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ABSTRACT

The ever-growing network traffic threat landscape necessitates adopting accurate and robust intrusion detection
systems (IDSs). IDSs have become a research hotspot and have seen remarkable performance improvements.
Generative adversarial networks (GANs) have also garnered increasing research interest recently due to their
remarkable ability to generate data. This paper investigates the application of (GANs) in (IDS) and explores their
current use within this research field. We delve into the adoption of GANs within signature-based, anomaly-based,
and hybrid IDSs, focusing on their objectives, methodologies, and advantages. Overall, GANs have been widely
employed, mainly focused on solving the class imbalance issue by generating realistic attack samples. While GANs
have shown significant potential in addressing the class imbalance issue, there are still open opportunities and
challenges to be addressed. Little attention has been paid to their applicability in distributed and decentralized
domains, such as IoT networks. Efficiency and scalability have been mostly overlooked, and thus, future works
must aim at addressing these gaps.
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1 Introduction

In recent times, security breaches by underground criminal enterprises have dramatically increased
as cyber-criminals take advantage of the exponential growth in digital communications and its
centrality to daily life and organizational operations. Protecting organizations from online security
threats is becoming ever more important, as they are increasingly dependent on the Internet [1–4].
According to the CISCO network forecast report, it is speculated that 15.4 million denial of service
(DoS) attacks took place in 2023 [5]. Consequently, communication networks must be secured as the
number of daily attacks keeps increasing. One such mechanism for protecting organizational networks
against malicious attacks is the intrusion detection system (IDS) [6,7].

In this article, we discuss two immensely significant research hotspots: (i) the development of
robust and accurate IDSs that can react to ever-evolving threats; and (ii) the adoption of generative
networks within IDSs to harness their ability to generalize and learn from input data. IDSs have been
categorized into three main classes, namely signature-based, anomaly-based, and hybrid systems (a
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summary of literature encompassing the three approaches is presented in Table 1). IDSs have been
extensively studied and generally reported to exhibit excellent performance metric values. Machine
learning (ML) and deep learning (DL) algorithms have been adopted within signature based IDSs to
enhance detection accuracy. However, most works assume the existence of datasets that reflect actual
network attack scenarios. However, difficulties arise when systems face previously unencountered
attacks. This situation is becoming increasingly prevalent as attackers employ constantly evolving
and rapidly changing techniques. In contrast, although anomaly based IDSs do not require labeled
data, they rely heavily on certain data characteristics, such as the Euclidean distance [8]. However, this
reliance tends to overlook the fact that real-life network traffic could follow alternate distributions
and exhibit different characteristics. Hybrid IDSs harness both labeled and unlabeled data, but only
a few studies have tested this approach [9]. Generative adversarial networks (GANs) have garnered
increasing attention due to their breakthrough capabilities that have revolutionized major domains,
such as natural language processing (NLP) [10] and computer vision (CV) [11] (especially medical
imaging [12]). Additionally, they have been widely employed in computer network security [13].
They consist of two competing neural networks (NNs), namely a generator that generates fake data
and a discriminator that distinguishes real data from the synthetic data generated by the generator.
Then, the generator improves its output by the feedback from the discriminator. The aim here is to
continue until the generator can generate realistic samples that the discriminator cannot distinguish
[14]. Consequently, this remarkable workflow of GANs allows them to create and expand datasets,
which are the basis of ML models. Training ML models requires vast amounts of data, which is
hard to collect and label by human experts [15]. GAN’s ability to generate and augment datasets was
mainly exploited in the image field, to generate synthetic images for various reasons such as training
ML models such as face recognition, and for generating realistic images [16]. However, the main role
of GAN in IDS is to balance the dataset (since attack samples are mostly fewer than benign ones)
by synthetically generating minority class samples. GANs have been adopted to address certain IDS
limitations, largely focusing on data balancing [17]. However, little attention has been paid to other
critical parameters, such as GAN efficiency and applicability in domains, such as Internet of Things
(IoT) networks.

Existing IDS review articles mainly focus on IDS and the different methods to improve it,
consequently overlooking the recent trend of GAN and its capabilities in strengthening the detection
of intrusions and overcoming data imbalance issues. This paper differs from existing surveys in that
it focuses on GAN value in strengthening IDS. This review offers several contributions to the field of
cybersecurity:

• A comprehensive examination of GAN applicability within IDS field, an area previously under-
explored.

• An analysis of existing datasets, methodologies, and frameworks employed in GAN-based IDS
research.

• An illustration of GAN application into the three primary IDS categories.
• A comparative analysis of available datasets focusing on their strengths, weaknesses, and

challenges.
• Suggestions for promising research problems for future research to bridge existing knowl-

edge gaps.

The literature selection process was based on the inclusion criteria that papers should be peer-
reviewed journal articles, written in English, published within the last five years, using keywords such as
‘GAN’, ‘IDS’ and ‘Generative Networks’ by exploring Google scholar database. The selected articles
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were then analyzed using a thematic analysis approach, finding key themes and similarities across
literature. Then, they were grouped into three IDS classes.

The paper is structured as follows: In Section 2, we review the applicability of GANs in IDSs.
Further, we explore the available datasets, methods, and frameworks used up to date. In Section 3,
we analyze the adoption of GANs within the three IDS classes and suggest possible use cases. In
Section 4, comparisons between the available datasets and methods are presented along with their
associated challenges and advantages. We also look into future research directions to address current
research gaps. Finally, in Section 5, we present the primary conclusions of the study.

2 Literature Review
2.1 IDS

Numerous studies have extensively analyzed IDSs. Debar [18] established an IDS to be a system
that collects details on and investigates the security status of information systems. Signature-based
IDSs aim to detect new intrusions by finding signatures that match previously known intrusions
[19]. In contrast, anomaly-based IDSs have the potential to identify novel intrusions by detecting
abnormalities [20]. Hybrid IDSs are more comprehensive, combining the essence of anomaly- and
signature-based IDSs to detect both novel and known attacks [14]. Recent developments in IDSs have
heightened the need for collaboration among network nodes [15]. Thus, a subclass of IDSs, named
collaborative IDS (CIDS), has emerged as a vital defense mechanism where a set of independent IDSs
work together to add intelligence to an increasingly comprehensive network [16]. Researchers have
also adopted deep learning methods to enhance IDS, in fact, numerous studies such as Reference
[21] has concentrated on improving the architecture design of convolutional neural networks (CNNs)
for accurately classifying intrusions. In their work, the aim was to build an automated method for
choosing an appropriate CNN architecture for intrusion detection in industrial control systems (ICS),
thus eliminating the need for manual architecture engineering. They adopted a differential evolution
(DE) algorithm to automatically set key hyperparameters such as the number and type of CNN layers,
learning rate, and batch size. The proposed approach was tested and they suggested that the proposed
automated approach not only saved time but also outperformed the baseline model. IDS research has
recently shifted into more specific domains, given that the IDS requirements vary according to the
environment. Kumar et al. [22] have reviewed studies concerning IDS in Software Defined Networks
(SDNs) and reported the application of ML and DL techniques within IDS. Results were promising
with accuracy reaching 99%. However, despite the success of IDS in SDN, they reported several
research gaps such as the high dependency of feature selection methods and outdated datasets.

