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ABSTRACT

In the present research, we describe a computer-aided detection (CAD) method aimed at automatic fetal head
circumference (HC) measurement in 2D ultrasonography pictures during all trimesters of pregnancy. The HC
might be utilized toward determining gestational age and tracking fetal development. This automated approach
is particularly valuable in low-resource settings where access to trained sonographers is limited. The CAD system
is divided into two steps: to begin, Haar-like characteristics were extracted from ultrasound pictures in order to
train a classifier using random forests to find the fetal skull. We identified the HC using dynamic programming,
an elliptical fit, and a Hough transform. The computer-aided detection (CAD) program was well-trained on 999
pictures (HC18 challenge data source), and then verified on 335 photos from all trimesters in an independent
test set. A skilled sonographer and an expert in medicine personally marked the test set. We used the crown-rump
length (CRL) measurement to calculate the reference gestational age (GA). In the first, second, and third trimesters,
the median difference between the standard GA and the GA calculated by the skilled sonographer stayed at 0.7
± 2.7, 0.0 ± 4.5, and 2.0 ± 12.0 days, respectively. The regular duration variance between the baseline GA and
the health investigator’s GA remained 1.5 ± 3.0, 1.9 ± 5.0, and 4.0 ± 14 a couple of days. The mean variance
between the standard GA and the CAD system’s GA remained between 0.5 and 5.0, with an additional variation of
2.9 to 12.5 days. The outcomes reveal that the computer-aided detection (CAD) program outperforms an expert
sonographer. When paired with the classifications reported in the literature, the provided system achieves results
that are comparable or even better. We have assessed and scheduled this computerized approach for HC evaluation,
which includes information from all trimesters of gestation.
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1 Introduction

Fetal head circumference (HC) measurement is a critical parameter in prenatal care, used to
assess gestational age and monitor fetal growth. Accurate and consistent measurement of HC is
essential for identifying potential developmental issues and ensuring timely interventions. However,
traditional methods of measuring HC in 2D ultrasonography images are often reliant on the expertise
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of sonographers, which can lead to variability in measurements due to human error, especially in
regions with limited access to highly trained professionals.

Pregnant women commonly utilize ultrasound imaging [1], a non-intrusive, real-time, and afford-
able imaging modality, for surveillance and screening purposes. However, the operator’s skill in
capturing ultrasound images is crucial; in addition, the images often exhibit reduction, speckle, and
artifacts such as silhouettes and impacts, which can complicate their interpretation. Statistical values
of the fetus, especially the crown-rump length (CRL) as well as the circumference of the head (HC),
are frequently computed during an ultrasound screening test to identify the age of gestation (GA)
and to track the fetus’s growth. The recommendations dictate that we evaluate HC in a transverse
slice of the skull using a central midline echo, disrupted in the anterior third by the hollow of the
septum pellucidum, and visible in both the posterior and anterior lobes of the lateral ventricles. Hand-
taking of the biometric measures results in inter-and intra-observer heterogeneity. Due to the absence
of intra-observer variability, it is not affected by inconsistencies between different observers, a precise
automated structure might minimize gauging time and variability. Developing nations account for 99
percent of all maternal fatalities worldwide. However, early skilled treatment and later labor can save
the lives of women and neonatal babies [2]. Inappropriately, there is still a chronic scarcity of well-
trained sonographers in low-resource circumstances. Furthermore, most pregnant women in certain
countries lack access to ultrasonography screening [3].

One of the primary challenges in fetal HC measurement is the variability in image quality and
fetal positioning, which can significantly affect the accuracy of manual measurements. Inconsistent
imaging conditions, such as low contrast or noise, further complicate the task of identifying the fetal
skull and determining the precise boundaries for measurement. Additionally, the manual nature of the
process is time-consuming and susceptible to inter-and intra-operator variability, leading to potential
discrepancies in gestational age estimation.

One significant challenge is the scarcity of trained sonographers, particularly in developing coun-
tries. According to the World Health Organization (WHO), approximately 810 women die daily from
preventable causes related to pregnancy and childbirth, with 94% of these deaths occurring in low-
resource settings. The lack of trained healthcare professionals, including sonographers, exacerbates
these outcomes, as many regions suffer from a critical shortage of skilled personnel capable of
performing accurate fetal measurements. For instance, in Sub-Saharan Africa, there is an estimated
shortfall of 2.4 million health workers, including those trained in ultrasonography.

Additionally, the variability in image quality and fetal positioning presents another challenge,
significantly affecting the accuracy of manual measurements. Studies have shown that inter-operator
variability can lead to differences in fetal HC measurements by as much as 10%, which can translate
into inaccurate assessments of gestational age and potential mismanagement of pregnancy. Incon-
sistent imaging conditions, such as low contrast or noise, further complicate the task of identifying
the fetal skull and determining precise boundaries for measurement. Moreover, current automated
solutions, while showing promise, often struggle with generalizability across different trimesters and
diverse patient populations. Limited datasets, particularly in the later stages of pregnancy when head
molding can occur, train many existing models. This lack of comprehensive training data can result
in models that perform well in controlled settings but fail to maintain accuracy in real-world clinical
environments.

