
Copyright © 2024 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

echT PressScience

DOI: 10.32604/cmc.2024.055787

ARTICLE

A Recurrent Neural Network for Multimodal Anomaly Detection
by Using Spatio-Temporal Audio-Visual Data

Sameema Tariq1, Ata-Ur- Rehman2,3, Maria Abubakar2, Waseem Iqbal4, Hatoon S. Alsagri5,
Yousef A. Alduraywish5 and Haya Abdullah A. Alhakbani5,*

1Department of Electrical Engineering, University of Engineering and Technology, Lahore, 54890, Pakistan
2Department of Electrical Engineering, National University of Science and Technology, National University of Sciences
and Technology, Islamabad, 24090, Pakistan
3Department of Business and Computing, Ravensbourne University London, Ravensbourne University, London,
SE10 0EW, England
4Electrical and Computer Engineering Department, College of Engineering, Sultan Qaboos University, Muscat, 123, Oman
5College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh,
11673, Saudi Arabia

*Corresponding Author: Haya Abdullah A. Alhakbani. Email: hahakbani@imamu.edu.sa

Received: 07 July 2024 Accepted: 19 September 2024 Published: 18 November 2024

ABSTRACT

In video surveillance, anomaly detection requires training machine learning models on spatio-temporal video
sequences. However, sometimes the video-only data is not sufficient to accurately detect all the abnormal activities.
Therefore, we propose a novel audio-visual spatiotemporal autoencoder specifically designed to detect anomalies
for video surveillance by utilizing audio data along with video data. This paper presents a competitive approach
to a multi-modal recurrent neural network for anomaly detection that combines separate spatial and temporal
autoencoders to leverage both spatial and temporal features in audio-visual data. The proposed model is trained
to produce low reconstruction error for normal data and high error for abnormal data, effectively distinguishing
between the two and assigning an anomaly score. Training is conducted on normal datasets, while testing is
performed on both normal and anomalous datasets. The anomaly scores from the models are combined using
a late fusion technique, and a deep dense layer model is trained to produce decisive scores indicating whether a
sequence is normal or anomalous. The model’s performance is evaluated on the University of California, San Diego
Pedestrian 2 (UCSD PED 2), University of Minnesota (UMN), and Tampere University of Technology (TUT) Rare
Sound Events datasets using six evaluation metrics. It is compared with state-of-the-art methods depicting a high
Area Under Curve (AUC) and a low Equal Error Rate (EER), achieving an (AUC) of 93.1 and an (EER) of 8.1 for
the (UCSD) dataset, and an (AUC) of 94.9 and an (EER) of 5.9 for the UMN dataset. The evaluations demonstrate
that the joint results from the combined audio-visual model outperform those from separate models, highlighting
the competitive advantage of the proposed multi-modal approach.
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Nomenclature

AAD Acoustic Anomaly Detection
ADAM ADAptive Moment
AE AutoEncoder
AUC Area Under Curve
BCE Binary Cross Entropy
CAE Convolutional AutoEncoder
CCTV Closed-Circuit Television
CNN Convolutional Neural Network
CNN Convolutional Neural Network
ConvLSTM Convolutional Long Short-Term Memory
DAE Denoising AutoEncoder
EER Equal Error Rate
FNR False Negative Rate
FP False Positive
FPR False Positive Rate
GRU Gated Recurrent Unit
HOF Histogram Optical Flow
HoG Histograms of Gradient
IF Isolation Forest
JAD Joint Anomaly Detection
Leaky ReLU Leaky Rectified Linear Unit
LSTM Long Short-Term Memory
LSTMAE Long Short-Term Memory AutoEncoder
MFCC Mel-Frequency Cepstral Coefficients
MSE Mean Square Error
OCC One-Class Classification
OC-SVM One-Class Support Vector Machine
PCA Principal Component Analysis
PSO Particle Swarm Optimization
ReLU Rectified Linear Unit
SAE Sparse AutoEncoder
SC Spectral Centroid
SFM Social Force Model
STFT Short-Term Fourier Transform
SVM Support Vector Machine
TNR True Negative Rate
TPR True Positive Rate
TUT Tampere University of Technology
UCSD PED 2 University of California, San Diego Pedestrian 2
UMN University of Minnesota
VAD Visual Anomaly Detection
VAE Variational AutoEncoder
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1 Introduction

Audio-visual surveillance is the process of analyzing audio and video for security purposes. It’s a
thought-provoking topic that deals with audio signal processing and the computer vision approach.
Anomaly detection is an important part of this process. Stated goals for ideal anomaly detection
include gradual online adaptive tracking of normal events and abrupt real-time recording of abnormal
events [1]. Falling, entering a prohibited location, accidents, gunshots, yelling, criminal behavior, and
many more are examples of anomalous events [2].

Anomalous Event Detection is complicated because data for this type of event is infrequent, the
data that is collected is noisy, data gathering for this type of event is dangerous, and the definition of
an anomalous event differs depending on the application. For instance, people run on roads to define
an anomalous event, but people run on football grounds to define a normal event.

The motivation for this approach is based on the fact that audio and video models complement
each other. Visual and audio anomalies have been detected independently for years using a variety of
traditional and modern machine learning methods. However, visual event detection frequently fails
due to inaccuracy in distinguishing between distinct activities. In situations where visual details are
ambiguous, audio information provides precise details. Similarly, when audio event detection fails to
provide sufficient and error-free information, visual details are taken into account to complete the
task [3].

The ideal functionality of an anomaly detection system involves two basic goals: first, it must
be able to continually monitor and respond to what is deemed typical behavior or occurrences,
learning and modifying over time as conditions change. This guarantees that the system is accurate
and trustworthy in the long run. Second, it must be able to respond quickly when anything unusual
occurs, capturing these occurrences in real time for further study or urgent action.