The IDS architecture varies based on the case requirements. However, the general architecture of
a signature-based IDS consists of the following components (Fig. 1) [6]. The backbone of the IDS
is the dataset; it is preprocessed and cleaned for quality improvements, which may lead to sparse
data dimensionality in certain cases and require reduction. Subsequent feature extraction allows one
to reveal the characteristics that indicate the presence of intrusions. For classification purposes, the
dataset is then split into the labeled training dataset for training the ML model and the unlabeled
testing dataset for testing the designed model against predefined measures, such as accuracy and
detection rate. Finally, network traffic is classified according to prediction probabilities for normal
(benign) and malicious cases.
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Figure 1: Signature vs. anomaly-based IDS “Adapted from Reference [23]”

Table 1: IDS literature review summary

IDS category Paper Year Dataset Algorithm Accuracy

Signature-
based

[24] 2017 KDDCUP99 Neural networks 97%
[25] 2018 Private Neural networks 98%
[26] 2020 KDDCUP99 Random forests 94%

Anomaly-
based

[27] 2018 NSL-KDD C5 99.82%
[28] 2021 NSL-KDD Lightweight neural network 96.9%
[5] 2018 MAWIFlow Decision trees 85%
[29] 2020 MIT Lincoln Lab

datasets
SVM and Self-Organized
Feature Map (SOFM)

94.19%

[30] 2021 DS2OS Decision trees 99.9%
[31] 2022 Distilled-Kitsune-2018

and NSL-KDD
Ensemble methods, neural
network, and kernel methods.

99.8%

[32] 2022 NF-ToN-IoT-v2 Naive Bayes (NB), Random
Forest (RF), Decision Tree
(DT), and eXtreme Gradient
Boosting (XGB).

99%

[33] 2022 EDGE-IIOTSET 2022 Polynomial interpolation
technique (Least Mean
Squares)

97.27%

[34] 2022 NF-UNSW-NB15-v2
and NF-CSE-CIC-
IDS2018-v2

DeepSVDD 98.20%

[35] 2022 NSL-KDD++ Deep forward neural network 99.46%

(Continued)
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Table 1 (continued)

IDS category Paper Year Dataset Algorithm Accuracy

Hybrid IDS [36] 2021 MIT Lincoln
laboratories repository

Neural networks and fuzzy
logic

96.111%

[37] 2019 Bot-IoT C5 and one class support
vector machine

99.7%

[38] 2020 NSL-KDD and
UNSW-NB15

Multi-objective genetic
method (NSGAII), neural
network and random forests

82%

IDS Datasets

IDS datasets are built by collecting data from verified sources, such as network traffic flows, which
contain critical information on the host, destination, header, and user behavior [39]. Consequently,
this information is vital in detecting abnormal activities and identifying network traffic patterns [40].
Several datasets have been constructed for intrusion detection, each with its pros and cons. Here, we
discuss three such datasets, namely KDDCUP99, NetFlow, and CIC-IDS-2017. A summary of these
datasets along with their advantages and disadvantages is shown in a table.

(I) KDDCUP99 dataset

KDDCUP99 is one of the earliest and most widely used datasets in the IDS domain [41]. It
was introduced back by the Defense Advanced Research Projects Agency (DARPA), USA, using raw
network traffic from 1998. It includes 41 features belonging to four classes: basic, content, time-based
traffic, and host-based traffic features. It encompasses over 4,898,429 records covering four distinct
attack categories: DoS, unauthorized node access (user-to-root; U2R), probe, and unauthorized access
from an external machine (root-to-local; R2L). One of the limitations faced by this dataset is its
redundancy which can potentially harm ML models by causing model bias, which can, in turn, lead
to the neglect of key records that might be potential attacks [35].

(II) NetFlow-derived datasets

The problem with the previously published datasets in the security domain is the lack of a standard
feature set, which does not allow fair comparisons of ML models. Therefore, to address this issue,
Sarhan et al. [42] derived four sub-datasets, namely UNSW-NB15 network traffic dataset, BotNet and
Internet of Things (IoT) Devices Dataset (BoT-IoT), Toys and Network Traffic of Internet of Things
Devices Dataset (ToNIoT), and Canadian Institute for Cybersecurity (CIC) Intrusion Detection
Evaluation Dataset 2018 (CSE-CIC-IDS-2018), from the original NetFlow dataset which had 12
features (Table 2) [42]. The BoT-IoT dataset is suitable for both binary and multi-class classifications
where the type of attack is pre-specified. The Network Traffic and Features of BotNet and Internet
of Things (IoT) Devices Dataset (NF-BoT-IoT dataset), which was generated using pcap files and
labeled according to the attack type, can be used for IDSs in IoT environments. It contains a total of
600,100 samples, out of which 586,241 (97.69%) are attack samples (of four types) and 13,859 (2.31%)
are benign (Table 2).
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Table 2: Netflow’s dataset features (Adapted from Reference [42])

Feature Description Significance

IPV4 SRC ADDR IPv4 source address Uniquely identifies source.
IPV4 DST ADDR IPv4 destination address Uniquely identifies destination.
L4 SRC PORT IPv4 source port number Uniquely identifies source’s application.
L4 DST PORT IPv4 destination port number Uniquely identifies destination’s

application.
PROTOCOL IP protocol identifier byte Identifies the specific protocol for

diagnosis of network.
TCP FLAGS Collection of all TCP flags Examines the state of the TCP’s

connection.
L7 PROTO (Numeric) Application Layer 7

protocol
Information on the seventh layer
(application layer) protocol.

IN BYTES Incoming number of bytes To understand the network’s traffic
pattern.