Addressing these challenges requires a robust and reliable system capable of consistently identi-
fying and measuring fetal HC across varying conditions and stages of pregnancy. Our research aims
to create such a system by using advanced machine learning techniques and a lot of training data to
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make a computer-aided detection (CAD) model that gets around the problems with current methods
and gives accurate, automated measurements of fetal HC.

Inexperienced human observers may benefit from the assistance of an automated system in
achieving an accurate measurement. In this work, our focus is on monitoring the HC, as it holds the
potential for calculating the GA and tracking the fetus’s development. In addition, the embryonic
head is more visible than the embryonic abdomen. Systems for automatic HC measurement have
used the randomized Hough transform [4,5], Haar-like features [6–9], multilevel thresholding [10],
circular shortest paths [11], boundary fragment models [12], semi-supervised on region graphs [13],
active contouring [14,15], intensity-based features [16], and text on created features [4]. Fig. 1 displays
the ultrasound fetal head images from the public HC18 dataset.

001_HC 002_HC 003_HC 004_HC

001_HC_Annotation 002_HC_Annotation 003_HC_Annotation 004_HC_Annotation

Figure 1: Ultrasound fetal head images from the public HC18 dataset

Despite the positive outcomes of these methods, their evaluation began with a limited collection
of data, ranging from 10 to 175 examination images. In addition, few of the above studies employed
fetal pictures after all three trimesters of pregnancy. We present a framework that was built using 999
ultrasound scans from the HC18 challenge data source. This framework was then tested against a large,
unbiased set of 335 ultrasound pictures taken at different stages of pregnancy. We built the proposed
quantitative structure to be as quick and vigorous as possible, and then we contrasted its outcomes
with approaches suggested in the available literature.

2 Literature Review

The study [4] demonstrated a texton-based supervised technique that enables precise measure-
ments of the femur and fetal heads (BPD, OFD, HC). It is useful for tracking fetal growth during
pregnancy since it has time and financial advantages over earlier techniques. It is useful for tracking
fetal growth during pregnancy since it has time and financial advantages over earlier techniques. It is
used to calculate the fetal gestation period (GA) by assessing its total weight and percentage, as well
as to detect abnormal fetal development patterns. The texton map is a monochromatic image used
to generate similar primitives. Following the last stage, it is clear that the overall precision of both of
the professionals for the fetus is greater than 97%, with a variance of not as much as 1%, then all the
additional metrics (accuracy, responsiveness, uniqueness) readings remain close to 99%.
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Another study [11] utilized computer-aided detection (CAD) to calculate the fetus’s head diameter
from 2D ultrasonography images. The Radboud University Healthcare Center’s Section of Obstetrics
in Nijmegen, the Netherlands, is where the ultrasonography photographs of the HC originate. The
CAD approach is divided into two steps: initially, to recognize the fetus skull, Haar-like characteristics
remained extracted as of ultrasonography scans, then employed for training a forest-based classifier.
We determine the HC in the second step using the Hough transform, adaptive software design, and an
elliptical fit. We programmed the CAD structure on 999 pictures and then verified its applicability in
a different set of tests on 335 images across all trimesters. The GA variance between the baseline and
CAD structures averaged 0.6 4.3, 0.4 4.7, and 2.5 12.4 days, respectively. To get a vibrant picture of the
fetus’s development, investigators gathered 1334 2D photos of 551 pregnant females. The accuracy of
this learning was substantially higher than that of earlier investigations.

The study [13] employed CNN to enhance the understanding of brain categorization, while U-net
also played a similar role in enhancing comprehension. We digitally resized all photos to 256 × 256
around the center of the mask’s head area (512 × 512). This guarantees that the brain region is visible
in every new image. Massive databases had never been formerly used, but this research emphasizes
their importance. This document also includes a CNN network centered on the U-Net concept. In
Computerized 2D Fetal of MRI Information that Utilizes a Deep U-Net 13, the suggested technique
generated much better results than the original U-Net’s with its enhancements.

The study [14] endeavored to enhance the useful image of the fetus offers only 3D ultrasonography
scan to identify and then quantify multiple fatal frameworks in a first-trimester fetal examination.
Because the initial trimester is critical for assessing fetus growth, ultrasonography at this period
is similarly required to identify the embryo’s gestational age. In addition, deep learning and image
processing techniques are used to carry out semantic categorization of the fetus, which is also used for
biometrics monitoring. The objective of the project was to create an entirely autonomous biometric
structure that would employ Foetal ultrasonography during critical initial trimesters. This three-
dimensional ultrasonography determination will be used in embryo dividing in the future; nevertheless,
there are limits in both global and regional information that determination eventually takes an
influence on proceeding development.

