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ABSTRACT

In the world of wireless sensor networks (WSNs), optimizing performance and extending network lifetime are
critical goals. In this paper, we propose a new model called DTLR-Net (Deep Temporal LSTM Regression Network)
that employs long-short-term memory and is effective for long-term dependencies. Mobile sinks can move in
arbitrary patterns, so the model employs long short-term memory (LSTM) networks to handle such movements.
The parameters were initialized iteratively, and each node updated its position, mobility level, and other important
metrics at each turn, with key measurements including active or inactive node ratio, energy consumption per cycle,
received packets for each node, contact time, and interconnect time between nodes, among others. These metrics
aid in determining whether the model can remain stable under a variety of conditions. Furthermore, in addition
to focusing on stability and security, these measurements assist us in predicting future node behaviors as well as
how the network operates. The results show that the proposed model outperformed all other models by achieving
a lifetime of 493.5 s for a 400-node WSN that persisted through 750 rounds, whereas other models could not reach
this value and were significantly lower. This research has many implications, and one way to improve network
performance dependability and sustainability is to incorporate deep learning approaches into WSN dynamics.
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1 Introduction

Wireless sensor networks (WSNs) have emerged as critical technologies in a variety of fields,
including healthcare, industrial process control, and environmental monitoring. These networks are
made up of spatially distributed sensor nodes that monitor and record physical or environmental
conditions before cooperatively transmitting the collected data to a central location, usually a base
station. Despite their widespread use, WSNs face significant challenges, such as limited energy,
processing power, and communication bandwidth. These limitations can have a negative impact on
network performance, lifespan, and security [1–4].
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One of the most serious issues in WSNs is vulnerability to security threats, particularly from
compromised nodes that exhibit malicious behavior. Such threats can seriously undermine network
security and trustworthiness, resulting in inaccurate sink position predictions and compromised data
integrity [5,6]. The need for robust trust management systems to detect and mitigate these risks is
critical for network reliability.

Mobile sinks are increasingly being used in WSNs to improve data collection efficiency and
address routing challenges. These mobile sinks collect data from sensor nodes based on specific traffic
patterns, necessitating precise location prediction to optimize data collection and routing algorithms
[7–9]. While security is not directly related to metrics like average residual energy and throughput,
ensuring efficient communication and reducing power waste are critical for maintaining the accuracy
of sink position predictions [10].

The primary motivation for this research is the need to improve the reliability and efficiency
of WSNs using accurate and secure prediction models. We hope to address the dynamic nature of
mobile sink movements and the associated challenges in trajectory prediction by utilizing advanced
deep learning techniques, specifically Long Short-Term Memory (LSTM) networks. LSTM networks
are well-suited for sequence prediction tasks because they can capture long-term dependencies within
data, making them ideal for predicting mobile sink positions in WSNs [11].

We propose the Deep Temporal LSTM Regression Network (DTLR-Net), a sophisticated model
for accurately predicting the future trajectories of mobile sinks in wireless sensor networks. Our model
uses LSTM networks to effectively capture both short-term fluctuations and long-term trends in sink
movement patterns, addressing the inherent variability in mobile sink trajectories.

Our work includes a detailed simulation setup that covers parameter configuration, clustering,
mobility parameter initialization, and predictive model decisions. This framework provides a robust
evaluation environment for assessing the performance of the proposed model.

The DTLR-Net model outperforms existing methods in terms of network lifetime, energy
efficiency, and data transmission reliability. Our experiments demonstrate the model’s ability to extend
the operational lifespan of WSNs, improving overall network stability and performance.

The rest of the paper is organized as follows: Section 2 contains a thorough literature review,
Section 3 describes the methodology, including process flow and algorithm descriptions, and Section 4
presents the experimental investigations that validate the DTLR-Net approach. Section 5 concludes
with a discussion of future research directions and the integration of a trust model.

2 Related Works

In the field of wireless sensor networks (WSNs), a lot of research has been done to solve problems
caused by mobile sinks and routing complexities. To address data collection in sensor fields with
multiple mobile sinks, Deng et al. proposed an online approach in 2018 that uses primal-dual strategy
[12]. The aim of their method was to maximize the amount of information transmitted from sensor
nodes but computational requirements imposed by the primal-dual technique especially in large-scale
WSNs raised concerns due to increasing time for computation as well as memory.

Wen et al. introduced a cooperative data collection algorithm (CDCA) which involves grouping
sensor nodes and assigning mobile sinks thereby improving efficiency [13]. However, after several
rounds of running this algorithm the network lifetime becomes shorter. Tabatabaei et al. came up
with a routing algorithm based on clustering and mobile synchronization to enhance network lifespan
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in 2019 [14]. But it was observed that some nodes remained as sinks post-relocation thus consuming
energy to notify new location of themselves to mobile sink nodes.

Gao et al. presented a distance-aware routing method that uses multiple mobile sinks for reducing
energy consumption [15]. Nevertheless, node failures under dynamic network conditions become
problematic. The use of multiple mobile sinks for collecting data may result into suboptimal routing
decisions or even loss of them therefore robust mechanisms are needed to handle changing network
scenarios.

Su et al. proposed trust model using node behavior for trust assessment in opportunistic routing
in 2020 [16]. Although localized nature of the model may limit its ability to detect malicious patterns
throughout the entire network where they exist. In 2020, Sethi optimized energy consumption through
sink mobility on mobility aware algorithms [17]. Its limitation is that different patterns with various
sinks may introduce more overhead affecting control traffic and routing messages.