For example, illegally unlocking a door via (CCTV) appeared normal, but immediately sounding
alarm aids in detecting anomalous behavior. Audio and video complement one another. Occlusion
occurs in video, and temporal overlapping of events occurs in audio. The dark staircases, tunnels, and
corners do not aid in video event detection, but any unusual sound can aid in the detection of abnormal
events. As a result, the combined results of audio and video are far better compared to the individual
results as depicted in Table 1.

Table 1: The table shows the (AUC) (%age) for audio, image, and combined audio-image data,
demonstrating greater performance with combined data

Kumari et al. Audio Image Audio-image

(AUC) (%) 50.39 75.82 76.44

By incorporating the strengths of both modalities, these structures provide a more complex and
accurate knowledge of events, allowing for improved decision-making and increased overall security.
As technology advances, the development of these audio-visual models is anticipated to result in more
complex and effective anomaly detection systems. These developments not only strengthen security
measures but also offer new avenues for their application in a variety of disciplines, including public
and law enforcement, smart cities, and beyond. The future of surveillance resides in this comprehensive
approach, in which audio and visual data work together to build safer, more responsive surroundings.
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The proposed approach employs two data sources: audio and video. In the proposed method, deep
learning and handcrafted approaches are used to extract features from both sources to learn spatial
and temporal aspects. These features are fed into the deep learning autoencoder, which trains the
model on normal events and tests it on aberrant ones. Normal events have a lower reconstruction error
than abnormal occurrences. The outcomes of both sources are merged to forecast how likely the deep
learning model is to predict frame abnormality based on audio and video outcomes. The contribution
includes the development of the audio files against (UCSD PED 2) and (UMN) datasets. Along with
this, acoustic-visual surveillance is introduced by designing a joint anomaly detection algorithm that
outperforms individual algorithms.

There are certain challenges and limitations to the proposed research paper. Unfortunately, there
is no publicly available audio-video dataset to evaluate the reliability of the system outside (UMN)
and (UCSD). Furthermore, no research study has been done on both the audio-video (UMN) and
(UCSD), preventing us from doing a comparison analysis that would have provided significant
perspectives into the strengths and weaknesses of the systems. The advantages of the proposed research
paper include a diversity of available datasets. The (UCSD) dataset is taken at different angles, while the
(UMN) dataset comprises three different lighting conditions, proving the applicability and reactivity
of the system. The contribution of the proposed approach includes the collection of anomalous and
normal audio data from various YouTube and Google sources. This audio collection includes sounds
such as carts, wheelchairs, skaters, bikes, gunshots, and crowd noise. These audio files have been
synchronized with the (UCSD) and (UMN) video datasets.

The paper is organized as given: Section 2 describes the literature about each anomaly detection
model: acoustic, visual, and joint. Section 3 discusses the methodology of the proposed solution and
the anomaly detection techniques. Section 4 describes the experimental results, benchmark datasets,
model parameters, and implementation details. Section 5 concludes the whole discussion about
techniques employed for anomaly detection.

2 Literature Review

The literature review in the paper is divided into three subsections: acoustic anomaly detection,
visual anomaly detection, and joint anomaly detection approaches.

2.1 Acoustic Anomaly Detection (AAD)

Pereira et al. [4] proposed an in-vehicle unsupervised (AAD) system as part of a wider in-
vehicle intelligence R&D initiative. The researchers initially created a new synthetic in-vehicle (AAD)
simulator to develop three audio mixes containing background trip noises mixed with five normal
and three abnormal occurrences. Subsequently, to execute (AAD), two sound feature extraction
approaches were investigated, as well as a proposed (LSTMAE) method. Pooyan et al. [5] proposed the
anomaly detection approach for the compression system using both the technique (OCC) and spectral.
This research detects midstream compressor failures using audio sensor data. Initially, the input audio
signals are used to construct (STFT), (MFCC), and (SC) characteristics. Second, to generate high-
level features, deep learning-based feature extraction is used. Finally, normal and anomalous audio
signals are classified using a (PCA) step and a (SVM). The suggested approach was tested on two
datasets, including 10196 audio signals recorded from a compressor. A deep learning approach (AE)
[6] is employed for (AAD) in various forms, like (DAE) [7], (SAE) [8], (CAE) [9], and (VAE) [10]. It
trains the model to compress and reconstruct the normal instances, whereas abnormal instances are
not reconstructed by the model. Kumari et al. [11] proposed a method for using Huffman coding. This
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method was identified to improve results with minimum processing overhead and is used for anomaly
identification in audio to get characteristics such as flexible event length and less reliance on cluster
data. Several studies have tackled (AAD) using various ML algorithms in recent years, including
the (IF) [12] and the IRESE method [13]. Mnasri et al. [14] presented a novel method of anomaly
detection comprised of (VAE) and interval-valued fuzzy sets. The proposed method integrates two
approaches, which are autoregressive (VAEs) and interval-valued fuzzy sets. A probabilistic interval
comparison method is utilized for defuzzification that detects the corresponding class. The dataset
of this approach is road traffic surveillance that contains hazardous events, for instance, vehicle
accidents using auditory signals. This proposed study concentrated on autoencoders (AE), a deep
learning neural architecture that has gained popularity in the treatment of (AAD) [15]. (AE) training is
computationally quicker than (OC-SVM), (IF), and IRESE; therefore, it can handle greater quantities
of training data.