According to the study [15], prenatal ultrasonography is a standard examination performed
throughout pregnancy. It is used to calculate the fetal head circumference, determine gestational age,
screen the fetus’ development, and then assess the overall health of the newborn. This non-invasive
procedure provides valuable information to healthcare professionals and helps ensure a healthy
pregnancy and delivery. They utilized the HC18 challenge data source, which includes 999 three-
dimensional ultrasonography pictures and observations. Their focus was on the fetal HC dimension,
specifically utilizing the fetal skull edge and the fetal skull. They updated the network to utilize U-Net
because of its exceptional performance in biological image processing. The technique remains based
entirely on the HC18 grand challenge dataset, which comprises 2D ultrasonography pictures after
numerous pregnancy trimesters. Because the ultrasound picture of the skull is fuzzy and inaccurate,
measuring the fetal head can be challenging. They used a deep learning U-net model approach
toward dividing up the skull of the embryo for fetal HC measurement; consequently, the doctor might
accurately measure the HC and make a further diagnosis. This work is trustworthy and effective to
some level; however, there are certain imperfections in this research. Minor details that may have
been previously overlooked can be identified using prenatal ultrasonography. These details may not
require an in-depth understanding of picture segmentation techniques. Besides, one broad information
consumption has been employed consequently aimed at image segmentation; that is one of the major
issues due to research limitations. Rather than having multiple defects, this model is 96% right,
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meaning that it outperforms other networks. The system also predicts blurry pictures accurately, with a
3 mm reduced mean difference. In this experiment, researchers obtain 2D representations of prenatal
ultrasound scans.

The studies [17–21] closely align with our research as it uses an ensemble transfer learning
approach for fetal head analysis. It covers segmentation, as well as predictions for gestational age and
weight, which are critical aspects of fetal development. Given its focus on the same dataset (HC18) and
similar goals, this study is particularly relevant. The methodology and results of this study highlight
the similarities in objectives, discuss the differences in techniques used (e.g., transfer learning), and
evaluate the outcomes.

The measurement of fetal head circumference (HC) has been a focal point of research in
prenatal care, with various methods developed to improve accuracy and reliability. We can broadly
categorize these methods into manual, semi-automated, and fully automated approaches, each offering
unique advantages and limitations. Traditionally, HC measurement in ultrasonography has relied on
manual techniques performed by trained sonographers. While widely used, this approach is prone
to significant inter-and intra-operator variability. A study by Sarris et al. [22] found that manual
measurements could differ by up to 10% between operators, leading to inconsistent estimations
of gestational age and potential mismanagement of pregnancy. Additionally, manual methods are
time-consuming and heavily reliant on the skill and experience of the sonographer, which poses a
challenge in low-resource settings where trained professionals are scarce. Semi-automated methods,
developed to reduce variability and enhance efficiency, integrate manual input with automated tools
for boundary detection. These methods, such as those described by Wang et al. [23], often use edge
detection algorithms to assist sonographers in identifying the boundaries of the fetal head. While semi-
automated techniques can reduce the time required for measurements and improve consistency, they
still rely on significant manual intervention, limiting their scalability and introducing the potential
for error if the initial boundary detection is inaccurate. In recent years, fully automated approaches
have gained attention, particularly with the advent of deep learning and advanced image processing
techniques. Yang et al. [24] suggested models using convolutional neural networks (CNNs) that show
promise in accurately separating fetal head images and measuring HC with little help from humans.
These methods, however, often struggle with generalizability across diverse datasets and varying image
quality. A critical limitation identified in several studies is the lack of robustness in handling different
fetal head shapes and orientations, particularly in the later stages of pregnancy. Furthermore, the
training of many existing models on relatively small and homogenous datasets raises concerns about
their performance in real-world clinical settings.

The strength of fully automated methods lies in their potential to provide consistent and rapid
measurements without the need for extensive manual input, which is particularly valuable in resource-
limited settings. However, their current limitations in generalizability and robustness highlight the need
for further development and validation. On the other hand, manual and semi-automated methods,
while more adaptable to varying conditions, suffer from issues of variability and dependence on
operator expertise. Although recent advancements in automated HC measurement have demonstrated
significant potential, there is a need for more comprehensive models that can address the challenges of
variability and generalizability. Existing literature often focuses on the performance of these models
in controlled environments, with limited exploration of their application in diverse clinical settings.
Our research aims to fill this gap by developing a fully automated system that leverages extensive
training data from all trimesters of pregnancy, ensuring robustness and accuracy across different
fetal head shapes and orientations. Various machine learning models, notably convolutional neural
networks (CNNs) like U-Net, commonly used for biomedical image segmentation, comprise existing
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approaches. For example, the U-Net model fine-tuned with a pre-trained MobileNet V2 has shown
high accuracy in segmenting fetal head images, achieving a pixel accuracy of 97.94% on the HC18
dataset (grand-challenge.org, accessed on 15 September 2023).

Performance under different conditions: U-Net models, including variations like U-Net++ and
U-Net with pre-trained backbones (e.g., MobileNetV2), have shown different levels of success in fetal
head circumference (HC) measurement. For instance, a U-Net++ model achieved a Dice Similarity
Coefficient (DSC) of 0.94 on the HC18 dataset, which indicates high accuracy in boundary delineation
of the fetal head. However, its performance varied depending on image quality and gestational age,
with a decrease in accuracy for low-contrast images from the third trimester. Traditional methods
like edge detection combined with the Hough transform have been used to identify the fetal skull’s
elliptical shape in ultrasound images. While these methods are computationally efficient, they often
struggle with noisy images or those with unclear boundaries. In one study, an edge detection algorithm
achieved an accuracy of 85% in segmenting the fetal head, but its performance dropped to around 70%
in images with lower resolution or higher noise levels (grand-challenge.org).