In 2021, Baskar et al. introduced a data fusion trust model which assesses trust through temporal
attributes and behavior analysis [18]. However, this model’s accuracy is based on reliable data since
inaccurate or manipulated information can undermine its effectiveness.

In 2021, Banimelhem et al. proposed a PCA-based approach to mobile sink path generation
[19]. This shows that dimensionality reduction methods can be used in wireless sensor networks
but it assumes static models and may not work well when there are obstacles during movement
of the sinks. Besides reducing dimensions, energy saving and communication overhead reduction,
as well as better quality data were realized but still sensitive to data distribution assumption.
In 2021, Jadhav et al. developed atomic search sunflower optimization algorithm for trust-based
routing [20]. However, with increased size and complexity of networks these algorithms become more
computationally complex which could pose challenges.

To ensure data reliability, Lin et al. suggested a trust mechanism enabled by data fusion and
transfer learning in 2022 [21]. A balanced reward-punishment system should be put in place so
that users have confidence in the system without being too strict thus discouraging them from
participating actively in it. In 2022, Boyineni et al. proposed ant colony optimization-based mechanism
for mobile sink scheduling in WSNs [22]. However, its applicability may be limited by assuming fixed
topology especially where events are dynamic [23–25]. These findings provide valuable insights towards
development of efficient mobile sink routing strategies within WSNs.

An Ant Colony Optimization (ACO)-based mobile sink path identification approach for wireless
sensor networks (WSNs) with non-uniform data limitations was suggested by Kumar et al. [26] in
2018. Although successful in optimising mobile sink routes, the approach encountered constraints
in managing dynamic environmental fluctuations. In 2020, Sapre et al. [27] proposed a differential
moth flame optimization technique for determining the trajectory of mobile sinks in Wireless Sensor
Networks (WSNs). While the proposed method enhanced the rate of convergence, it had constraints
in effectively handling large-scale networks characterized by significant node mobility. A dependable
and effective route discovery technique for mobile sink-based Wireless Sensor Networks (WSNs) was
introduced by Elie et al. [28] in the same year. Notwithstanding the enhancement of path discovery
reliability, the approach exhibited lower efficiency in networks with high density, thereby giving
rise to possible bottlenecks. In 2018, Narawade et al. [29] introduced an adaptive cuckoo search-
based rate adjustment technique (ACSRO) to tackle congestion avoidance and control in wireless
sensor networks (WSNs). Although this strategy effectively maximised congestion management, it had
constraints associated with significant computing expenses. In 2003, Wan et al. [30] introduced CODA,
a framework designed to identify and minimize congestion in sensor networks. While the approach
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effectively identified congestion, its drawback resided in its limited scalability when implemented
on larger sensor networks. Yadav et al. [31] introduced a traffic and energy-centric optimization
technique for managing congestion in next-generation Wireless Sensor Networks (WSNs). Although
this approach substantially decreased energy usage, it showed limited efficacy in handling congestion
in extremely dynamic networks.

Ramesh et al. introduced the Energy Efficient Routing Protocol (EERP) in 2023 [32], designed
for IoT-based Wireless Sensor Networks. EERP utilizes a Time Division Multiple Access (TDMA)-
based Medium Access Control (MAC) protocol to optimize energy consumption by allocating time
slots for data transmission. The protocol enhances network coverage and efficiency through multi-hop
routes, enabling data packets to pass through intermediate sensor nodes. However, a limitation of the
TDMA-based MAC protocol is its dependence on precise synchronization among nodes, which can
be challenging to maintain in dynamic and resource-constrained environments, potentially affecting
reliable and efficient communication across the network.

In 2023, Subbaiah et al. [33] proposed the IBOLSR protocol to enhance energy efficiency in
MANETs for WBAN-based healthcare systems by optimizing routing decisions based on residual
energy. Although the method extends network lifespan, it primarily focuses on residual energy metrics,
potentially overlooking factors like data traffic load, network topology changes, and environmental
interference, which can affect performance.

The summary of related works is provided in Table 1, which offers insights into the approaches,
focus areas, and limitations of previous studies.

Table 1: Summary table of related works

Study Algorithm/Approach Focus area Limitations Year

Deng et al. [12] Primal-dual
strategy

Data collection High computational
requirements for
large-scale

2018

Wen et al. [13] Cooperative data
collection

Efficiency
improvement

Reduced network lifetime
after several rounds

2018

Tabatabaei
et al. [14]

Clustering &
mobile sync

Network lifespan
enhancement

Energy consumption for
sink location updates

2019

Wang et al. [15] Distance-aware
routing

Energy
consumption
reduction

Node failures under
dynamic conditions

2019

Su et al. [16] Trust model (Node
Behavior)

Trust assessment Limited detection of
malicious patterns

2020

Sethi [17] Mobility-aware
algorithms

Energy
optimization

Overhead from diverse
sink patterns

2020

Baskar
et al. [18]

Data fusion trust
model

Service reliability Accuracy dependent on
reliable data

2021

Banimelhem
et al. [19]

PCA-based path
generation

Mobile sink path
optimization

Assumes static models 2021

(Continued)
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Table 1 (continued)