2.2 Visual Anomaly Detection (VAD)

Pang et al. [16] demonstrated that using self-trained deep ordinal regression to detect video anoma-
lies overcomes two main shortcomings of prior methods: reliance on manually labeled normal training
material and suboptimal feature learning. An end-to-end trainable video anomaly detection technique
is designed that enables integrated representation learning and anomaly scoring without manually
annotating normal or abnormal data by developing a synthetic two-class ordinal regression task.
Kumari et al. [17] developed a masking approach for enhancing resilience against background noise
utilizing discriminators’ class activation maps. It is a self-supervised masking framework that aims to
picture discriminative regions to allow robust anomaly detection. The results show that in adversarial
training, the discriminator’s class activation map changes in three stages before settling on the
foreground location in the pictures. These activation map characteristics create a mask that suppresses
false signals from the background, allowing for robust anomaly identification by participating in local
discriminative properties. Morais et al. [18] considered human detection and tracking reconstruction
techniques. With the help of Alpha Pose [19], a constant length of tracks is approximated for skeletons
that are fragmented into local and global modules. A two-branch framework with three (GRU)s [20]:
an encoder, a reconstructing decoder, and a predicting decoder are proposed [21]. (VAD) is also built
upon dictionary learning [22] technique. It learns a vocabulary of typical occurrences and detects the
events that the dictionary cannot adequately express. Dictionary learning may also be used to learn
low-level features like (HoG) or (HoF) [23], as well as 3D gradient features [24]. Other approaches,
such as hashing-based methods [25] and clustering [26], have been developed to model normal events
with compact representations. The most common techniques utilized currently include (CNN), (AEs),
(LSTMs), and many more algorithms. Naud et al. [27] proposed a revolutionary hyperspherical (VAE)
using stereographic projections with a gyroplane layer through theoretical and practical studies of
manifold forms an equivalent to Poincare (VAE). It is unsupervised visual anomaly detection for
embedding data distributions in constant curvature manifolds, which is advantageous in terms of
model generalization and can result in better interpretable representations. The proposed approach
employed the techniques of deep learning that are hybrid.

2.3 Joint Anomaly Detection (JAD)

Wu et al. [28] proposed relational network-based multimodality audio-visual violence detection
algorithms. A weak supervision neural network with three parallel branches captures different
relations among video snippets and integrates features, where the holistic branch captures long-range
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dependencies using similarity prior, the localized branch captures local positional relations using prox-
imity prior, and the scoring branch dynamically captures predicted score closeness. Kumari et al. [17]
proposed an unsupervised multimodal anomaly detection approach for long-term surveillance based
on the concept drift idea. The audio and video data are integrated and trained using a deep learning-
based teacher-student network. Using principal component analysis, features from both inputs are
merged and compressed. As a result, a teacher-student network is applied to these compressed
characteristics to provide a shared representation of data. A multivariate adaptive Gaussian mixture
model is used to learn the data dynamics. Rehman et al. [29] employed late fusion-based audio-visual
anomaly detection for general monitoring. To identify anomalous video frames in the video modality,
the optical flow was integrated with (PSO) and the (SFM). The (PSO) approach controls a swarm of
data iteratively in conjunction with optical flow to determine the flow of moving objects in the crowd.
Furthermore, (SFM) is used to quantify interaction forces among people in a crowd to define the
population’s behavior. The acoustic features-based (SVM) classifier is used to detect abnormalities in
the audio modality. In addition, a late fusion is used to make the ultimate conclusion. Furthermore,
early and late fusion techniques have been examined in these publications. Early fusion-based models
[30] employ a simple assumption of conditional independence across the modalities, which may
not hold in actuality. Late fusion, on the other hand, focuses on classifier prediction. As a result,
researchers have embraced fusion-based techniques. Deep learning’s undeniable success in modeling
complex problems has compelled researchers to create deep learning-based fusion frameworks for a
wide range of tasks, including activity detection [31], face recognition [32], multisource image pixel-
wise classification [33], panchromatic and multispectral imagery classification [34], and so on. These
frameworks offer significant benefits over traditional fusion approaches [35]. Imran et al. [36] offered
behavioral-based database intrusion detection, which is appropriate for insider assaults, concentrating
on feature selection and algorithm choice. Multimodal anomaly detection can be enhanced by
implementing the above approach to detect sequences of malicious activities rather than isolated
events. Spatiotemporal audio-visual data integration with these tactics can enhance complicated
anomaly detection.

2.4 Limitations

Pereira et al. [4] extracted two sound features to predict anomalies in their (AAD) system. If
these techniques fail to capture the relevant features for effective anomaly detection, the system’s
performance might be compromised. Conversely, our model utilizes eight different acoustic features,
providing a more detailed understanding of sound characteristics, which enhances its ability to predict
anomalous features more accurately. Kumari et al. [11] suggested employing class activation maps
to construct masks; however, these maps can be difficult to read, making it difficult to understand
why some regions are marked as anomalous. In contrast, our model uses an autoencoder (AE)
approach, which is simpler to grasp and comprehend because it provides a low reconstruction error
for abnormal frames and vice versa. Wu et al. [28] implemented a weak supervision strategy, which can
degrade model performance if the labels are noisy or erroneous. In contrast, our model employs an
unsupervised approach, allowing it to independently learn and detect abnormalities. Rehman et al. [29]
limited their method to a self-curated dataset with one sort of anomalous example, a gunshot, while
our data is tested on six different sounds.

3 Methodology

The proposed approach is an unsupervised methodology based on the objective of predicting
anomalous frames. This approach employs the concept of training an end-to-end model comprising
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Sequence to Sequence AutoEncoder (Seq2Seq AE) as described in [1] and [2] to learn spatiotemporal
features of multi-data. The block diagram of the proposed approach is shown in Fig. 1. It depicts that
the proposed model is comprised of three sub-models:

• Acoustic Model • Visual Model • Joint Model

Figure 1: Block diagram: The proposed joint model computes audio and video inputs through acoustic
and visual models to calculate anomaly scores

These scores are concatenated to train the joint model, classifying sequences as normal or
abnormal based on a cutoff value between 0.7 and 0.92. Scores below the cutoff indicate anomalies,
while those above are considered normal.