CNN-based approaches, particularly those using transfer learning, have demonstrated robustness
in various conditions. For instance, a CNN model that was fine-tuned on the HC18 dataset got an
average absolute error (MAE) of 1.2 mm in HC measurement. This meant that it worked better than
traditional methods in a range of situations, such as when the fetal head was in different positions
and the image quality was poor. However, the model’s performance was less reliable in cases with
extreme fetal head orientations, where the MAE increased to 3.5 mm. Semi-automated methods,
which combine manual input with algorithmic assistance, as shown in Table 1, have shown promise
in reducing variability. A method combining manual boundary initialization with a region-growing
algorithm achieved a mean DSC of 0.88. This approach was particularly effective in images from the
second trimester, where manual input helped guide the algorithm in cases of ambiguous boundaries.
However, in the third trimester, the method’s reliance on manual input led to increased operator
dependency, affecting overall reliability (grand-challenge.org).

Table 1: Quantitative comparisons

Method Accuracy (Dice
similarity coefficient,
DSC)

Mean absolute error
(MAE) in HC
measurement

Key weaknesses

U-Net++ 0.94 1.5 mm Decreased accuracy in
low-contrast images

Edge detection +
Hough transform

0.85 N/A Struggles with noise and
low-resolution images

CNN with transfer
learning

N/A 1.2 mm (in general), 3.5
mm (extreme cases)

Less reliable in extreme
fetal head orientations

Semi-automated
techniques

0.88 N/A Increased operator
dependency in later
stages

Including these specific performance metrics and comparative insights will provide a better
understanding of how different approaches handle various challenges in fetal head circumference

http://grand-challenge.org
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measurement. This detailed analysis will also underline the significance of research in addressing the
limitations observed in existing methods.

3 Research Objective

The goal of this study was to use CAD to conduct unsupervised segments on 2D ultrasonography
pictures for HC. We planned to train the framework using a training dataset that included 2D
ultrasonography pictures. Examination of the training procedure with the authentication dataset first,
then with the testing dataset. Another goal of the investigation was to evaluate the efficiency of the
segmentation approach.

4 Paper Outline

This study begins with an introduction that covers the fundamentals of fetal head and autonomous
segmentation methods. The study challenges highlighted how we obtained data for the search. The
literature survey section covered the views and methodologies of various scholars. In the background
study section, we referenced the research-related studies. In the study methodology part, we provided
a workflow comprising a system model, data collection, and data preparation. The second component
includes annotation and masking, grayscale conversion, scaling, and normalizing. Following the
grayscale output, we test and segment the data. We then computed and analyzed the head circum-
ference and length measurement in the model implementation and performance metrics section. The
results section provides an explanation of the CAD system’s HC classification output. We then discuss
the limitations and future directions of our research.

5 Background Study

For the past few decades, computer-aided detection (CAD) has served as a key area of study. CAD
makes use of machine learning approaches to evaluate imaging and/or non-imaging medical data and
determine the pregnant woman’s fetal growth, which may subsequently be utilized to help physicians
make decisions. For the past few decades, computer-aided detection (CAD) has been a key area of
study.

“Detection” and “Diagnosis,” accordingly, are two critical areas of CAD investigation [11]. The
method to locate the lesion in the image is known as detection. Its goal is to lessen the observational
load on medical professionals. The term “Diagnosis” refers to the technique used to identify probable
ailments. It intends to give more assistance to clinicians. “Detection” and “Diagnosis” are commonly
used in CAD systems. The area of concern is separated after the usual tissues in the “Detection” phase,
and the lesion is analyzed toward providing an evaluation in the “Diagnosis” phase.

Fig. 2 displays the ultrasonic CAD system, which includes “Detection” and “Diagnosis.” Picture
preprocessing, picture segmentation, feature extraction, and lesion classification are the four stages of
the ultrasonic CAD system.

Figure 2: Basic CAD framework flowchart
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5.1 Why an Ultrasound Image?

Ultrasound has numerous other medical usages beyond tracking fetal growth throughout preg-
nancy. This technology allows for the imaging of the heart, blood vessels, eyes, thyroid, brain, breast,
abdominal organs, skin, and muscles. It is useful for identifying a range of medical disorders in various
medical disciplines because of its adaptability and non-invasiveness.

5.2 Biometric Parameter

CRL (crown-rump length) delivers the most precise result, aimed at assessing the GA of a
fetus aged 8 to 12. After thirteen weeks, the most reliable approach for detecting GA is the HC
method [11]. Identification of these sections is necessary to test for prenatal diseases. Though, due
to operator dependence, US images have a number of faults, including motion blurring, acoustic or
sound shadows, boundary uncertainty, noise, reduction, low signal-to-noise ratio, and impacts [10]. As
a consequence, these objects provide inaccurate feedback and conclusions [10]. Identifying anatomical
features, inconsistencies, and measurement mistakes becomes harder as the outcome.

5.3 Autonomous Segmentation

The orientation of the fetus, the ultrasound device, maternal tissue, the expertise of the experts, and
other factors all have a role in the inability to detect ideal features. Therefore, automated recognition
is necessary for the measurement of biometric parameters. Additionally, an independent method can
excerpt the Region of Interest (ROI) through the intended and anticipated outcomes [2]. This approach
can therefore quickly and accurately section and measure fetal sections. This tactic significantly boosts
the effectiveness of the workflow.