Study Algorithm/Approach Focus area Limitations Year

Jadhav et al. [20] Atomic search
sunflower opt

Trust-based
routing

Computational
complexity with network
size

2021

Lin et al. [21] Data fusion &
transfer learning

Trust evaluation Need for balanced
reward-punishment
system

2022

Boyineni
et al. [22]

Ant colony
optimization

Mobile sink
scheduling

Limited by fixed topology
assumptions

2022

Pedditi et al. [32] EERP
(TDMA-based
MAC)

Energy efficiency
in IoT-WSN

Dependence on precise
synchronization

2023

Subbaiah
et al. [33]

IBOLSR Energy efficiency
in MANETs

Overlooks factors like
data traffic load

2023

3 Proposed System

The depicted block diagram of the work is presented in Fig. 1. Specify simulation parameters such
as maximum dimension, initial energy, transceiver energy, aggregate energy, and amplification energy.
Clustering refers to the process of grouping data points into distinct clusters based on certain criteria.
Mobility parameters, on the other hand, are specific measures used to define the characteristics of
movement patterns. These parameters include the number of clusters, which determines the quantity
of distinct groups formed, as well as the minimum and maximum distances between data points within
each cluster. Additionally, the minimum distance signal represents the shortest distance required for
a data point to be considered part of a cluster, while the maximum distance signal represents the
furthest distance allowed for a data point to still be included in a cluster. Lastly, the minimum visit
distance refers to the shortest distance a data point must travel before being considered a separate visit.
Set the dimensions and energy values appropriately. Decide whether it is necessary to generate a new
predictive model for mobile sinks, and if so, proceed with its creation. The DTLR-Net model employs
deep learning techniques, such as LSTM networks, to tackle the erratic movement of mobile sinks for
the purpose of trajectory prediction. Establish the wireless sensor network (WSN) by initializing and
populating the network with sensor and vehicular sink nodes, taking into account dimensions, initial
energy levels, and simulation rounds. To maintain efficient network communication, it is important
to position the sensor and vehicular sink nodes within specified distance limits. Perform multiple
iterations, continuously updating the positions of nodes and mobility parameters, and make necessary
adjustments to simulation parameters. Analyze simulation data to visualize metrics such as the number
of inactive nodes, active nodes, energy consumption, packet transmission, duration of node contact,
and interconnection time. This will allow for an accurate assessment of network performance and
stability.

Now the entire process of the proposed system is explained in elaborate form below:

Set simulation parameters such as maximum dimension, initial energy, and more.



2552 CMC, 2024, vol.81, no.2

Figure 1: Proposed block diagram for prediction of mobile sinks

Define parameters (Let us say): maximum dimensions = N, Initial energy = E, transceiver energy
= T, Aggregate Energy = A, Amplification Energy = P. Initialize clustering parameters, mobility
parameters, and others.

Set parameters: nclusters = C, min _dist = Dmin, max _dist = Dmax, snmin_dist = SDmin, snmax _dist =
SDmax, min

visitdistance
= Vmin

Initialize dimensions and energy values.

dims = param_init (N, E, T , A, P) (1)

Decide whether to generate a new predictive model for mobile sinks.

New Model =
{

true if new Model is needed
false otherwise

(2)

Thus, the Model designed for this work is DTLR-Net, which represents an advanced approach to
predict the future trajectories of mobile sinks in wireless sensor networks. The reason to use this model
is that it can make use of deep learning methods such as LSTM networks to solve the problem caused
by the unstable movement of mobile sinks for the trajectory prediction. Let us frame an equation for
creation of WSN.

SN = createWSN(n, dims, En, R) (3)

Let SN represent the set of all sensor nodes and vehicular sink nodes in the wireless sensor
network. The parameters are the number of nodes n, the dimensions dims defined previously, the
initial energy En for each node, and the number of rounds R for the simulation.
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Eq. (3) initializes and populates the network with sensor nodes and vehicular sink nodes, taking
into consideration the specified dimensions, initial energy, and simulation rounds.

Set up the WSN structure.

Let pos_sn be the set of positions for sensor nodes and pos_sink be the set of positions for
vehicular sink nodes. We can represent the set of nodes as SN and VSN, respectively.

The Euclidean distance between two nodes i and j can be calculated as follows:

distance (i, j) =
√

(xi − xj)2 + (yi − yj)2 (4)

To ensure that sensor nodes are positioned within a specified range, we can use the following
equation:

position (i) = rand (xi, yi) (5)

where distance(i, position(i)) ≤ max_dist (6)

Vehicular sink nodes can be positioned within the network according to their mobility parameters:

positionsink (i) = rand (xi, yi) (7)

where distance(i, positionsink(i)) ≤ max_dist (8)

WSN structure observes distance limits among nodes for proper communication and connection
of the network. In this algorithm, sensor nodes are placed by some equations and some nodal distance
is set for vehicular sink nodes in order to establish wireless sensor network infrastructure as it were
described above. By so doing, a topology of the network is formed which ensures good orderliness
where data transmission becomes easier thus enhancing communication efficiency within the system.
Run many rounds with WSNs simulation.