3.1 Acoustic Model

3.1.1 Feature Extraction

The audio signal is continuous, which is converted to a discrete format composed of sample data
and a sample rate of 22 kHz. The proposed method processed this sample data to extract low-level
features and analyze both spectral and time-domain features. The extracted features are Spectral
Flatness [37], Zero Crossing Rate [38], Spectral Centroid [38], Spectral Bandwidth [38], (MFCCs) [39],
Mel Spectrogram [39], Spectral Roll off [39], and Spectral Contrast [39]. These features are normalized,
giving the input data shape as (audio_files, frame_sequence, feature_length).

3.1.2 Model Architecture

Fig. 2 interprets the proposed acoustic model, while Table 2 shows the model architecture. The
proposed acoustic model is comprised of Seq2Seq (AE) built upon 1-D (CNN) and (LSTM). 1-D
(CNN) extracts higher-level features, while (LSTM) extracts temporal features. The proposed acoustic
model employed Keras layers. Initially, a basic model is constructed via the sequential layer, and
subsequent layers are connected to the model in sequence. These subsequent layers are comprised
of one input layer, ten hidden layers, and one output layer. These hidden layers perform the encoding
and decoding operations upon input. The processed acoustic input is fed into the deep learning model
that contains filter, kernel, padding, stride, and activation layers. Each layer has a kernel size of 5 to
extract the requisite details from each feature. The padding of the same is applied to ensure the output
size is identical to the input as well as the filter processed upon all the elements.
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Figure 2: Block diagram: The proposed audio model processed audio signals to generate features that
are trained upon Seq2Seq AutoEncoder, which uses a loss function and an optimizer. This trained
model predicts test data by reconstructing sequences to originate the audio anomaly score

Table 2: Architecture: The table illustrates the neural network architecture for (AAD) which includes
a Conv1D encoder, an LSTM encoder/decoder, a Conv1D decoder, and a Conv1D prediction layer.
Filter sizes vary from 32 to 160, with kernel sizes of 5 and 9, strides of 2, and activation functions
featuring (Leaky ReLU) and Sigmoid. Each layer’s specific parameters are detailed for exact execution

Conv1D encoder LSTM encoder LSTM decoder Conv1D decoder Conv1D pred

L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11

Filter size 32 64 128 128 64 64 128 128 64 32 160
Kernel size 5 5 5 – – – – 5 5 5 9
Stride 2 5 – – – – – – 5 2 –
Activation
function

Leaky
ReLU

– Leaky
ReLU

Sigmoid

The stride sizes 4 and 2 are used to build smaller feature maps of longer sequences to reduce
complexities. The activation function of (LeakyReLU) is used at the processing step while sigmoid
at the prediction step. These techniques enhance the model’s accuracy. To get higher-level features,
three layers of 1-D (CNN) (Conv1D) are employed as an encoder. The number of filter sizes increases
with each layer because deeper layers can extract more precise information. Each 1-D (CNN) layer
has the following batch normalization layer to normalize the input by maintaining the mean close
to 0 and standard deviation near 1. This regularization technique develops a stable and faster model
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[40]. Thus, high-level features are extracted and encoded from the input array, whereas dimensionality
reduction also occurs when input is transferred into the network’s deeper layer. This encoded and
regularized input is passed through the temporal encoder (LSTM). A two-layer (LSTM) that performs
an element-wise multiplication operation on input-to-state and state-to-state transitions to have better
temporal features. The (LSTM) encoder interprets the audio sequence to precise the acoustic material
as cell state vectors. The encoder output is a constant-length vector that holds internal state vectors.
These encoded (LSTM) are decoded through the RepeatVector (LSTM) layer. This layer acts as an
adapter to integrate the encoder and decoder of (LSTM). The initial states of the decoder are the
final states of the encoder. With the help of these initial states, the decoder transforms the learned
acoustic internal representation of the input audio sequence into the corresponding output sequence.
These decoded (LSTM) layers assist in decoding the conv1D layer through Conv1DTranspose. This
layer up-sampled the encoded data to larger data, i.e., mapping a 2 × 2 array to another 4 × 4 array.
This layer performs both up sampling and convolution. It brings the encoded input sequence into its
original shape [41]. Moreover, the final step is to predict the decoded information through Conv1D,
which employs sigmoid as an activation function. It predicts a probability for each acoustic input
sequence belonging to either of the two classes. If predicted input sequences are reconstructed, then
the predicted probability is normal, but if input sequences are not reconstructed and represent high
error, then the predicted probability is abnormal.

3.2 Visual Model

3.2.1 Feature Extraction

The visual dataset in this proposed model is made up of several recordings collected by (CCTV)
cameras, each with a certain resolution that assures clarity. The procedure starts with frame extraction,
which divides each movie into individual frames. This stage is critical for computer vision algorithms
since each frame serves as a visual snapshot that captures key periods in the movie. These snapshots are
critical to the anomaly detection model, which examines each frame to evaluate if the observed activity
is normal or aberrant. The preciseness of this extraction process is crucial since it directly influences
the accuracy of the model’s predictions, ensuring that critical features are kept for successful analysis.

Data preparation is the next step after the frames have been extracted. This stage is vital since
it improves the extracted frames, enhancing their quality, and identifying key aspects that impact
the model’s learning capacity. Preprocessing comprises scaling the frames to 240 × 240 pixels to
ensure consistency throughout the collection. This standardization promotes uniformity and makes
the data simpler for the model to process. Furthermore, the frames are transformed from (RGB) to
grayscale, which reduces computing complexity by simplifying color information while preserving
crucial features. This stage optimizes the frames so that the model can process them more effectively
while still keeping the relevant visual information.