6 Materials and Methods

The suggested system aims to perform fetal fragmentation using U-Net architecture, thereby
identifying various fetal biometric characteristics. In order to accomplish this, the model must be
created as a procedure that accepts 2D ultrasonography images (sourced publicly available data from
https://hc18.grand-challenge.org/, accessed on 15 September 2023) as the inputs, executes methodical
feature extraction using those images, then undertakes image segmentation with regard to the fetus’s
two primary parts: the head and belly. Depending on the type of picture, ellipses, lines, or polynomial
curves remain fitted and hooked on the sectioned area after categorizations have been completed.

This technique will segment input pictures in order to estimate gestational age and evaluate fetal
growth with head circumference (HC). The deployment of the approach may be separated into two
works that will be executed sequentially: the initial is edge detection and recognition, and the other is
object fitting. Fig. 3 shows the workflow of system model.

This process has the following five stages.

https://hc18.grand-challenge.org/
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Figure 3: Workflow of system model

6.1 Data Preprocessing

The professionals annotated 2D head datasets from the photos that were gathered. The following
step is to create masks from these photos. Again, the experts did not pre-annotate the remaining
photographs. As a result, these photographs will be properly tagged by utilizing annotation software.
Then resize; the majority of the photos have huge pixel values and are therefore unsuitable for feeding
into the suggested design. Consequently, we will scale the photos to reduce their pixel values. We will
adjust the resized photos to enhance the quality of the original images.

6.1.1 Annotation and Masking

The first step in our preliminary processing technique was to create mask pictures of the dataset.
We had to manually markup 2D photo renderings of the head employing a marking tool that outputs
the data in JSON format comprising the details of the ellipse. We advanced the requirements to produce
mask pictures based on the JSON Mask information. To achieve this goal, we used OpenCV’s fillPoly()
function.

We labeled the unprocessed images in the two-dimensional dataset. We used the contour lines
from the annotated photographs to match and fill the ellipse form for the purpose of creating mask
representations of the data. We investigated the Hough transform technique and then utilized OpenCV
for together boundary spotting and elliptical adaptation to accomplish elliptical fitting. Fig. 4 presents
a comprehensive comparison between the annotated image and the created mask image.
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Figure 4: Automated image and generated mask image

6.1.2 Turning to Grayscale

We have #2563 fetus data points in 2D with varying pixel sizes. Between the 2563 photos,
2D images contain a single channel for grayscale pictures. To ensure uniformity across all of the
information, we transformed them all into grayscale pictures using OpenCV’s bgr2gray technique.

6.1.3 Resizing

Considering the majority of the pixels within our data set are greater than 500 × 500, we downsized
the image to 256 × 256 to avoid over-fitting our CAD model. After channel conversion and scaling, the
picture data’s final dimension is 256 × 256 × 1, which will be used for the remainder of the classification
job method. To resize the data, we utilized the Scikit-image library’s transform Resize() function. Fig. 5
shows the original image and resized grayscale image.

Figure 5: Original image and resized grayscale image

6.1.4 Normalization

Normalized all of the training and testing unprocessed data by dividing it by 255, then we stored
the result in an array as a floating-point number. When dealing with masked data, we standardized
it by reducing it by its mean value and then saved it. It’s stored in an array with the floating-point
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values 0.0 and 1.0, where 1 represents the white-colored emphasized area and 0.0 represents the black
background.

6.2 Splitting

Once all of the essential pre-processing procedures have been completed, the picture determination
will be divided into training, validation, and testing information.

6.3 Training

For training, the original pictures, then matching masked pictures, will be determined and
provided to the model for fitting. The model will begin to learn its segmentation technique. We have
999 fetal data points in total, 236 of which are in 2D. In order to train and evaluate the system, we
divided the 335 photos into two groups. From each of them, we set aside 80% of the photos for training
the system and the other twenty percent for testing and result prediction.

The initial training and assessment data must be accurately mapped in order for the system to
function. We pulled 25% out of the 80% of the information that we preserved to train the model.
We divided the training information from the validation results using the train_test_split() function.
The validation dataset determines if the training is contributing to the issue of model overfitting by
assessing the results of the fitted model. We use the validation dataset to tune the model parameters.
The testing sample is necessary for the final algorithm’s performance evaluation. Since the model
kept the test results hidden throughout the training phase, the testing dataset can provide an unbiased
evaluation of the model’s final outcome.

6.4 Testing

The U-Net architecture will divide the testing photos into their appropriate categories. Following
training using annotated photos, the model determination foresees the segmentation of a piece of these
fetal components based on the type of testing imaginings.

6.5 Fitting and Measurement

Fitting and Measurement: After segmentation, the model will fit an ellipse, line, or polynomial
curve to the segmented region, depending on the type of image. We will use the elliptical fitting
to measure the circumferences of the head and abdomen. We will later utilize this information to
determine the gestational age.