OUT BYTES Outgoing number of bytes Identifies the volume of data leaving the
network, could be used to find
anomalies.

IN PKTS Incoming number of packets Useful in finding anomalies, and to
diagnose packets’ loss.

OUT PKTS The outgoing number of
packets

Useful in understanding the packets’
behaviour and identifying heavy
applications.

FLOW DURATION
MILLISECONDS

Duration of flow in
milliseconds

Useful in identifying abnormal long
sessions which could be attacked.

(III) CIC-IDS-2017 dataset

The CIC-IDS-2017 dataset incorporates the use of profiles to construct a dataset in a structured
manner [37], as some of the older datasets were built to address specific organizational issues or
research experiments. This dataset includes features of captured attacks and conceptual knowledge
on several application models, network devices, and protocols. The network traffic used in this dataset
was recorded using the CICFlowMeter, which appropriately labels the flows and lists the source and
destination addresses, port numbers, timestamps, and any attacks encountered. The class distribution
of this dataset is presented in Table 3. A newer version of this dataset, CIC-IDS-2018, boasts of several
enhancements, such as (i) larger size, as it encompasses traffic data over 10 days, and (ii) 17 attack
classes, as opposed to the 5-day traffic data and 15 attack classes of the previous version. Despite
the strengths and applicability presented by this dataset, both versions suffer from several drawbacks.
For example, the data being stored in separate files makes data processing highly time-consuming.
Additionally, the two datasets also experienced redundancies and missing records [40]. A summary of
the datasets reviewed showcasing their limitations is shown in Table 4.
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Table 3: CIC-IDS-2017 dataset class distribution (Adapted from Reference [43])

Class Description Training
examples

Testing set
examples

Benign Normal traffic flow 1,818,097 455,000
DoS hulk Large-scale Distributed Denial of Service (DDoS) 185,027 46,046
PortScan Identify open ports on a network 126,988 31,942
DDOS Distributed Denial of Service 102,688 25,339
DoS Golden eye Launch DDoS attacks efficiently and with several

attack vectors
8289 2004

FTP Patator Brute-force tool aiming at cracking FTP (File
Transfer Protocol) passwords

6388 1550

SSH-Pataor Brute-force tool aiming at cracking Secure Shell
(SSH) passwords

4701 1196

DoS Slowhttptest Launch HTTP requests that are intentionally slow 4410 1089
DoS Slowloris Launch HTTP requests that are intentionally slow

(different implementation)
4624 1172

Web attack Set of malicious actions targeting web applications 1778 402
Bot Automated software programs called bots 1568 398
Infilteration Obtaining unauthorized access to a network 29 9
Heartbleed A critical security vulnerability 9 2

Table 4: Summary of IDS datasets

Dataset Year Ref. Attacks addressed Limitation

DARPA 1999 [44] DoS, Probe, R2L, U2R Outdated does not reflect more
advanced and current attacks’ challenges

NSL-KDD 2012 [45] DoS, Probe, R2L, U2R Does not accurately detect current
low-footprint attack scenarios

ADFA 2013 [46] Adduser, Hydra_FTP,
Hydra_SSH, Java_Metapreter,
Meterpreter, Web shell

Primarily focuses on known attacks, and
lack of further updates

UNSW-NB15 2015 [47] Exploits, Fuzzers, DoS,
Reconnaissance, Analysis,
Backdoor, Shellcode, worms

Was built synthetically

CTU-13 2017 [39] BotNet Primarily focuses on BotNet, does not
further classify the BotNet class attack

2.2 Generative Networks

GANs have rapidly garnered research interest both in industry and academia [48]. The general
architecture is shown in Fig. 2. The workflow of the two competing NNs in GANs is as follows: (i) The
generator initiates the process by receiving an input vector and attempting to generate an output that
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appears to originate from the same data source; and (ii) the discriminator is responsible for determining
if the input is from the original data source or constructed by the generator. Upon completion of this
process, the weights of both NNs are adjusted according to the classification accuracy, and the next
iteration begins [14,49].

Figure 2: GAN general architecture “Adapted from Reference [50]”

GANs have been widely used to address key data mining problems, such as the lack of reliable
datasets and data balancing issues [20]. For instance, Sauber-Cole et al. [49] applied GAN to correct
tabular data imbalance and highlighted multiple issues. First, numerical input (discrete and continuous
variables) can pose a difficulty to GANs, which may require several preprocessing steps to produce
a GAN-readable input. However, thus far, there exist no standardized preprocessing pipelines for
tabular data. Further, categorical variables require quantification methods; however, the choice for
them remains mostly random (e.g., Gumbel SoftMax).

GAN Models

GAN performance is heavily dependent on the specific architectures of both generator and
discriminator networks. Thus, several versions of the original GAN have been implemented to solve a
variety of tasks. A timeline of various GAN models is illustrated in Fig. 3, while a summary of their
strengths and weaknesses is shown in Table 5 [51].

Conditional GAN (CGAN)

Conditional image generation is one of the foundations of CV, and conditional GANs
(CGANs) have been shown to demonstrate excellent performance [52]. CGANs were introduced
by Mirza et al. [53] to generate images based on pre-specified class labels or textual descriptions. This
is achieved by allowing a new input type, i.e., a conditional information vector, which subsequently
governs the image generation process [53]. The primary difference between GANs and CGANs is
the greater flexibility offered by the latter by generating images based on conditions and being more
robust against noise. Despite its success in CV, the prevalent issue of high error rate caused by the
regression of the generator encouraged revised versions (e.g., RoCGAN [52]), which study the target
space structure to reduce the error rate.

CycleGAN

CycleGAN is another GAN variation specifically used for unpaired image-to-image translations
that do not require paired examples in the training set [54]. It converts an image from domain A
to domain B without requiring preexisting paired datasets. The general architecture of CycleGAN
incorporates two generators and two discriminators at the same time. The first generator’s main task
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is to take a set of image examples as input from domain A and translate them into domain B, whereas
the second generator does the opposite, translating the images from domain B to domain A. On the
other hand, discriminators have the responsibility of distinguishing between real and synthetic images,
which will result in gradients that will guide the next cycle of CycleGAN. A notable limitation of
such networks is that they often fail to translate certain images in certain conditions, especially with
geometric changes [54].