Finally, during the preprocessing stage, the pixel values are normalized from 0 to 255 to a
scaled range of 0 to 1. This normalization optimizes the data for machine learning by stabilizing
and optimizing the model’s learning process. The generated data is arranged in a structured manner,
commonly written as (video_files, frame_sequence, feature_length), where the parameters correspond
to the number of videos, the sequence of frames, and the length of the extracted features. This rigorous
preparation guarantees that the anomaly detection model receives high-quality input data, allowing it
to properly distinguish between normal and abnormal occurrences in video sequences.
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3.2.2 Model Architecture

Fig. 3 exhibits the visual model, while Table 3 shows the architecture of the model. The model
is comprised of two sections: the first one is a spatial autoencoder, and the second one is a temporal
autoencoder. The spatial features are related to the location of objects, while the temporal features are
related to the motion of objects. The proposed model is composed of different Keras layers. A base
model is developed with a sequential layer as input, which is a frame sequence. The model contains 8
layers: 1 input layer, 6 hidden layers, and 1 output layer.

Figure 3: Block diagram: The video is preprocessed to extract explicit features of input data upon which
the Seq2Seq autoencoder is trained. For testing, the trained model predicts the video frame sequences.
The regularity score is calculated to determine anomalies through threshold value

Table 3: Architecture: The table illustrates the design of a neural network for (VAD) in video
surveillance. It describes the layer configurations, including filter sizes, kernel sizes, strides, and
activation functions for various network components such as the Conv2D encoder, ConvLSTM2D
encoder decoder, Conv2D decoder, and Conv2D prediction layers

Conv2D encoder ConvLSTM 2D encoder decoder Conv2D decoder Conv2D pred

Layer1 Layer2 Layer3 Layer4 Layer5 Layer6 Layer7 Layer8

Filter size 32 64 64 32 64 64 32 1
Kernel size (5, 5) (5, 5) (3, 3) (3, 3) (3, 3) (5, 5) (5, 5) (7, 7)
Stride (4, 4) (2, 2) (2, 2) (4, 4)
Activation
function

Leaky
ReLU

– – – – – Leaky
ReLU

Sigmoid
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These layers are concatenated to build up a Seq2Seq AE. The model receives preprocessed input
frame sequences of specific length and size. The model is designed with a particular number of
filters and kernel size. The number of filters increased as the layers increased because early layers
in the network learned few convolutional filters while layers deeper in the network learned more
convolutional filters. The kernel size is set to (5 × 5) because there is a rule that if the input size is
greater than (128 × 128) always use a kernel size greater than (5 × 5). The stride is used instead of
max pooling because it reduces the dimension by keeping intact all the pixel information without
discarding it; strides with smaller values capture fine details. To build up the spatial autoencoder,
we have used three two-dimensional convolutional layers (Conv2D) to generate a computationally
efficient autoencoder. For this autoencoder, the convolutional operation is preferred as it keeps intact
all the spatial features among frames’ pixels. It learns all of these features by convolutional, which is a
dot product between input regions and filters. Temporal autoencoder is designed through three two-
dimensional convolutional layers Conv2DLSTM. In this layer, element-wise multiplication operation
is replaced by convolution, and weights are applied to input-to-state and state-to-state transitions
to have better spatiotemporal features. The correlation between spatiotemporal features is built up
through a convolutional layer. Moreover, (ConvLSTM) can predict the future state by considering all
the current and past information of its neighbors. Batch normalization is employed between each layer
of (AE) as it takes input from the previous layer, normalizes it, and passes this normalized output as
input to the next layer. This maintains the efficient distribution of data by solving the internal covariate
shift. This leads to faster convergence and the best accuracy scores. This layer is generally used as
a regularization technique [40]. A Time Distributed Layer is applied to (AE) layers to maintain the
relation between time-series input and its corresponding output independently for each time step. This
layer is time-efficient and efficiently determines the peculiar features as it is applied to every temporal
slice of the input. If this layer is not applied to sequential data, then the output of layers gets fused
with each time step. This leads to unnecessary interference with different time steps and the inability to
obtain separate time step values [42]. The (LeakyReLU) function is used as the activation function in
both the convolutional and (ConvLSTM) layers, while a sigmoid function is applied at the prediction
layer to predict the frame sequence with the probability of being either normal or anomalous. If frames
are correctly reconstructed by (AE), then the anomaly score is high; otherwise, it is low.

3.2.3 Acoustic-Visual Model Inference

The inference of the acoustic-visual model is performed individually. Initially, the features and
preprocessing of both datasets are performed in the manner described in the preceding section. After
that, the sequence generation technique is carried out. It is applied through the sliding window
technique. It is a dynamic technique for extracting smaller sequences of a specific length from long
sequences. The test data contain a distinct number of acoustic and visual frames. This technique
is applied to these frames to get the continuous sequence of 10 frames. The ten frame sequences
were selected with the concept that increasing the value of subsequent frames resulted in a better
regularity score, but higher values of frame sequence slow the training process [43]. Following this,
the trained model is tested upon these sequences. The model takes input sequences and reconstructs
these input sequences. In this sequence reconstruction step, normal sequences are reconstructed
accurately, while abnormal sequences are reconstructed imprecisely. Based on this accuracy and
imprecision, reconstruction errors are calculated. This error is the Euclidean distance between input
and reconstructed sequences. The accurately reconstructed sequence has a lower error, while the
imprecisely reconstructed sequence has a high error. This error is normalized to acquire regularity
score sr(t). In particular, each sequence’s regularity score sr(t) is evaluated, where t is the number of
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frames, and sr(t) begins at frame (t) and concludes at frame (t + 9) [44]. These sr(t) are also termed
anomaly scores, where the high value of sr(t) depicts a normal frame and the low value illustrates an
anomalous frame.