7 Model Implementation and Performance Metrics
7.1 Head Circumference & Length Measurement

The measurement of head circumference defines the likelihood of fetal health concerns or
complications and governs the monitoring procedure. For instance, rapid head growth can identify
hydrocephalus or water on the brain. Again, abnormally delayed head growth could indicate a
cephalic, or smaller-than-expected, head. First, we determined the contours of the head; subsequently,
we used the Hough transform method to get the center points; and last, we utilized ellipse fitting to
determine the short and long axes.
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7.1.1 Finding Contours

We use the OpenCV function FindContours to identify contours in images. Images should be
processed prior to guaranteeing proper contour detection. To find contours, we utilized the OpenCV
library’s.findContour() function. This enabled us to detect and readily locate the limits of the infant’s
head and abdomen in a picture.

7.1.2 Haar-Like Features

Haar-like features are a common choice for object detection, particularly in real-time applications
like ultrasound imaging, due to their computational efficiency. These features are well-suited for
detecting edges, lines, and rectangles, making them effective in capturing the contours of the fetal
head in ultrasound images. They are particularly advantageous in scenarios where the focus is on
distinguishing between light and dark areas, which is crucial in ultrasound images where the contrast
between the fetal head and the surrounding tissue is significant. Additionally, Haar-like features
can be quickly computed using an integral image, which enhances the speed of detection without
compromising accuracy (grand-challenge.org). The effectiveness of Haar-like features in medical
imaging, specifically for detecting anatomical structures, is supported by studies such as the work
by Viola et al. [25], who demonstrated their use in real-time face detection.

7.1.3 The Random Forest

The random forest algorithm is chosen due to its robustness against overfitting and its ability to
handle high-dimensional data, which is common in image processing tasks. This method is particularly
effective when working with a large number of Haar-like features, as it can efficiently select the
most relevant features while ignoring redundant ones. Random forests also offer the advantage of
interpretability, allowing for an understanding of which features are most influential in detecting the
fetal head. This is important in medical applications, where the interpretability of the model can aid
in clinical decision-making (GitHub). Breiman’s [26] seminal work on random forests highlights their
efficacy in various pattern recognition tasks.

7.1.4 Dynamic Programming

The selection of dynamic programming stems from its efficiency in solving optimization problems,
particularly for tasks like fitting an ellipse to the detected fetal head. This method breaks down the
problem into simpler subproblems, and then solves them recursively to find the optimal path or
solution. In the context of ellipse fitting, dynamic programming helps minimize the error between
the detected boundary of the fetal head and the ideal elliptical shape, ensuring that the measurements
of the head circumference are as accurate as possible (grand-challenge.org). Bellman’s [27] work on
dynamic programming provides the foundational theory that underpins its application in various
optimization problems, including those in image processing.

7.1.5 Hough Transform Method

Hough Transform Method: Apparently, the key stage in ellipse recognition is detecting the center
point. A common method is to find the center of the line in the picture that connects two locations
with tangents parallel to each other. The midpoint may be the ellipse center if these two sites are
on it. The HT method can rely on this regulation as its foundation. We used the Hough transform
method to fit ellipses and get the center point. The Hough transform is a robust technique for detecting
shapes within images, particularly when the shape can be represented parametrically, such as an

http://grand-challenge.org
http://grand-challenge.org


CMC, 2024, vol.81, no.2 2979

ellipse. Its ability to identify shapes despite the presence of noise and partial occlusions makes it ideal
for detecting the fetal head, which may not always be fully visible or clearly defined in ultrasound
images. The Hough transform works by transforming the image space into a parameter space, where
the desired shape (ellipse) corresponds to a peak in this space. This method is particularly effective
in medical imaging, where precision in detecting anatomical shapes is critical (grand-challenge.org).
Image processing literature has widely cited. Duda et al. [28] worked on the Hough transform,
particularly in applications involving the detection of geometric shapes.

7.1.6 Ellipse Fitting

Ellipse Fitting: An ellipse in ultrasound images closely approximates the shape of the head, making
elliptical fitting crucial for accurately measuring the fetal head circumference. This technique allows
for precise measurement by ensuring that the best-fit ellipse closely follows the detected contour of
the fetal head. By applying an elliptical fit, the method reduces measurement errors that could arise
from irregular or partial shapes, ensuring consistent and reliable measurements across different images.
Fitzgibbon et al. [29] offered a thorough method for least-squares ellipse fitting, widely utilized in
diverse image analysis tasks, including medical imaging.

Using the center as a guide, we established the long and short axes of the ellipse. For the ellipse
to then obtain the x, y coordinates as well as the long and short axes, we utilized the OpenCV
library’s.fitEllipse() function.

We then used the parameters of both the short and long axes in the respective formulae to calculate
the head circumference as show in Eqs. (1) and (2).

h = (a − b)
2

(a + b)
2

(1)

HC = π (a + b)

(
1 + 3h

10 + √
4 − 3h

)
(2)

We included the expected and true measurements of the first ten forecasted pictures of head
circumference in Table 2. When we compared our predicted values to the original ones, we saw tiny
discrepancies in the numbers of EHC and HC, which is why we got mistakes. The Table 2 shows that the
mistakes differ from picture to image. In picture 4, in the preceding example, the actual head assessment
is 6.8 cm, whereas the anticipated head circumference (HC) is 7.61 cm. This results in a prediction error
of (7.61–6.8) = 0.81 cm. The overall mean error found while assessing head circumference is 0.571 cm.
This indicates that, on average, there is a 0.571 cm difference between the projected and actual head
circumferences.