Deep Convolutional GAN (DCGAN)

In recent years, CNNs have been widely employed in several domains, especially CV [55]. Recent
trends in CNN have led to a proliferation of studies attempting to combine them with GANs [11].
Deep convolutional GAN (DCGAN) was among the first such models, which was motivated by the
fact that although CNNs are successful in supervised learning (classification in particular), their use
in unsupervised learning tasks was limited. DCGANs incorporate CNNs trained on diverse image
samples and generate a hierarchical representation of objects. Consequently, the extracted features
can be used for both supervised and unsupervised learning [56]. Their use has extended the computer
vision domain, and they have been implemented successfully in solving key machine learning issues
such as data imbalance problems.

Progressive GANs (ProGANs)

One of the enhancements that have been implemented on top of GAN networks is the introduction
of ProGANs [57]. The main idea behind progressive GANs (ProGANs) is that the generator and
discriminator incrementally improve and increase in size during the training phase [56]. ProGANs are
initiated with a low-resolution image that overlooks key features and then increase the resolution with
subsequent training rounds. The resolution increases due to the added layers in each round that allow
the ProGAN to capture smaller details. However, the downside of such approaches is that the training
process becomes time-consuming due to the increased number of rounds.

StyleGAN

StyleGANs are one of the more recent GAN models that incorporate principles from the domain
of style transfer [57]. Specifically, they introduce a new generator architecture that uses adaptive
instance normalization, while preserving the expanding nature of ProGAN. This modification allows
StyleGANs to identify high-level features, such as poses and face positions, in an unsupervised manner.
This network has been tested on several datasets, along with novel diverse human face datasets to be
used for benchmarking future StyleGAN improvements.

Gradient normalization GAN

Gradient normalization GANs (GranGANs) were developed to address the classic problem
GAN problem of not being able to continue the generation process when gradients vanish. They
introduce a novel gradient normalization technique that ensures that the gradient does not fall below
a threshold (Lipschitz constraint). Generally, this step enhances the GAN and ensures its stability and
performance while generating images [58].
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Figure 3: Research history of GAN [16,54,56,57–59]

Table 5: Comparison of GAN models

Model Strength Weakness

GAN – High-quality image generation.
– Used in supervised, unsupervised, and

semi-supervised learning.
– Continual learning through the training

rounds.

– Privacy concerns.
– Highly dependent on hyperparameters

values.
– Mode collapse: generating images with

limited variations.
DCGAN – Improved performance in unsupervised

learning.
– Hierarchical features learning.
– Less prone to mode collapse.

– Excel with image data type,
performance degrades with other data
type such as text.

– Hard to explain the generation process.
CycleGAN – Performs well in image-to-image

translation.
– Produces realistic translations.

– Fails to translate images with geometric
changes.

– Longer training time.
– Lack of suitable evaluation metrics in

image-to-image translation.
ProGANs – Captures fine details.

– Improves image resolution gradually.
– Longer training time.
– Computationally expensive.

StyleGAN – Higher quality image generation.
– Unsupervised model’s ability to capture

diverse styles and variations.

– Large memory requirement.
– Computationally expensive.
– Impractical for small devices with

limited resources.

3 Generative Networks for Intrusion Detection
3.1 GAN for Signature-Based IDS

Recent developments in IDSs have led to a renewed interest in solving the prevalent class
imbalance problem as, generally, attack samples are far fewer than benign samples in both established
datasets and real-life scenarios [49]. Huang et al. [60] introduced imbalanced GANs (IGANs) with
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a modified generator that includes a filter to generate samples only belonging to the minority class.
They further incorporated this model into an IDS (IGAN-IDS) that worked in three phases: feature
extraction, IGAN, and a deep NN (DNN). Experiments on three datasets along with ablation studies
proved the effectiveness of this approach, reaching an accuracy of >99.0%, in terms of both F1 and
AUC with the CIC-IDS-2017 dataset. Indeed, this study did not thoroughly discuss the specific GAN
architecture used and rather followed the general architecture. It also did not test its robustness against
adversarial attacks.

Park et al. [61] addressed the IDS class imbalance issue by implementing a model consisting of
four phases: preprocessing, GAN training, autoencoder training, and classification. They combined
the essence of GAN training, specifically the Boundary Equilibrium Generative Adversarial Networks
(BEGAN) to generate minority class samples, with autoencoder training for anomaly detection.
This approach involves transforming the raw input into a format compatible with DL models in
the preprocessing step. BEGAN was employed given its stability during training over traditional
GANs. They adopted the reconstruction error and Wasserstein-distance-based GANs to generate
minority class samples which are then fed to the subsequent autoencoder phase. For this phase, they
trained the autoencoder-driven DNNs and CNNs on both the original dataset and the synthetic data
generated by the GAN, and generated features essential for the predictive phase. The predictive phase
is a classification model implemented using DNNs, CNNs, and long short-term memory (LSTM)
models. Experiments conducted on the NSL-KDD, UNSW-NB15, IoT, and real-world datasets show
remarkable improvements in minority classes, particularly the R2L and probe classes in the NSL-
KDD data set. The limitations of this study were the lack of experimentation on distributed networks
and they looked robustness against adversarial attacks.

Class imbalance can be remedied by under-sampling the majority class. However, this approach
can be highly time-consuming and costly and can overlook key samples belonging to the majority
class, potentially affecting the classification accuracy. Rao et al. [62] highlighted the need for balancing
data, while also avoiding random under-sampling. They proposed an IGAN that achieves both
computational efficiency and detection accuracy. Initially, they applied data normalization and one-
hot encoding to eliminate the effect of outliers. Then, they employed the IGAN model to generate
synthetic attack samples. The actual intrusion detection aspect was implemented using a hybrid of
LeNet 5 and an LSTM. Extensive experiments on the UNSW-NB15 and CIC-IDS-2017 datasets reveal
an accuracy of >98.0% compared to previous works. Unfortunately, this study did not give detailed
GAN architectural design or any justifications regarding the design choices.

Although several studies have applied GANs to overcome data imbalance issues, thus far, very few
works have employed CGANs for this task [53]. Babu et al. [63] adopted the Modified Conditional
GAN (MCGAN) to generate samples belonging to the minority class. Interestingly, this paper was one
of the few that discusses the specific GAN architecture chosen, a modified CGAN. They further used
the Nadam optimizer for feature extraction, followed by a linear-correlation-based feature selection.
The final classification is carried out using a bidirectional LSTM (Bi-LSTM) algorithm. This model
achieves an accuracy of 95.6% on the NSL-KDD+ dataset. Given the high complexity of CGANs,
this study did not consider optimization algorithms to optimize computational complexity.