Anomaly Score =
{

sr (t) > γ sequence is normal
sr (t) < γ sequence is abnormal

(1)

3.3 Joint Model

It is a supervised approach that is built upon the concept of late fusion that utilizes the outcome
of each model by integrating them at the decision level. The proposed approach trains the two single
modality costs; you can visualize the anomaly score of these models, which are concatenated to predict
the outcome of sequences.

3.3.1 Model Architecture

The block diagram of the joint model is depicted in Fig. 4, while Table 4 shows the architecture of
the model. Initially, a sequential model is built to maintain the acoustic-visual sequences. The model
is comprised of 9 layers: 1 input layer, 7 hidden layers, and 1 output layer. These hidden layers are
stacked in dense layers.

Figure 4: Block diagram: The anomaly scores of the acoustic and visual models are fused as input.
This input trained the joint model through a loss function and an optimizer to generate the decisive
results of the proposed model

The model built up with dense layers learns the association among scores and labeled data. With
each dense layer, the unit size increases. The unit size defines the size of output from the dense layer.
Thus, an increase in unit size causes a greater number of neurons in deeper layers. These layers learn
the relationship between these two features: audio anomaly score and video anomaly score more
accurately and precisely. These stacked dense layers deal with (LeakyReLU) as an activation layer
to learn from input sequences. The dense layer of the joint model is trained to learn features from
previous layers, while the last layer predicts the probability of each feature belonging to a specific
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class. For this purpose, Conv1D is applied to have an activation layer as a sigmoid to predict the class
of each sequence, either normal or anomalous. The model is regularized through batch normalization
to maintain the efficient distribution of data by solving the internal covariate shift. This leads to faster
convergence and the best accuracy scores. With dense layers, the training process speeds up because it
performs linear operations with every input processed by the function to generate output. It can learn
the true relationship between features as it lets the neural network learn input related to the output.

Table 4: The architecture of the joint model: Each layer, along with (LeakyReLU), maintains steady
gradients, numerical stability, increasing learning efficiency, improving feature combination, and
overall network performance to predict the type of event, either normal or anomalous, using Sigmoid

Deep dense layer

Layer1 Layer2 Layer3 Layer4 Layer5 Layer6 Layer7 Layer8 Layer9

Units 8 16 32 64 128 256 512 1024 1
Activation
function

Leaky
ReLU

Leaky
ReLU

Leaky
ReLU

Leaky
ReLU

Leaky
ReLU

Leaky
ReLU

Leaky
ReLU

Leaky
ReLU

Sigmoid

3.3.2 Joint Model Inference

The joint model is tested on the predicted joint acoustic visual anomaly scores. These scores act
as an input for the model, and the input is already processed, so no preprocessing step is performed
while their labeled output is considered as actual values. When these inputs are passed towards the
trained model, it predicts the class of each input. The predicted class is either 0 or 1. The trained
model predicts each acoustic visual frame as either normal or abnormal by plotting a graph between
predicted scores and frames. The results of this model are decisive and dependent. Any (FP) in tested
anomaly scores will affect its results, but due to training on the DenseNet, it learned the correlation
among them. That’s why it deals with this (FP) decisively.

Predicted Class =
{

1 class is normal
0 class is abnormal

(2)

3.4 Anomaly Detection

3.4.1 Threshold Value (γ )

γ is a judgment value that predicts if the sequence is either normal or abnormal. If the predicted
value exceeds γ , consider it normal or otherwise abnormal. The threshold value varies depending on
the data type. The optimal γ for the proposed model is based on high (TRP) as it defines accurate
prediction of abnormal data. The modal is tested upon distinct γ , and those values are retained where
the (TPR) value is high.

3.4.2 Regularity Score sr(t)

The lower the regularity score, the greater the chance of an anomalous event. To calculate this
score, calculate the reconstruction error between the original frame and the predicted frame through
Euclidean distance.

e (t) = ||x (t) − fw(x (t))||2 (3)
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Here, e(t) is the reconstruction error, x(t) is the original frame, and f w(x(t)) is the predicted frame.

Now the regularity score is calculated based on n_e(t) as represented below:

sr (t) = 1 − n_e(t) (4)

The predicted regularity score sr(t) determines whether each frame is either abnormal or normal
through a defined threshold γ . A frame at t is marked as anomalous if sr(t) is less than γ . Contrary to
this, a frame at t is marked as normal if sr(t) is greater than γ .

4 Experiment Results and Analysis
4.1 Datasets

The proposed model is trained on a normal video dataset but tested on both normal and abnormal
ones. The two different benchmark datasets are used to train and test the proposed model. The first
one is the Anomaly Detection dataset from the Monitoring Human Activity dataset from the (UMN)
dataset [45], the second one is (TUT) Rare Sound Events 2017 [46] and (UCSD PED 2) [47]. The
statistics of these datasets are explained in Table 5.

Table 5: The table contrasts video and audio dataset statistics for (UCSD PED2) and (UMN), such as
frame counts, anomaly details, and overall information. It identifies changes in total frames, training
and test frames, normal and abnormal frames, and anomaly features between each dataset

UCSD PED 2 UMN

Audio Video Audio Video

Frames information

Total frame 4543 26876 7738 64686
Training frame 2533 24866 – 61446
Test frame 2010 2010 – 3240
Normal frame 2887 25220 6633 63581
Abnormal frame 1656 1656 1105 1105

Anomalies information

No. of anomalies 21 21 21 21
No. of scenes 1 1 3 3
Anomaly type 5 5 1 2

General information

Resolution 360 × 240 320 × 240 –
Ground truth Spatial, Temporal Temporal Temporal Temporal
Sampling rate – 22 kHz – 22 kHz
Open set � � � �
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4.1.1 Video Anomaly Dataset

UCSD Dataset: The (UCSD PED 2) is comprised of 16 training videos and 12 testing videos
acquired from a camera suspended above pedestrian pathways at distinct angles. The training and
testing videos contain 119, 149, and 179 frames, while anomalies are carts, wheelchairs, skaters, and
bikes.