Iterate for each round (r = 1 to R) and update node positions and mobility

For each sensor node Si:

(xSi′, ySi′) = updatePosition(xSi, ySi, mobilityParameters) (9)

Set new position of Si:

(xSi, ySi) = (xSi′, ySi′) (10)

Now Update Vehicular Sink Node Positions:

For each vehicular sink node Vj:

(xVj′, yVj′) = updatePosition(xVj, yVj, mobilityParameters) (11)

Set new position of Vj:

(xVj, yVj) = (xVj′, yVj′) (12)

Let us assume

Each sensor node is represented by Si and each vehicular sink node is represented by Vj.

The position of Si is denoted as (xSi, ySi), and the position of Vj is denoted as (xVj, yVj).
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Here, the update position function represents a mathematical function that updates the position
of a node based on its current position and mobility parameters.

Update simulation parameters

Pnew = updateParameters(Pold) (13)

Let Pnew = Next Round, Pold = Current Round, set of simulation parameters.

Update metrics

Mnew = updateMetrics (Mold, SN, VSN, Pnew) (14)

Assume Mold and Mnew are sets of metrics for the current and next rounds, respectively.

SN represents the set of sensor nodes, VSN represents the set of vehicular sink nodes, and Pnew is
the updated set of simulation parameters.

Check for stability criteria, if stability is achieved, record the stability period and break the loop.
Update simulation parameters and metrics. At specified intervals, update simulation parameters using
mathematical functions representing updates based on conditions or equations.

Visualize simulation data for metrics like dead nodes, operating nodes, energy, packets, contact
time, and interconnect time.

Dead Nodes (D):

Dnew = Dold + count_dead_nodes(SN) + count_dead_nodes(VSN) (15)

where Dold is the count of dead nodes from the previous round, and count_dead_nodes (nodes) is a
function that counts the number of dead nodes in the given set of nodes.

Operating Nodes (O):

Onew = n − Dnew (16)

n-total number of nodes.

Total Energy:

Etotalnew = sum(energies(SN)) + sum(energies(VSN)) (17)

where energies (nodes) is a function that calculates the total energy of the given set of nodes.

Packets Received:

Packetsreceivednew = sum(received_packets(SN)) + sum(received_packets(VSN)) (18)

where receivedpackets (nodes) is a function that calculates the total received packets for the given set of nodes.

3.1 Proposed DTLR-Net Model

The proposed work presents the Model of Deep Temporal LSTM Regression Network as a more
sophisticated method for predicting next locations of mobile sinks in wireless sensor networks and
justifies its utilization by its capacity to exploit deep learning techniques such as Long Short-Term
Memory (LSTM) networks to adequately handle problems prompted by variability of mobile sink
movements [26,27]. This model is good at this task due to several reasons. The first one is that it is able
to capture temporal dependencies within mobile sink trajectories, using LSTM networks which can
deal with series data well and have ability of recognizing patterns over time. Another reason is based
on the fact that through LSTM layers short-term fluctuations as well as long-term trends in movement
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patterns made by these sinks can be caught simultaneously because they possess memory mechanisms
internally. The architecture of this model has been designed specifically for regression tasks so it fits
nicely with the aim of predicting future coordinates for sinks. Being deep, it can learn complex spatial
and temporal features from the trajectory data, which are necessary for accurate predictions especially
under difficult conditions. Lastly, this design includes dropout layers for regularization purposes and
adaptive learning rates which enable multiple training iterations where the network becomes better
placed to forecast sink paths effectively hence maximizing prediction performance according to Fig. 2
provided below showing DTLR Network’s structure.

Figure 2: Proposed DTLR-Net architecture

The proposed model includes a deep learning architecture that has been painstakingly designed
for time series prediction tasks, leveraging the capabilities of Long Short-Term Memory (LSTM)
networks. This model coordinates the training of two distinct LSTM models, one for X-data and one
for Y-data, and securely stores the resulting trained models for future deployment. The meticulous
configuration of critical parameters, such as the number of input features, the specification of
hidden units in LSTM layers, the definition of output classes (currently set to 1 for regression),
and the blueprint for the network’s architecture, is shown in Fig. 2. The DTLR-Net model adeptly
manages the arbitrary movement patterns of mobile sinks through its integration of Long Short-
Term Memory (LSTM) networks. This design choice is pivotal, as LSTM networks are specifically
engineered to handle sequences with complex temporal dynamics. They excel in capturing both short-
term fluctuations and long-term trends in sink movement patterns. By leveraging LSTM’s ability to
maintain and utilize information over extended periods, DTLR-Net effectively addresses the inherent
variability and unpredictability in mobile sink trajectories. This capability ensures that the model can
adapt to and accurately predict diverse movement scenarios, enhancing its overall robustness and
performance in dynamic environments.

The model predicts future behaviors of nodes and the overall functioning of the network by
utilizing LSTM networks, which are capable of capturing temporal dependencies within the movement
patterns of mobile sinks. This allows for accurate predictions of future node behaviors and network
functionality.

The DTLR-Net model significantly advances the dynamic capabilities of deep learning in Wireless
Sensor Networks (WSNs) by incorporating Long Short-Term Memory (LSTM) networks. These
networks are adept at adapting to the unpredictable movements of mobile sinks, which are a common
challenge in WSN environments. By leveraging LSTM’s strengths in capturing temporal dependencies
and managing sequence variability, DTLR-Net enhances the flexibility and robustness of deep
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learning models. This adaptability allows the model to better handle the inherent fluctuations in sink
movements, ultimately leading to more reliable and effective performance in dynamic and evolving
network conditions.