Most research studies have applied GAN to augment datasets, however, Rahman et al. [64]
have used GAN network to construct synthetic datasets entirely. Their motivation was the lack of
a benchmark dataset and the high cost of data collection in IoT environments. This research gap has
not been addressed and requires no labelled datasets. Experiments on the synthetic data created from
three datasets UNSW-NB15, NSL-KDD, and BoT-IoT showed that it could effectively train an IDS,
achieving results close to those trained on the original datasets.



2064 CMC, 2024, vol.81, no.2

Data imbalance can pose particularly critical issues in military networks where attacks could have
detrimental consequences. Chalé et al. [65] focused on the importance of constructing an accurate and
up-to-date IDS that can flag attacks in real-time. They augmented the original dataset by applying
statistical modeling, simulations, and a GAN, and further employed decision tree (DT) and random
forest (RF) models for classification. The focus of this study was to find the minimum number of
real samples required to yield high accuracy. They revealed that a combination of smaller (larger)
percentages of real (synthetic) samples results in an underwhelming performance, with high false
negative rates. Indeed, this was later remedied by training the model on an equal number of real and
synthetic samples, which led to classification accuracy like a classifier trained on a completely real
dataset.

Traditionally, optimization algorithms have been widely adopted for feature selection purposes
[66]. However, several studies have examined the role of these algorithms in enhancing GAN-based
IDSs [67]. Mouyart et al. [67] proposed a system focusing solely on insider threats in a multi-agent
environment, consisting of an attacker and a defender. The actual intrusion detection was carried
out using an adversarial environment-reinforcement learning (AE-RL) algorithm. Upon testing their
approach on the publicly available CMU-CERT version 4.2 dataset, they observed poor results
due to its imbalanced nature. Consequently, they utilized a conditional tabular GAN (CTGAN) to
generate attack samples to overcome the data imbalance issue. Further, as hyperparameter values
substantially affect model performance, they added the tree-structured Parzen estimator (TPE)
optimization algorithm for automatic hyperparameter value selection. They finally trained and tested
the AE-RL model on the combination of the original and synthetic (generated using optimized
CTGAN) datasets, achieving a high recall of 86%. Indeed, this paper addressed the issue of high
computational complexity associated with CGANs by exploiting optimization algorithms. However,
more comprehensive thorough testing on several optimization algorithms would be beneficial.

Mary et al. [66] enhanced IDS accuracy for a large dataset, that inherently poses significant
challenges due to its size, by adopting optimization algorithms for both feature selection and
hyperparameter tuning. Specifically, they proposed a novel optimized DL-based IDS model with
improved attack detection by selecting a feature subset using the Aquila optimizer (AO) and fuzzy
entropy mutual information (FEMI) rather than considering the entire feature set. The selected
features are then augmented using an enhanced canonical correlation-based technique and are later
fed to an optimized ResNet152-based classifier. Hyperparameter tuning for the classifier is performed
using the Wildebeest Herd optimization (WHO) algorithm. This approach reveals excellent values for
several evaluation metrics, such as F1-score, specificity, selectivity, accuracy, and ROC curve, for the
CICDDoS2019 and ToN-IoT datasets, along with an improved intrusion detection performance. The
proposed model could be further investigated on other more recent datasets to prove its effectiveness.

There is an increasing concern that certain IDSs are vulnerable to adversarial training, i.e.,
exploitable by manually crafted examples that evade detection systems. Alhajjar et al. [68] explored this
issue by incorporating evolutionary algorithms, namely particle swarm optimization (PSO) and genetic
algorithms, and a GAN to create perturbations of the input examples that can potentially bypass
the IDS. Through extensive experiments on two well-known datasets, they indeed demonstrated that
all ML algorithms could be bypassed, however, with widely varying robustness. Specifically, support
vector machines (SVMs) and DTs recorded the highest misclassification rates, with an evasion rate
of >90%. Consequently, this result suggests that such algorithms are not suitable for critical domains
that require accurate intrusion detection. The downside of this work is that it did not provide a new
attack sample to bypass the IDS.
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A broader view is supported by Zhao et al. [69] who not only generated adversarial examples but
also introduced a new Wasserstein-GAN-based attack model (attackGAN), with the aim of bypassing
NNs in IDSs. The objective of their model was to identify and prevent attacks against IDSs, while also
providing feedback for subsequent detections. The adversarial attacks devised in this study achieved
a higher success rate compared to existing GAN-based adversarial attack algorithms, such as the fast
gradient sign method (FGSM) [3], project gradient descent (PGD) [8], and Carlini & Wagner attacks
(CW).

Cloud computing and its security have been a research hotspot given its ever-growing usage.
Several recent studies have addressed the class imbalance issue in cloud-based IDSs. Vu et al. [70]
proposed a model combining a DNN for intrusion detection with two GANs for data balancing.
The first GAN incorporates the conditional denoising adversarial autoencoder (CDAAE) to generate
specific instances of the minority class, while the second GAN uses a combination of the CDAAE
with the K-nearest neighbor (KNN) algorithm (CDAEE-KNN) to generate samples that lie near the
boundary between classifiers. They accomplished intrusion detection on the newly augmented dataset
using SVMs, DTs, and RFs and verified the effectiveness of the proposed approach via experiments
on six IDS datasets. This work could be further investigated using DL algorithms which are widely
used in this domain.

In contrast, Chkirbene et al. [71] addressed the class imbalance issue by optimizing a single GAN.
They proposed a novel ML-based secure network model that automatically tunes GAN parameters,
such as the number of inner learning steps for the discriminator, which plays a key role in balancing the
dataset. Their experiments were conducted on the UNSW and NSL-KDD datasets, which reported
increased classification accuracy even for rare classes. This model outperforms state-of-the-art models
in identifying attacks in cloud environments.

3.2 GAN for Anomaly-Based IDS

Much of the available literature on IDSs considers them to be supervised learning problems that
require considerable amounts of data, which is neither always available nor updated [8]. Consequently,
several researchers consider unsupervised or even weakly supervised approaches to be far more
effective and realistic and, therefore, better adapted to the rapidly changing network attacks [72]. From
a weakly-supervised perspective, Iliyasu et al. [20] modeled benign traffic to construct a normality
boundary, and thus, flagged samples falling outside the boundary as anomalies (attacks). However,
establishing a normal boundary often results in a high false alarm rate (false positives) which is
not useful in today’s growing use of the networks. They introduced IDS-based N-GANs, which
require minimal attack samples during training. The role of these samples is to allow the anomaly-
detection algorithm to learn suitable representations instead of focusing solely on sorting through
noise. Evaluation experiments conducted on the CIC-IDS-2017 dataset have revealed promising results
(detection rate = 81.3% and area under the curve = 82%) for this model. However, testing on other
benchmark datasets was not conducted.