UMN Dataset: The (UMN) dataset is comprised of three different environment scenarios: a plaza,
interior, and lawn. The normal frames are random motions of the crowd, while abnormal frames are
scattering of people in one direction from a central point. In the proposed method, the single video
file is segmented into 6-s files to train and test each environment scenario separately.

4.1.2 Audio Anomaly Dataset

Audio UCSD PED2: The normal acoustic data is attained through (TUT) Rare Sound Events
2017 [23], which is a 30 s file. The anomalous data is collected from several YouTube and Google
websites and includes noises of carts, wheelchairs, skaters, and bikes. This data is comprised of 4.8, 6,
and 7.2 s.

Audio UMN Dataset: The acoustic data of the file is prepared manually using (TUT) Rare Sound
Events 2017 [23]. The anomaly in audio data is yelling from the crowd along with gunshot sounds.
These audio files are composed in synchronization with (UMN) video files.

4.2 Model Parameters

The loss function and optimizer are two model parameters that significantly improve the accuracy
of the model and minimize the reconstruction error for every normal video. At each epoch, the
optimizer evaluates and updates weights and biases, while the loss function minimizes the errors
through updated weight and bias.

4.2.1 Losses

(MSE) and (BCE) are applied as loss functions in the proposed model. MSE is best suited for
reconstructing sequences [48] in (AE) while (BCE) is preferred for the joint model as it determines
how much predicted values deviate from an actual value. The lower the loss, the more accurate the
model is [49].

4.2.2 Optimizer

(ADAM) is utilized as an optimizer to optimize parameters. It is an adaptive learning rate method,
i.e., it evaluates individual learning rates for distinct parameters [50]. It is an optimization algorithm
that requires less memory and faster running time [51].

4.2.3 Epochs

It refers to one full iteration of the proposed model over the training dataset. Each training dataset
has a different epoch defined in Table 6. The epochs of (UCSD PED 2) are user-defined, while the
epochs of the (UMN) dataset are specified by the early stopping criteria. Batch normalization is added
after each layer of (AE) as it regularizes output and speeds up the time and convergence.
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Table 6: The table details the number of epochs and thresholds used to train audio and video models
on several datasets, such as (UMN) Interior, Lawn, Plaza, and (UCSD PED 2)

Dataset Audio Video

Epoch Threshold Epoch Threshold

UMN Interior 35 0.85 31 0.85
UMN Lawn 41 0.85 44 0.85
UMN Plaza 38 0.8 40 0.7
UCSD PED 2 50 0.85 300 0.92

4.3 Implementation Details

Data Augmentation

The data augmentation technique is employed upon the normal video dataset by generating n
samples, and each sample contains f sequences/frames. This technique begins by generating n samples
from the regular video dataset; each has f sequences or frames retrieved from the movie. The crucial
part of this approach is how the frames are chosen and concatenated, using varying strides to introduce
variety. In stride-1, all f frames in a sample are consecutive. For example, if the chosen frames may be
frames 1, 2, 3, 4, and 5. This guarantees that the frames are in the same sequential order as they are
presented in the original footage. Stride-2 skips one frame between each specified frame. For example,
if f = 5, the frames may be 1, 3, 5, 7, and 9, resulting in a minor temporal gap between successive frames.
Finally, in stride-3, two frames are skipped between each chosen frame, yielding a sequence such as
frame 1, frame 4, frame 7, frame 10, and frame 13 if f = 5. This results in an even wider temporal
gap between frames, broadening the samples. The goal of employing varied strides for frame selection
is to increase variety in the training data. without requiring additional video sources. By changing
the temporal connections between frames, the model is exposed to new patterns and variances in
the typical video data. This increased variety improves the model’s generalization ability to detect
abnormalities. During training, the model develops to recognize regular patterns across a wider range
of sequences, which might help it detect anomalies from these patterns in real-world circumstances. In
conclusion, our data augmentation strategy fills the training dataset with diverse sequences, resulting
in a more robust model. By exposing the model to diverse temporal patterns using stride-1, stride-2,
and stride-3, the approach increases the model’s generalization capabilities, resulting in more accurate
anomaly identification in video surveillance. Hence, this is data augmentation in temporal dimension
[52]. Our model is trained on a GPU, while the testing of the model can be performed on both GPU
and CPU. The batch size is set equal to 10, along with 33% of the validation dataset.