A series of specialized layers play critical roles in this architectural blueprint. The sequence Input
Layer is the first in line and is responsible for defining the size of the input sequence data. Following
that, we present two lstmLayer instances, each with a unique number of hidden units—256 for the first
(numHiddenUnits1) and 128 for the second (numHiddenUnits2). These LSTM layers are strategically
placed to capture the data’s inherent temporal dependencies. To avoid overfitting, two dropout layers
are added in the architecture. These drop a fraction of input units systematically during training to
enhance the model’s generalization abilities.

In order to facilitate regression tasks, we propose one fully connected layer that connects outputs
from previous layers to one output node only. A separate layer for regression is included as well,
specifically meant for regression-related assignments. This combination provides a basic architecture
of the proposed model. This conveying that the proposed method can powerful and flexible to
utilization during forecasting.

3.2 Proposed DTLR-Net Algorithm

The outline of the Algorithm 1 of the proposed model DTLR-Net is as follows: This sequential
plan shows how the deep learning model for time series prediction explored was developed and taught.

Algorithm 1: DTLR-Net model
Step 1: Initialize model parameters.

- Set ‘numFeatures’ to 1 (number of input features).
- Define ‘numHiddenUnits1’ as 256 (number of hidden units in the first LSTM layer).
- Define ‘numHiddenUnits2’ as 128 (number of hidden units in the second LSTM layer).
- Set ‘numClasses’ to 1 (number of output classes, 1 for regression).

Step 2: Define the network architecture.
- Create an array ‘layers’ to specify the architecture.
- Add a ‘sequenceInputLayer’ for input sequence data.
- Include two ‘lstmLayer’ instances with different hidden unit counts (numHiddenUnits1 and

numHiddenUnits2).
- Add two ‘dropoutLayer’ instances with a dropout rate of 0.2 to prevent overfitting.
- Include a ‘fullyConnectedLayer’ for regression with a single output node.
- Add a ‘regressionLayer’ for regression tasks.

Step 3: Define training options.
- Set ‘maxEpochs’ to 150 (maximum number of training epochs).
- Define ‘miniBatchSize’ as 32 (mini-batch size for training).
- Configure ‘options’ for training:

- Use the ‘adam’ optimization algorithm.
- Set ‘GradientThreshold’ to 1 to manage gradients.
- Specify an initial learning rate of 0.005.

(Continued)
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Algorithm 1 (continued)
- Use a ‘piecewise’ learning rate schedule.
- Set ‘LearnRateDropPeriod’ to half of maxEpochs.
- Drop the learning rate by a factor of 0.2.
- Enable ‘training-progress’ plots for visualization.
- Avoid shuffling the data.

Step 4: Model Training Loop (X-Data).
- Initialize a boolean flag ‘x_train_start’ as false.
- Set ‘train_count_end’ to 1 (number of training samples to iterate over).
- Loop through the training samples:

- Extract input features (X) and target values (Y).
- If ‘x_train_start’ is false, initialize ‘model_x’ with the specified architecture and train using the

defined options.
- If ‘x_train_start’ is true, continue training the existing ‘model_x’ using the same options.

Step 5: Model Training Loop (Y-Data).
- Initialize a boolean flag ‘y_train_start’ as false.
- Loop through the training samples for Y-Data:

- Extract input features (X) and target values (Y).
- If ‘y_train_start’ is false, initialize ‘model_y’ with the specified architecture and train using the

defined options.
- If ‘y_train_start’ is true, continue training the existing ‘model_y’ using the same options.

Step 6: Save trained models.
- Save ‘model_x’ and ‘model_y’ using the ‘save’ function to a file named “model_data.”

Step 7: Return trained models.
- Create a dictionary-like structure (‘model’) to store the trained models, with keys ‘model_x’ and

‘model_y.’
Step 8: End of the process.

The model training process is completed, and relevant messages are printed to indicate the end of
modeling.

4 Experimental Investigation

To validate the proposed DTLR-Net approach, we conducted a series of experiments using a well-
defined simulation setup. The key parameters for our simulation were carefully selected to represent a
realistic WSN environment. We experimented with different numbers of nodes (100, 400, and 800) over
750 simulation rounds. Each node was initialized with 2 J of energy, and the communication range was
set to 50 m. We employed the Random Waypoint Mobility model to simulate the movement of nodes,
and the clustering parameters included varying the number of clusters (C) between 5 and 10, with a
minimum distance (D_min) of 10 m and a maximum distance (D_max) of 50 m. These parameters were
chosen to comprehensively assess the model’s performance in terms of energy consumption, network
lifetime, and data transmission efficiency.

Our experiments were conducted on a high-performance system equipped with an Intel Core i7-
9700K processor running at 3.6 GHz, 32 GB of DDR4 RAM, and an NVIDIA GeForce RTX 2080
GPU with 8 GB of VRAM. The operating system used was Ubuntu 20.04 LTS. This hardware setup
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was selected to ensure efficient training of the deep learning models and smooth execution of the
simulations without any hardware-induced bottlenecks.

The datasets used in our experiments were synthetic, generated to simulate the behavior of
sensor nodes and mobile sinks in a WSN. The sensor node data included position, energy levels, and
packet transmission logs for each node, while the mobile sink data comprised trajectories, speed, and
interaction logs with sensor nodes. These synthetic datasets provided a controlled environment for
testing the DTLR-Net model, ensuring consistency and replicability of the results.