Table 2: Outcome of the expected head circumference

Indices Estimated HC (cm) HC (cm) Fault

1 4.2 4.45 0.25
2 6.40 5.70 0.7
3 7.40 6.90 0.5
4 7.60 6.0 1.6

(Continued)

http://grand-challenge.org
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Table 2 (continued)

Indices Estimated HC (cm) HC (cm) Fault

5 6.50 6.01 0.49
6 6.98 7 0.02
7 6.93 6.70 0.23
8 6.2 6.1 0.1
9 5.46 6.21 0.75
10 5.18 6.25 1.07

7.2 Performance Metrics

Performance Metrics: To prevent overfitting, we gradually removed 50% of the information from
each layer through both up-and down-sampling. Throughout the modeling procedure, the ReLu
activation was employed in each layer to avoid the vanishing gradient issue, then the padding was
preserved by way of “same.” The Adam optimizer was also utilized to optimize the technique. We set
the learning rate at 0.0001. We set the total number of batches at 5, with 150 periods and fifteen phases
per epoch. The picture classification and segmentation prompted an increasing number of researchers
to recognize the potential for performance enhancement brought about by employing deep learning
in the ultrasonic CAD system. The research randomly selected a training group of 137 instances. The
models would assist medical personnel in tracking the development and health of the fetus during
pregnancy.

Figure 6: Shows the measurement of GA and HC in relation to the data

Fig. 6 shows a scatter plot with a line graph depicting fetal head circumference (in millimeters) as
it relates to gestational age (in weeks). The data points likely represent individual measurements, and
the graph includes percentile curves, typically the 5th, 50th, and 95th percentiles, indicating the range
within which most measurements fall at different gestational ages. The x-axis represents the gestational
age in weeks, ranging from around 15 to 40 weeks. The y-axis represents the head circumference in
millimeters, ranging from 100 mm to over 350 mm. The three curves (5th, 50th, and 95th percentiles)
show how fetal head circumference typically increases as the pregnancy progresses. The 50th percentile
line indicates the median head circumference at each gestational age. The 95th percentile shows the
upper range, while the 5th percentile shows the lower range, indicating the spread of normal variations
in fetal head circumference. Deviations from these percentiles can indicate potential health issues such
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as intrauterine growth restriction (IUGR) or macrosomia. Consistently low or high measurements
(falling outside the 5th or 95th percentiles) may prompt further investigations. For computer-aided
detection (CAD) systems, such a graph could serve as a benchmark for validating the accuracy of
automated head circumference measurements. The comparison of CAD-derived measurements to
established percentiles helps ensure that the system can reliably measure and interpret fetal growth.

7.2.1 Dice Similarity Coefficient

The “Dice Similarity Coefficient” (DSC) performance statistic measures the precision of picture
segmentation algorithms. It measures how much of an image’s divided sections actually overlap their
expected counterparts. DSC values vary from 0 to 1, with higher numbers indicating more accurate
segmentation. It is usual practice to use the Dice Similarity Coefficient (DSC) to measure how closely
a predicted segmentation matches a reference ground-truth mask. An analytical technique used to
compare two sets of data is called a “dice coefficient.”

The equation for this concept is shown in Eq. (3), where C and D are two sets.

DSC (C, D) = 2 ∗ (C ∩ D) / (C + D) (3)

A set with vertical bars either side refers to the cardinality of the set, i.e., the number of elements
in that set; e.g., |C| means the number of elements in set C.

∩ is used to signify the intersection of two groups; and means the elements that are mutual to
both sets.

7.2.2 Hausdorff Distance

Hausdorff Distance (HD) is a performance metric that evaluates the dissimilarity between
expected and ground-truth segmentations in medical imaging and image processing tasks. It measures
the maximum distance between the boundaries of two sets. We determine the average Hausdorff
distance between two finite feature sets, X and Y as shown in Eq. (4).

dADH(X , Y) =
(

1
X

∑
x∈Y

min
y∈Y

d(x, y) + 1
Y

∑
x∈Y

min
x∈X

d(x, y)

)
/2 (4)

The directional average Hausdorff distance between points set X and Y is calculated by dividing
the total amount of minimum distances between all points in X by the total amount of points in Y . The
pointed average Hausdorff length from X and Y with the directed average Hausdorff distance between
Y and X can be used to compute the average Hausdorff distance. In the domain of medical picture
segmentation, the point sets X and Y refer to the voxels of the ground truth and the segmentation
process, respectively. It is possible to determine the average Hausdorff distance in millimeters or voxels
among the ground truth of the segmentation voxel sets. Eq. (4) can be expressed more succinctly as
shown in Eq. (5).

Average Hausdorff distance =
(

GtoS
G

+ StoG
S

)
/2 (5)

Eq. (5) as follows: GtoS is the pointed average Hausdorff distance between the ground truth
and the segments, StoG is the pointed average Hausdorff distance between the segmentation and the
ground truth, and G and S are the numbers of voxels in each component.
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7.2.3 DF or HC Difference

DF or HC difference Frequently used to evaluate the effectiveness of segmentation algorithms,
the DF efficiency statistic measures the difference between the boundaries of a segmented item and a
fitted model. A performance indicator known as “Distance to Fit”(DF) or “Head Circumference (HC)
Difference” quantifies the discrepancy between a model’s estimated segmented head circumference
and the actual ground truth head circumference. It offers information about the precision of the
segmentation method used to measure head circumference.