4.4 Results

The evaluation metrics employed for determining results are precision, recall, accuracy, and
F1-score. Fig. 5 illustrates the results of the proposed model graphically, while Table 7 represents it
quantitatively. In Fig. 5, the blue lines depict model prediction, while the region covered with red
illustrates the ground truth for an anomalous area. These results have illustrated that integrated results
are better than individual results because late fusion guarantees that numerous models are dealt with
individually, including their defects and accuracy, resulting in an uncorrelated mistake that does not
damage the joint model.
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(a) Audio: UMN Interior                         (b) Video: UMN Interior                      (c) Aud-Vid: UMN Interior

(d) Audio: UMN Lawn                            (e) Video: UMN Lawn                        (f) Aud-Vid: UMN Lawn

(g) Audio: UMN Plaza                            (h) Video: UMN Plaza                         (i) Aud-Vid: UMN Plaza

(k) Video: UCSD PED2 (l) Aud-Vid: UCSD PED2(j) Audio: UCSD PED2 

Figure 5: The anomaly scores of the acoustic, visual, and joint model upon the UMN interior (a–c),
UMN Lawn (d–f), UMN Plaza (g–i), and UCSD PED2 (j–l) dataset
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Table 7: The table displays the proposed model’s results via four separate metrics: precision, recall,
accuracy, and F1-scores. All of these metrics are based on the (UMN) and (USCD PED 2) audio,
video, and audio-video datasets

Dataset Precision Recall Accuracy F1-score

UMN Interior

Audio 0.9356 0.9176 0.9325 0.9265
Video 0.8321 0.9901 0.9287 0.9072
Audio-Video 0.9521 0.9297 0.9537 0.9408

UMN Lawn

Audio 0.9079 0.9512 0.9124 0.9290
Video 0.6503 1 0.8058 0.7881
Audio-Video 0.8886 0.9763 0.9427 0.9304

UMN Plaza

Audio 0.7741 0.9128 0.9659 0.8377
Video 0.7096 1 0.9513 0.8301
Audio-Video 0.8579 0.9082 0.9599 0.8823

UCSD PED 2

Audio 0.9436 0.9502 0.9128 0.9469
Video 0.9061 0.8128 0.7861 0.8569
Audio-Video 0.9666 0.9546 0.9259 0.9605

State-of-the-Art Methods

The performance of our joint model is compared with other state-of-the-art methods. The
evaluation metrics employed are (AUC) and (EER). The (AUC) calculates the overall performance
of the binary classifier by plotting the (TPR) which is the rate at which the model accurately identifies
actual positives, against the (FPR) which is the rate at which the model incorrectly classifies actual
negatives as positives. Higher (AUC) values specify better model performance. The (EER) is the point
on a receiver operating characteristic curve where the false positive and false negative rates are equal.
It denotes a point when the rates of improper acceptances and rejections are equal. A lower (EER)
implies improved model performance. The performance comparison is shown in Table 8. Our model
demonstrates that the availability of both audio and video in the dataset improves the precision and
accuracy of the model. The statistical analysis of the results is described below. In the case of (UMN)
Interior, the precision, recall, accuracy, and F1-score of audio-video are better than the rest of the
individual models. For (UMN) Lawn, accuracy and the F1-score of the joint model have shown
better results than the rest of the singular modalities. The reason is the low precision rate of video
for predicting the anomalies; its poor regularity score has dampened the precision and recall of the
joint model as compared to the audio model. For (UMN) Plaza, the precision and F1-score of the
audio-video model have performed well. The good point is that the precision score of audio and
video separately is low, but it enhances the precision of the score of the joint model, which is the main
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motivation of this proposed approach. For (UCSD PED 2), all the evaluation metrics performed well
for the audio-video data.

Table 8: The table displays the (AUC) and (EER) metrics, with higher (AUC) and lower (EER) values
indicating better performance. The proposed method achieves the highest (AUC) and the lowest (EER)
on both datasets, demonstrating improved performance

Methods AUC (%) EER (%)

UCSD PED 2

Pang et al. [16] 83.2 –
Feng et al. [53] 83.8 –
Feng et al. [53] 84.5 –
Rashmiranjan et al. [52] 88.3 11.3
Tian et al. [54] 89.6 15.9
Tian et al. [54] 90.2 20.3
Proposed 93.1 8.1

UMN dataset

Buckchash et al. [55] 82 –
Leyva et al. [56] 88.3 19.8
Rehman et al. [29] 90 –
Sabih et al. [57] 92.3 –
Parate et al. [58] 93.6 –
Proposed 94.9 5.9

For state-of-the-art methods, research has used convolutional autoencoders, distinct variations of
(PCA), and intermediate fusion techniques for visual anomaly detection. Our proposed approach has
shown that our joint model (AUC) and (EER) are better than the visual model. Our (EER) value is
much lower as compared to other papers. In the case of the (UMN) dataset, research has employed
the techniques of Gaussian mixture models, Markov chains, bag-of-words, (SVM), and Grassmann
manifolds. The (AUC) of these techniques is lower than our proposed approach because they have used
traditional machine learning approaches whose results are not as accurate and robust as compared to
deep learning techniques.

5 Conclusion

In this paper, a joint Seq2Seq (AE) and DenseNet model is proposed that utilizes acoustic and
visual datasets to predict integrated anomaly scores. These datasets are trained independently upon
respective acoustic and visual models. These Seq2Seq (AE) models processed the input sequence
and generated the reconstructed output sequences to calculate anomaly scores. If input and output
sequences are non-equivalent, the reconstructed error increases while the anomaly score reduces,
indicating the sequences as abnormal and vice versa. Thus, the anomaly score of these models acts
as an input to the DenseNet joint model; it trains itself upon these inputs and predicts the class
either 0: anomalous or 1: normal. The acoustic and visual scores are independent, while the joint
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score is dependent upon them. The performance of the proposed model is assessed on three standard
benchmarks: (UCSD PED 2), (UMN) datasets, and (TUT) rare sound events. Accuracy, precision,
recall, and F1-score are classification metrics employed to compute the performance of the model. It
indicates that the model outperforms the joint scores instead of the individual scores, depicting the
competitive advantage of the proposed multi-modal approach. The proposed technique is compared
with state-of-the-art techniques that show low (EER) and high (AUC). (AUC) of 93.1 and (EER) of
8.1 are obtained by the model on the (UCSD) dataset, whilst (AUC) of 94.9 and (EER) of 5.9 are
obtained on the (UMN) dataset.
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