Wang et al. [73] adopted GANs and vision transformers for an anomaly-based IDS. The
GAN generates synthetic samples, and the augmented (min-max normalized) dataset is fed to the
transformer for anomaly prediction. Network intrusion detection evaluation results for the CIC-IDS-
2017 dataset suggest that this approach can be effective for data balancing, while also ensuring accurate
predictions.

Questions have been raised about the applicability of the available anomaly-based IDSs for
detecting anomalies in time-series data due to their unclear definition and the lack of labeled data in



2066 CMC, 2024, vol.81, no.2

critical domains, such as aerospace and military. Geiger et al. [74] developed the TadGAN framework
which incorporates GAN for anomaly-detection in time-series data. Particularly, this model adopts an
LSTM network to record the temporal correlations in time-series distributions. The model is trained
with a cycle consistency loss to allow accurate time-series data reconstruction. Additionally, novel
algorithms have been introduced for computing the reconstruction errors which are key to calculating
the anomaly score. Extensive experiments on several datasets from NASA, Yahoo, Numenta, Amazon,
and X (formerly Twitter), have shown that this approach vastly outperforms state-of-the-art methods
in terms of the F1-score. Additionally, this model boasts a dramatically low false positive rate, a
problem commonly faced by IDSs when dealing with time-series data. This is an open-source model
which allows for future research in anomaly detection in time-series data. However, they compared
their approach to only one GAN based IDS, therefore, further testing is essential.

The lack of appropriate and updated datasets is a particularly prominent issue in the IoT domain
[40,74] which has consequently led to the adoption of anomaly-based IDSs for IoT environments
[75]. Ullah et al. [76] proposed an anomaly-based IDS model using a CGAN. This study introduces
three variations of CGANs for data augmentation, namely one-class CGAN (ocCGAN), binary-
class CGAN (bcCGAN), and multi-class CGAN for generating samples belonging to one, two, and
multiple classes, respectively. It further employs distance calculation to reflect the class label. This
model exhibits an average accuracy of 98.01% for intrusion detection over seven datasets.

Ezeme et al. [77] used an ocCGAN to construct the distribution of a given profile. The ocCGAN
learns the pattern of the minority class and uses it to generate synthetic samples with a similar
distribution. The resultant augmented data is then passed to a bcCGAN which constructs a knowledge
basis for a cluster-based anomaly detector. Upon testing this model using various datasets that include
logs and images against both (non-)GAN-based IDSs, this model has shown excellent values of
precision, recall, and F1-score. Yao et al. [78] used BiGANs to build an anomaly-based IDS for IoT
networks. This model is trained only on normal IoT data for learning the corresponding distribution.
Further, Wasserstein distance is used to build a classifier. The model is further enhanced using a cycle
consistency connection between data to avoid information loss, which plays a vital role in decreasing
the false positive rate. This approach also addresses the limited capabilities of IoT devices by running
and training the model in a fog computing environment. The fog computing environment helps achieve
scalability; a prevalent issue faced by IoT-based IDSs. On two benchmark datasets, namely UNSW-
NB15 and CIC-IDS-2017, this model achieves a 4% increase in intrusion detection accuracy, as well as
a 4% decrease in false positive rates against state-of-the-art results. Their work considered unsupervised
learning only, which could be problematic in IoT environment where benign traffic is hard to obtain.
Semi-supervised methods were some labelled data is present could bridge this gap.

Existing literature on IoT anomaly detection is focused on developing robust and accurate models
[79]. However, little attention has been paid to the construction of lightweight algorithms that take into
consideration the limited computational capabilities of IoT devices. Interestingly, Boppana et al. [80]
noticed that supervised approaches towards intrusion detection largely fail at detecting real-time and
previously unseen attacks. They incorporated GANs and autoencoders (GAN-AE) for an anomaly-
based IDS for IoT networks following the Message Queuing Telemetry Transport MQTT protocol
and compared their results with other models, such as one-class SVM (OCSVM), autoencoders, and
isolation forests (IFs). Tests conducted on a private and a publicly available MQTT dataset reveal a
value of 97% in terms of both accuracy and F1-score for this model.

Numerous works have applied optimization algorithms in IoT-based IDSs. Balaji et al. [81]
reported the urgent need to protect IoT devices that are vulnerable to a variety of security threats.
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They proposed the novel dynamic distributed GAN (DD-GAN) architecture. This study made several
advancements in terms of feature engineering, which enhanced classification accuracy and developed
the improved Firefly optimization—hybrid DL-based CNN—adaptive neuro-fuzzy inference system
(IFFO-HDLCNN-ANFIS) model. Initially, the data is preprocessed by applying the synthetic minor-
ity over-sampling technique (SMOTE) and the features are reduced via modified principal component
analysis (MPCA). Implementation of IFFO improves classification accuracy by selecting the optimal
feature subset from the set of all features. Subsequently, the GAN solves the class imbalance issue
before the actual intrusion classification using a combination of CNN and DL algorithms. Despite
the promising results reported, the dataset used is not publicly available, making comparisons and
testing very challenging.

Shao et al. [82] applied optimization to federated learning IDSs in ICS, but from a different
perspective. They proposed one of the earliest attempts toward automating the federated learning
architecture using an evolutionary neural architecture search (ENAS) called Fed-GA-CNN-IDS. The
advantage of this approach is that it eliminates the need for expertise in hyperparameter settings in the
collaborative federated learning environment and relies solely on the results of the ENAS algorithm
which automatically tunes several CNNs. This promising approach was tested on the SWAT dataset
and suggested that it outperformed both centralized deep learning and machine learning approaches.

3.3 GAN for Hybrid IDS

Studies on IDSs have shown the importance of combining anomaly- and signature-based
approaches to achieve the benefits of both. Sharma et al. [75] focused on increasing the detection rate
of U2R and R2L attacks in the NSL-KDD dataset. Their approach involved adopting an autoencoder
for feature reduction, employing a K-means clustering algorithm for cluster identification, followed
by a generative local metric learning (GLML) algorithm to compute the distance between each cluster,
a crucial step in anomaly detection. This model achieves superior results in detecting the two types of
attacks, with a recall of >81%. Similarly, Xian et al. [72] adopted the hybrid IDS approach via a semi-
supervised DL model based on local and non-local regularization. This work is largely motivated by
the presence of far more unlabeled data compared to labeled data in real-life situations. This approach
utilizes the discriminative deep belief network (DDBN) owing to its robustness in reducing error rates.
Average distance is employed with unlabeled data to calculate a threshold to determine class labels.
Experiments performed on the KDD Cup99 and NSL-KDD datasets reveal low training and testing
error rates for this model.

