGCL
takes into account the node structure and position through GCL, and achieves the best results in
unsupervised methods. The supervised method SpikeNet benefits from the use of labels, outperforming
most unsupervised methods when using 20% labels, and can continuously gain benefits as the
proportion of label usage increases. When using the same number of labels, PSDGCL outperforms
SpikeNet because all samples can be used for training based on GCL, while SpikeNet uses a much
smaller number of labeled samples in a semi-supervised setting, which is particularly evident on large-
scale datasets. In addition, PSDGCL has limited improvement on the ML1M dataset, possibly due to
its smaller time scale and more frequent interactions between nodes.
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4.3 Experiment 2: Ablation Experiment

For Question 2, Experiment 2 verifies the impact of different modules in PSDGCL on the results.
To this end, two model variants, PSDGCL-RW and PSDGCL-AUG, are designed, which represent
the removal of the position learning module and the removal of the global snapshot in the subgraph
sampling. Fig. 4 shows the experimental results on different datasets.

Figure 4: Ablation experiments

It can be seen from Fig. 4 that PSDGCL has the best performance because it comprehensively
considers the structural information and positional information of nodes, and helps to capture
the evolving pattern of dynamic graphs through global snapshots. Due to the differences in the
characteristics of datasets, different modules have different effects on different datasets. Only by
comprehensively considering all factors can a robust node representation be learned.

4.4 Experiment 3: Hyperparameter Experiment

For Question 3, Experiment 3 studies the performance of the model under different hyperparam-
eters, including the sampling K-hop subgraphs, the sampling ratio α, and the loss weight β.

K-hop subgraph. The larger the sampled subgraph is, the more information is learned, but at the
same time, more noise is introduced. Therefore, different subgraph sizes are sampled for experiments
with different datasets. Considering the problem of space occupation and efficiency, we set K to {1, 2,
3}, and the experimental results are shown in Fig. 5.
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Figure 5: Analysis of subgraph size

From Fig. 5, it can be seen that subgraph size has a certain impact on performance, but it is
not necessarily better to have a larger subgraph. Even a one-hop subgraph can often guarantee
performance, which indicates that the node is closely related to its one-hop neighbors, and as the
size of the subgraph increases, the risk of introducing noise also increases.

Sampling ratio α. The views generated by α control tend to learn more structural changes or more
stable patterns to adapt to the characteristics of different types of data. The experimental results of
the four datasets are shown in Fig. 6.

It can be seen that as α increases, the proportion of neighbors sampled from the global snapshot
increases, and the performance often increases, which indicates that the global snapshot helps to learn
the evolving pattern of the dynamic graph, thereby improving the quality of the learned representation.
At the same time, α should not be too large, considering the short-term changes and long-term stable
structure of the dynamic graph can better learn the evolving pattern.

Loss weight β. The hyperparameter β reflects the weights of two terms in the loss function. The
larger the β is, the greater the impact of the contrast between the structural views on the model
performance. On the contrary, it is necessary to contrast the structure representation and the position
representation to learn the complementary information. The specific experimental results are shown
in Fig. 7.
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Figure 6: Analysis of sampling ratio

Figure 7: Analysis of loss weight

It can be seen that both terms in the loss function can help the model learn a better representation.
The performance is often optimal when β reaches a small value, which indicates that the contrastive
learning of structure representation and position representation can help learn complementary
information to improve the quality of node representation.

4.5 Experiment 4: Complexity Experiment

For Question 4, Experiment 4 compares the time and space complexity of PSDGCL with
baselines. In Table 3, we measure the time and space complexity by the model training time for each
epoch (T) and the number of parameters (N), measured in seconds (s) and millions (M), respectively.
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Table 3 shows that SpikeNet has the lowest complexity, which is due to the fact that semi-
supervised learning only requires a few samples and the lightweight design of the model based on SNN.
For unsupervised methods, the negative sampling process of contrastive learning makes PSDGCL
have a higher time complexity, but this is acceptable compared to the performance improvement.
Moreover, PSDGCL does not depend on complex model design and has space complexity second
only to SpikeNet.

Table 3: Complexity comparison

Method Bitcoinotc ML1M DBLP TAX51

T (s) N (M) T (s) N (M) T (s) N (M) T (s) N (M)

SpikeNet 0.237 0.04 0.187 0.04 2.533 0.04 2.406 0.05
MNCI 36.759 3.22 241.523 4.85 94.484 14.63 557.680 68.31
TGAT 12.962 12.05 423.910 208.62 107.736 69.26 214.268 154.98
EvolveGCN 0.224 1.64 1.046 2.05 0.978 4.48 10.926 17.85
HTGN 0.798 0.98 2.801 1.39 5.652 3.83 18.345 17.20
HGWaveNet 1.397 0.76 77.571 1.17 4.396 3.61 16.232 16.97
PSDGCL 1.283 0.34 12.142 0.45 8.434 0.37 29.485 0.46

5 Conclusion

This paper proposes a new DGCL method PSDGCL, which is characterized by learning the
structure and position of nodes at the same time to improve the quality of the learned node
representation. Specifically, on the one hand, PSDGCL combines random walk and MLP to learn
position-aware node representations. On the other hand, on the basis of using snapshots and global
snapshots to express evolution patterns, PSDGCL uses subgraph sampling for data augmentation
and combines GNN, GRU, and attention mechanisms to learn node structure. Finally, the model
is optimized by GCL. Experimental results show that PSDGCL achieves comparable or even better
performance than supervised learning methods without using labels.

In fact, PSDGCL still has limitations. Firstly, random walks can only capture fuzzy positional
information. Secondly, how the time scale of dynamic graph affects the performance of the model is
not clear. In the future, we will focus on finding more accurate position encoding methods and studying
dynamic graphs at different time scales.
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