In order to maximize the efficiency and effectiveness of the DTLR-Net model, we carried out
a thorough hyperparameter optimization process. The process was essential in determining the most
effective arrangement of our deep learning algorithms, resulting in improved predictive accuracy and
efficiency of the model.

Initially, we set the key parameters such as the number of LSTM layers, the number of hidden units
per layer, learning rates, batch sizes, and dropout rates. The initial ranges for these parameters were
determined using established methodologies found in the literature and initial testing. Subsequently,
a grid search was conducted to methodically investigate various combinations of hyperparameters.
The search encompassed different setups, including the range of LSTM layers (1 to 3), the number of
hidden units per layer (64, 128, 256), the learning rates (0.001, 0.005, 0.01), the batch sizes (16, 32, 64),
and the dropout rates (0.1, 0.2, 0.3).

In order to ensure the strength and applicability of the model, we utilized k-fold cross-validation
(k = 5) to assess the effectiveness of each combination of hyperparameters. By employing this
approach, we were able to evaluate the model’s performance on various subsets of the data, thereby
mitigating the potential for overfitting. The evaluation metrics employed encompassed accuracy,
precision, recall, F1-score, and energy efficiency. The metrics were calculated for every combination
of hyperparameters in order to determine the most effective configuration.

The final hyperparameters were chosen based on the results of the grid search and cross-validation.
The most effective setup consisted of two LSTM layers, with the first layer having 256 hidden units
and the second layer having 128 hidden units. The learning rate was set to 0.005, the batch size was 32,
and the dropout rate was 0.2. The DTLR-Net model was trained using these optimal hyperparameters
to ensure effective learning and enhanced performance.

The plot labeled “Dead Nodes” in Fig. 3 illustrates the correlation between the number of
simulation rounds and the quantity of non-functional nodes in a wireless sensor network. At the
beginning, the network does not encounter any failures, which means that all nodes are functioning
properly and efficiently conserving energy. The occurrence of node failures commences shortly after
200 rounds, signifying the moment when the initial node exhausts its energy reserves. The graph
demonstrates a distinct pattern of increasing dead nodes, characterized by periods of rapid growth
followed by stable periods. This pattern reflects the network’s dynamic response to changing energy
demands and potential batch failures, which may occur when clusters of nodes deplete their energy at
different rates. By the end of the simulation, after 2000 rounds, the count of dead nodes approaches
approximately 120. This indicates that either the total number of nodes in the network is high or that
a significant portion of the network remains functional beyond the simulation period.

The graph depicted in Fig. 4, discusses about the Live Nodes, exhibiting an inverse correlation with
the conventional life cycle of nodes. From the time it starts with a complete count of operational nodes,
this number remains at maximum until just over 200 rounds, then declines as some nodes stop working.
The fall in active nodes is systematic but erratic; this means that they fail at various times maybe
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because each uses different amounts of power and has diverse functions in the network. Towards 2000
rounds only a few nodes are left alive by the network. This graph provides vital indications about
robustness of networks and energy efficiency strategies employed during simulations over different
lengths.

Figure 3: Dead nodes

Figure 4: Live nodes

Fig. 5, titled “Packets transmitted to BS” (Base Station), displays a progressive growth in the
total number of packets transmitted to the base station during the simulation of the wireless sensor
network. The graph originates from the origin and follows an upward concave trajectory, indicating a
consistent increase in transmissions as the rounds advance. This indicates that even though the nodes
will eventually run out, as shown in previous figures, the network is still able to effectively transmit
packets until a certain threshold. The shape of the curve indicates an increase in the rate at which
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packets are transmitted, which may be attributed to adaptive protocols that enhance transmission
efficiency. By round 2000 of the simulation, the curve reaches a plateau, suggesting the presence of a
saturation point.

Figure 5: Packets transmitted to BS

The Fig. 6 plot represents a regular exponential decay in the number of packets sent to Base
Station (BS) per round in a wireless sensor network (WSN). To achieve a clean visual representation,
the title and grid lines have been intentionally omitted from the plot. Starting with more frequent
packet transmissions, the count drops progressively over the course of 2000 simulation rounds
indicating that it is working properly—adjusting its data transmission amounts with reference to
falling energy levels in nodes. The slow fall off in reserves of node energy implies an expected depletion
hence showing a good protocol design which ensures continuous efficient performance of the network
without sudden collapses. The smoothness of the curve shows that there were no many bursts or
outages during transmission therefore this being stable and reliable behaviour for WSN operations.

Figure 6: Packets to BS per round
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Fig. 7, labelled packets to cluster head, shows the cumulative number of packets sent to cluster
heads in the network. The line rises uniformly without any breaks which means that there has been a
continuous stream of data packets to cluster heads over time. Unlike Fig. 6, this graph does not indicate
per-round fluctuations but provides a high-level view instead. As the curve approaches around 2000
rounds, it flattens out showing that data packet rate is decreasing. This might be due to either fewer
active nodes or all other nodes entering into steady state where their remaining parts become stable
and can be predicted easily as far as data transmission is concerned.