Mari et al. [83] provided a broader perspective on the usage of GANs in hybrid IDSs by arguing
that GANs could be used to generate automatically crafted adversarial attacks that bypass IDSs, which
could then be used to train and strengthen the IDS. They tested their proposed approach using the
NSL-KDD dataset using the artificial neural network (ANN), KNN, and RF algorithms. The GAN
was used to generate realistic stack samples mimicking the actual attacks present in the dataset. Results
reveal that this IDS detects artificial attacks with an accuracy of 90%. Moreover, they tested for each
attack type present in the dataset to measure the effectiveness of the proposed IDS and found that
DoS attacks were the easiest to detect owing to the large number of samples in the dataset.

Aldhaheri et al. [84] adopted a similar methodology, utilizing a GAN to respond to evolving
and real-time attacks. They introduced the SGAN-IDS framework that combines a GAN with
self-attention mechanisms for generating synthetic attack samples that bypass IDSs. Traditionally,
attention is used to allow models to focus only on the part of the input that is relatively more important.
The core of the attention component is the multi-head attention layer, which considers the query,
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key, and value embeddings to calculate an attention score. It also computes the context features by
utilizing the scaled dot product. Experiments conducted on the CIC-IDS-2017 dataset demonstrated
that this approach constructs adversarial attacks that remain undetected, showing a 15.93% reduction
in the detection rate of IDSs based on SVMs, KNNs, Naive Bayes (NB), logistic regression (LR), and
LSTMs.

Strickland et al. [85] followed the IDS hybrid approach, where they incorporated synthetic data
obtained from GAN) with Deep Reinforcement Learning (DRL) to classify attacks (binary and
multiclass classification). The GAN was trained using NSL-KDD dataset and the resulting synthetic
data was used to train the DRL model. Experiments were conducted in both binary and multiclass
settings, where the original NSL-KDD dataset was used in the baseline model, whereas the augmented
dataset was used in the proposed model. Results suggested that the use of GAN has enhanced the
F1-score and improved the detection rate for minority classes. One limitation of this work is its
dependency on the NSL-KDD dataset which does not reflect current real-time attacks and rather
historical ones, therefore updated and more current datasets would bridge this gap. Table 6 presents a
summary of the reviewed GAN-based IDS studies.

Table 6: GAN based IDS literature summary

Paper Year GAN model Domain Dataset Results Pros/cons

[60] 2020 DCGAN Class imbalance TheNSL-KDD
dataset, the
UNSW-NB15d
dataset and the
CICIDS2017 dataset

Accuracy: 99.79
F1: 99.79
AUC: 99.98

+ Did an ablation study to
evaluate the proposed
approach.

[61] 2022 Wasserstein
distance-based
GAN

Class imbalance NSL-KDD,
UNSW-NB15; IoT
data set, and
real-world data set

ACC: 95.6%
F1: 95.8%

+ Evaluated using four
datasets including a
real-world one.

+ Considered both binary
and multiclass
classifications.

– Did not cover the
preprocessing step in
much detail.

[70] 2022 CDAAE and
CDAEE-KNN

Class imbalance
in the cloud

Cloud IDS Dataset,
NSL-KDD,
UNSW-NB15, three
malware datasets
from CTU13s,

F1: 88.6%
AUC: 84.2%

+ Considered hybridization
of two gans.

– Requires data to follow
Gaussian distribution.

– Lacks appropriate
hyperparameter tunning
algorithms.

[81] 2022 Dynamic
Distributed-
Generative
Adversarial
Network
(DD-GAN)

Class imbalance
IoT distributed

Daily activity
recognition database

Accuracy:
94.45%
F1: 93.6%

+ Applied metaheuristic
optimization for feature
selection.

+ Considered a dynamic
and distributed
environment.

– Computationally
expensive for IoT devices.

– Did not explain the
classification in much
detail.

(Continued)
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Table 6 (continued)

Paper Year GAN model Domain Dataset Results Pros/cons

[62] 2022 Imbalanced
Generative
Adversarial
Network (IGAN)

Class imbalance UNSW-NB15 and
CICIDS2017

Accuracy:
98.96%
TPR: 96.13

+ Used data normalization.
+ Considered a hybrid

ensemble model for
classification.

– Manual hyperparameter
tunning.

[20] 2022 N-GAN model
(GAN and an
encoder modules)

Class imbalance
in
anomaly-based
IDS

CIC-IDS2017 DR: 81.3%
AUC: 82%

+ Considered a
weakly-supervised IDS
approach.

– Used only one dataset for
testing.

[86] 2020 Generative Local
Metric Learning
(GLML)

Class imbalance
in hybrid
approach

NSL-KDD DR: 81%
Accuracy:
90.19%

– Focuses on only two
attacks.

+ Could potentially identify
unknown attacks.

[67] 2023 Conditional
Tabular
Generative
Adversarial
Network
(CTGAN)

Class imbalance
and
optimization

e CMU-CERT F1: 76%
Recall: 86%

+ Applied optimization to
balance data.

+ Considered both binary
and multiclass
classification.

– Used only one dataset.
– Limited multiagent

environment (one
attacker and one
defender).

[65] 2022 CTGAN and
TVAE

Class imbalance
Protect military
networks

Private Recall: 86.1% + Found interesting
relationship between the
percentage of synthetic
data to the classifier
performance.

– The dataset used was not
explained thoroughly.

– Experiments largely
depended on recall.

[63] 2023 MCGAN Class imbalance NSL-KDD+ Accuracy: 6.6%
F1: 91.88%
Recall: 96.07%

+ Adequate comparison
with other approaches.

– Computationally
expensive.

[76] 2021 CGAN Class imbalance KDD99, NSLKDD,
BoT-IoT, IoT
network intrusion,
MQTT-IoT-IDS2020,
MQTTset and IoT-23

Detection rate:
97%
Precision:
94.92%
Recall: 97.36%

+ Experiments conducted
on several diverse
datasets.