Figure 7: Packets to cluster head

Fig. 8 illustrates the better scenario for the election of cluster heads in a wireless sensor network.
It shows a slow and steady decline of cluster heads from one state to another for 2000 rounds.
The uniform decrement without much change suggests that the method of energy management and
selection of head cluster is effective. At the start, the network has right amount of cluster heads which
it reduces as it approaches its life time. This shows that the network will work for long periods while
conserving power. Hence, there can be uninterrupted communication or operation without frequent
reconstitution needed between nodes; such features are common in good WSN design aimed at longer
life span and better performance in terms of energy usage efficiency.

In Fig. 9, Random Waypoint Mobility at initial rounds, the x-axis represents the width of Wireless
Sensor Network (WSN) while the y-axis represents its height. The figure shows how sensor nodes move
around during the beginning stages of simulation. Each dot on this graph corresponds to one round
and shows what position a sensor node took during that particular round with respect to its (width,
height) coordinates.

At the onset of simulation, sensors start off by behaving in a random waypoint manner whereby
they can move anywhere within given WSN dimensions without following any predetermined path
or directionality. In other words, until now, we assume that our knowledge about where these points
are located is still very limited hence they seem scattered throughout the whole WSN area covered
by width and height as shown in Fig. 9, which means that there is no such thing as initial movement
pattern for them but it might change later on when more rounds get executed. What happens next is
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that each point may begin to form different patterns depicting single node’s trajectory across space
over time while others will not because some do not move at all further rounds could be executed.

Figure 8: Number of cluster heads per rounds

Figure 9: Mobility at the initial rounds
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In Fig. 10, the structure of Random Waypoint Mobility of 4 Mobile Sinks after 1000 rounds is
basically alike, where the x-axis represents the width of WSN and the y-axis represents its height.
This graph shows how four mobile sinks moved during 1000 rounds of simulation. On this graph,
positions of four mobile sinks are presented as trajectories that represent routes taken by them across
WSN. Each trajectory consists of some points which depict position of a sink in a particular round.
Depending on underlying mobility model and interactions with sensor nodes as well as other mobile
sinks, patterns or trends can be observed in trajectories.

Figure 10: Random waypoint mobility of 4 mobile sinks after 1000 rounds

The knowledge provided by Fig. 10 is about navigation through WSN by mobile sinks. It tells
whether they move independently or converge into certain regions. The information that can be
revealed from paths includes efficiency in data gathering done by moving sinks, places where sinking
occurs frequently and general coverage of the entire network.

Finally, Figs. 9 and 10 visually demonstrate how sensor nodes and mobile sinks behave when it
comes to mobility; hence they help researchers/practitioners to understand movement of these two
components within network over time. These visual aids also assist in assessing effectiveness as well
efficiency regarding meeting performance targets for communication among different parts connected
through mobility models while working towards achieving desired results for network efficiency at
large.

4.1 Performance Assessment

Table 2 utilized various scenarios to measure the time (in seconds) taken by the proposed Deep
LSTM Regression Network. In a wireless sensor network (WSN), simulated scenarios with 100, 400
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and 800 nodes were used for 750 rounds. The evaluation was done against several other methods
that had been published previously in order to find out whether they are really efficient or not.
For each method, its lifetime is indicated in the table which reflects on their energy efficiency and
sustainability, respectively. Under this setup, at 400 nodes and 532 s at 800 nodes, the proposed Deep
LSTM Regression Network method has an impressive life span of 493.5 s; thus far no other approach
saves more power while making better networks than this which represents over five times longer
operation in such environments as any other methods else known from records does Not only does this
achievement outperform all other approaches but also shows that they save more power while making
networks work better since according to records it operates over five times longer than any methods
else available in such like environments.

Table 2: Performance evaluation based on life time (400 nodes)

Methods

CTRP [23] Adjacency based cell score [24] ICP [28] Proposed method

Life time (s) at nodes
100 211 96 90 462
400 300 111 107.135 493.5
800 421 211 181 532

When comparing these results with other methods found in the same publications, it becomes
evident that this proposed way performs better than most of them by a large margin. In terms of life
time, only Cluster Tree Routing Protocol (CTRP) is close to the listed methods where it has 300 s at
400 nodes and 421 at 800 nodes. However Deep LSTM Regression Network outperforms this value
by far showing how effective it can be in extending network’s life time. The Deep LSTM Regression
Network proposed here clearly surpasses Adjacency Based Cell Score and Instantaneous Clustering
Protocol (ICP) among others recorded for the first time ever in terms of lifetime values. This strong
difference underlines great benefits brought about by deep learning techniques especially Long Short-
Term Memory (LSTM) networks that work towards addressing dynamic features of mobile sinks
thereby enhancing energy efficiency of a network.

To summarize, Table 2 gives a detailed review of how well the Deep LSTM Regression Network
is expected to perform in its lifetime compared with other methods. It is evident from the findings that
this method is better than any other method because it can last for much longer time which implies
that there is a chance for it to enhance energy saving and eco-friendliness of wireless sensors networks.

Fig. 11 is a chart that compares the lifetime values of various methods with a wireless sensor
network (WSN). It shows how much longer each method makes the batteries last than any other
method given. The x-axis represents methods and y-axis represents time in seconds. This graph tells
us which methods are better than others, but not by what margin or relative to what.