+ Avoids overfitting.
– Did not study

optimization.

The use of GAN in the IDS context has improved the field remarkably, however, several limitations
have not been addressed. First, while GANs are increasingly being employed to generate synthetic data
for training IDS, the quality of this synthetic data is often overlooked. The reviewed papers did not
report performance measures on the data generated. The effectiveness of an IDS heavily depends on
the realism of the generated data, as this directly influences its ability to accurately identify intrusions.
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This gap could be bridged by using and introducing new similarity measures that compare synthetic
data to the real data. A significant gap in existing GAN-based IDS research is that most studies do
not discuss the underlying GAN architecture. This lack of architectural specificity does not allow
for reproducibility and limits the ability to evaluate different approaches. Furthermore, comparisons
between different GAN architectures using the same experimental design were not conducted, thus,
the answer to a question such as which architecture performs best for data balancing remains unclear.
Another notable limitation is that only a few studies adequately address the threat of adversarial
attacks [13,69]. The majority of papers overlooked the adversarial attacks that make such IDSs
vulnerable.

4 Challenges and Future Directions

The rapid growth of Internet use has led to an increased need for improved security measures.
Thus, IDSs play a vital role in ensuring the security and integrity of computer networks. These systems
aim to monitor network flow, identify abnormal activities, and detect potential intrusions or attacks.
While considerable research studies have aimed at harnessing the power of generative networks in
IDS, they generally followed the same perspective. That is to utilize generative networks’ remarkable
ability to generate synthetic and realistic examples for dataset enlargement purposes. Furthermore,
much of the available literature assumed centralized and computationally powerful environments, that
can support the computational requirements required by the proposed approaches. There have been
a few empirical investigations into the use of generative networks in other environments such as IoT
networks, decentralized networks, and federated networks. Overall, the present review identifies several
challenges and potential future research as listed below:

(1) Lack of an updated benchmark dataset: Thus far, there has been little agreement on the dataset to
be used for investigating the potential of GANs in IDSs. Although several datasets are available,
it has been noticed that most studies reviewed have used different parts of a dataset or even
private datasets in certain cases. Unfortunately, this issue significantly affects the results, as
one model can perform exceptionally well with one dataset, while failing dramatically with
another one exhibiting a potentially varied data distribution. Sharafaldin et al. [87] empirically
tested several benchmark datasets on a single IDS model and found many drawbacks such as
lack of diversity and relevance. Furthermore, they noted that most datasets are outdated and
do not reflect the evolving threat landscape. In the same vein, Kumar et al. [22] have highlighted
the need for benchmark datasets in their systematic research review, and stated that the lack of
benchmark datasets does not allow for accurate verification of proposed models. These factors
indicate a need to propose a new benchmark dataset that allows for fair comparisons among
models.

(2) Lack of empirical studies on IoT environments: A major issue with studies concerning IoT
environments is that they only incorporate IoT datasets and assume the computational power
of a computer rather than a limited IoT device. Consequently, much uncertainty remains about
the ability of IoT devices, that are limited in memory and computational capabilities, to handle
the heavy load of GAN-based IDS models. Memory use testing and real-life experiments with
IoT devices have been largely overlooked. For instance, IDSs for home surveillance purposes
should be designed carefully considering the limited capacities of IoT devices such as smart
locks. They also should be tested realistically on the actual environment to avoid problems such
as the system being flooded by vast amounts of data transmitted from the IoT services [88].
Thus, developing embedded lightweight models that consider actual IoT device capabilities
would bridge this gap.
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(3) Centralized environment assumptions: Traditionally, most work in the IDS field has been
concentrated on centralized approaches where several network nodes depend on a trusted
centralized server to govern the intrusion detection process. Although such approaches deliver
promising results, they can be rather unrealistic. In most scenarios, it is difficult to maintain a
centralized server that can be completely protected while efficiently handling a tremendous vol-
ume of network traffic. Moreover, data privacy laws do not allow organizations or even devices
to transmit their data to a central server that is susceptible to exploitation by malicious users.
Consequently, IDS research has shifted towards decentralized approaches. Unfortunately,
current GAN-based IDS studies have not been responsive to the decentralization requirements
and continue to largely focus on centralized approaches. IDS that exploit GAN to overcome
data imbalance issues consume considerable amounts of computing resources which is often
available in centralized environments. However, in decentralized environments such as IoT
networks and edge computing, resources are limited and thus there is an urgent need to consider
decentralized environments and their impact on communication cost, speed, and security.

(4) Scalability and efficiency: GAN and DL models are traditionally complex and consume vast
amounts of computational resources. Moreover, with today’s high-speed networks and the
large volumes of traffic they generate, it is vital to develop algorithms that can scale well.
Therefore, the applicability of the proposed models remains largely questionable. Efficiency
concerns have been prominent in this field for several years. With the focus being mainly on
performance metrics, such as accuracy, recall, and F1-score, computational efficiency and
model scalability have been largely neglected. Without focusing on efficiency, it is hard to
achieve scalability, and thus, future works must consider both. Possible research questions that
should be answered by future research are: How to optimize GAN and DL models for resource-
constrained environments? How to develop evaluation metrics that consider both performance
and efficiency? How to exploit computational capabilities such as GPUs to enhance efficiency?

(5) Lack of automatic hyperparameter tuning methods: The performance of DL models heavily
depends on hyperparameter tuning. Empirical research has shown that changing the hyper-
parameters dramatically influences the results. Surprisingly, only a few studies have attempted
the inclusion of optimization algorithms. For instance, in a GAN model, numerous parameters
must be set prior to the data generation, such as learning rate, batch size, and number of layers.
Arriving at the setting of a parameter that generates good performance requires numerous
tries. Thus, the development of automatic hyperparameter tuning methods, with a focus on the
complexities associated with these algorithms, can help significantly improve the IDS models.

5 Conclusion

The widespread use of the Internet has resulted in an explosion of network traffic which requires
adequate protection. Consequently, there has been an increased interest in strengthening IDSs and
developing robust and advanced approaches. One such approach was the adoption of GAN to address
several limitations, such as dataset availability and imbalance issues. This review aims to shine a light
on the role of generative networks in IDSs, their use cases, benefits, and any research gaps that would
guide future research. Overall, it is evident that the inclusion of GANs has enhanced IDSs, especially
in terms of data balancing. Future works must focus on harnessing GANs in other areas, such as
distributed environments and IoT networks, with a special focus on scalability and efficiency.
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