For instance, at 400 nodes proposed deep LSTM regression network method achieved maximum
lifetime value of 493.5 s and at 800 nodes it was equal to 532 s which is much higher than any other
method shown in figure. It means that out of these approaches there is one that can extend life more
than others but still needs improvement considering energy efficiency and operability as indicated by
its shortcoming below CTRP approach where CTRP itself being represented by bar closest to our
model’s bar on the graph achieves relatively high lifetime value about three hundred seconds only
second after Deep LSTM Regression Network.
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Figure 11: Lifetime values comparison [23,24,28]

The other models have lifetimes less than the proposed model with most around one-hundredths
of seconds. This clearly demonstrates their effectiveness in extending network’s lifespan over existing
ones thus proving the superiority for the model.

For 1000 rounds, Fig. 12 shows how much energy a network consumes under different methods.
The line of the CODA model on the graph climbs upwards until it reaches about 1.9 J and has blue
circles around that point to mark it as such. It suggests that CODA [30] method is least efficient when
they have been running for a long time even though at first, they seem very good in terms of power
saving. ACSRO [29] (shown by red asterisks) works at 1.6 J and then starts reducing. ECA-HA [31]
appeared to resemble ACSRO before taking off downwards from around 1.4 J represented by black
squares this indicates high efficiency through successful energy management like optimized routing
or scheduling for power saving during communication among nodes within DTLR-Net Model (green
triangles). And in the final DTLR-Net model exhibits better results than all the other methods in terms
of energy consumption with less energy consumed.

The average residual energy of the proposed method in comparison to other methods is provided
in Fig. 13. Other four methods are compared where the proposed method shown to have more energy
left after the task also indicating the efficiency of model.

Fig. 13 depicts the average residual energy of nodes across 1000 rounds, comparing five different
models: ECA-HA [31], ACSRO [29], CODA [30], IBOLSR [33], and the proposed DTLR-Net model.
The graph unequivocally demonstrates that the DTLR-Net model exhibits superior performance in
terms of energy efficiency compared to the other models. During the simulation rounds, the DTLR-
Net model consistently maintains the highest average residual energy, demonstrating its superior ability
to preserve the energy of the nodes. Extending the operational lifespan of wireless sensor networks
(WSNs) is crucial.

The ECA-HA, ACSRO, CODA, and IBOLSR models show a faster decrease in residual energy,
with IBOLSR [33] showing the most significant decline, suggesting less efficient energy utilization
compared to the DTLR-Net model. DTLR-Net consistently performs well and has a slower rate
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of energy depletion, demonstrating its effectiveness in conserving energy. This makes it an excellent
choice for applications that prioritize energy efficiency. The DTLR-Net model is highlighted in this
comparison for its significant contributions in improving the energy sustainability of WSNs.

Figure 12: Average energy consumption [29,30,31]

Figure 13: Average residual energy comparison [29,30,31,33]

5 Conclusions

There is currently a high demand for improved performance, stability, and energy efficiency in
modern wireless sensor networks (WSNs). In order to tackle these difficulties, our research presents
a novel approach known as DTLR-Net. This approach stands out due to its utilization of advanced
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deep learning techniques, specifically Long Short-Term Memory (LSTM) networks, which possess
an understanding of the dynamic nature of mobile sink trajectories within Wireless Sensor Networks
(WSNs). The scope of our investigation centers on precise trajectory prediction techniques, as they
play a crucial role in enhancing data transmission, conserving energy, and stabilizing networks. The
objective of this study is to investigate the impact of DTLR-Net on the performance of WSNs. This
includes developing a reliable forecast model for mobility sinks and improving the overall efficiency
of the network. The potential of the proposed method has been unequivocally demonstrated through
thorough simulations and meticulous evaluations. Specifically, our research achieved an exceptional
network lifespan of 493.5 s in a Wireless Sensor Network (WSN) consisting of 400 nodes over 750
simulation rounds. This performance significantly surpasses that of existing methods, such as the
Cluster Tree Routing Protocol (CTRP).

Nevertheless, it is important to take into account the constraints. The experiments were carried out
in a simulated environment using artificial datasets, which may not completely represent the intricacies
of real-world WSN deployments, thus impacting the applicability of the findings. Additional research
is required to evaluate the model’s efficacy and ability to handle larger networks comprising thousands
of nodes. Furthermore, the efficacy of the model relies on the accurate coordination of nodes, which
can pose difficulties in environments that are constantly changing and have limited resources. The
study primarily emphasizes residual energy metrics, possibly neglecting factors such as data traffic
load, network topology changes, and environmental interference. Future research should prioritize
the implementation of the DTLR-Net model in real-world scenarios to verify its effectiveness.
Additionally, there is a need to conduct scalability testing on larger networks, incorporate additional
metrics for a comprehensive analysis, explore advanced synchronization techniques, and investigate
the integration of energy harvesting to enhance the lifespan and sustainability of the network. By
focusing on these specific areas, the research can contribute to the development of WSN solutions
that are more efficient, dependable, and environmentally friendly.

The research has broader implications for enhancing the stability and energy efficiency of
Wireless Sensor Networks (WSNs). By addressing key challenges related to network performance
and power consumption, the findings contribute to more reliable and sustainable network operations.
Improved stability ensures that WSNs can maintain consistent performance and minimize disruptions,
while enhanced energy efficiency extends the operational lifespan of sensor nodes and reduces the
need for frequent battery replacements. Collectively, these advancements lead to more robust and
environmentally friendly network systems, supporting the long-term viability and effectiveness of
WSNs in various applications.
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