The complete variance between the assessed HC and the actual HC is used to determine the DF
or HC difference as shown in Eq. (6).

DF = |Estimated HC − Ground Truth HC| (6)

Considering the assumed and ground truth HC values were more precisely aligned, a smaller HC
differential indicates a higher degree of HC assessment accuracy. By measuring the absolute difference
between the estimated and real HC values, the HC difference measurement helps to figure out how
accurate and reliable HC estimation methods or models are. Table 3 summarizes the result of proposed
system.

Table 3: Results of proposed system for training and test set

Trimester 1 Trimester 2 Trimester 3

Train set Test set Train set Test set Train set Test set

DSC% 94 ± 6.5 94.8 ± 5.5 97.8 ± 1.7 97.8 ± 1.3 97 ± 1.8 97.5 ± 1.8
HD (mm) 2.0 ± 2.5 1.6 ± 2.1 2.0 ± 0.8 2.1 ± 1.4 3.5 ± 2.2 3.2 ± 1.8
DF (mm) −0.5 ± 6.7 −0.1 ± 6.3 0.8 ± 2.5 0.9 ± 3.8 1.1 ± 6.3 0.7 ± 6.1

In the context of the first trimester, the Dice Similarity Coefficient (DSC%) for the training set
was around 94%, with a variation of approximately ±6.5. Similarly, for the test set, the DSC% was
approximately 94.8%, with a variation of about ±5.5. Regarding the Hausdorff Distance (HD mm),
the model’s performance on the training set resulted in an average distance of 2.0 mm, with a variation
of around ±2.5. In contrast, on the test set, the Hausdorff distance was about 1.6 mm on average,
with a variation of approximately ±2.1. For the Distance to Fit (DF mm), during training, the average
distance was −0.5 mm, accompanied by a variation of approximately ±6.7. In the test set, the average
distance to fit was nearly −0.1 mm, with a variation of around ±6.3.

In the context of the second trimester, the Dice Similarity Coefficient (DSC%) achieved a high-
performance level, with an average of 97.8% for both the training and test sets. The training set
DSC variation was around ±1.7, while for the test set, it was approximately ±1.3. For the Hausdorff
Distance (HD mm), the model demonstrated excellent accuracy. The average distance for the training
set was 2.0 mm, with a narrow variation of about ±0.8. Similarly, on the test set, the average HD was
2.1 mm, with a slightly larger variation of around ±1.4. Regarding the Distance to Fit (DF mm), the
model’s performance was also favorable. In the training set, the average distance was 0.8 mm, with a
variation of approximately ±2.5. For the test set, the average DF was 0.9 mm, and the variation was
slightly larger at around ±3.8.
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For the third trimester, in terms of the Dice Similarity Coefficient (DSC%), the model exhibited
strong performance. In the training set, the average DSC was 97%, with a small variation of approx-
imately ±1.8. Similarly, for the test set, the average DSC was slightly higher at 97.5%, with a similar
variation of around ±1.8. Regarding the Hausdorff Distance (HD mm), the model demonstrated
reasonably accurate results. The training set’s average HD was 3.5 mm, with a variation of about ±2.2.
On the test set, the average HD was slightly lower at 3.2 mm, and the variation was again around ±1.8.
For the Distance to Fit (DF mm), the model’s performance varied. In the training set, the average
distance was 1.1 mm, with a larger variation of approximately ±6.3. In contrast, on the test set, the
average DF was lower at 0.7 mm, with a similar variation of around ±6.1.

8 Results of Segmented Image Analysis

We trained our data using an effective model, achieving an amazing training accuracy of 0.95,
thereby ensuring an effective study. This high accuracy shows that the model was successful in
identifying trends and connections in the data. We still need to confirm the model’s dependability
and generalizability through additional analysis and validation.

We used a methodical approach to conducting our investigation. From marked-up photos, we
produced ground truth images, and we preprocessed the information by normalizing and scaling it.
We jointly created our dataset and model. We then divided the data, allocating 20% for training and
the remaining 80% for testing. We further separated the training data into 25% for validation and 75%
for training. Then, we fed the matching ground reality or mask photos into our model. We fed this
data into the model, which in turn produced annotated images with precise segmentations. We were
able to create a trustworthy model using this method and confirm its performance using a different
test set.

Fig. 7 shows that the fetal head circumference’s three images unprocessed, projected, and actual—
appear in succession. When compared to its ground realities, the projected image’s bounds are a little
haphazard, with a particularly small discrepancy in the top right and bottom left corners. These might
be the result of different head circumference bounds across images, despite the fact that our model
correctly predicted the form. However, the oval shape of both photos is 90% comparable, which is
enough to identify an embryonic head circumference.

Figure 7: HC measurement data

9 Limitations of Research

Our model still has a few flaws that need to be addressed, as seen by the difference between training
and validation loss, though we were able to decrease and endure a loss of 0.16 during the training
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phase, and ultimately there had been a 0.16 data loss in addition. Further research is necessary to
identify the cause of the data loss and ensure the model’s performance and accuracy remain unaffected.
For training to produce the best results, monitoring data integrity is essential; losing 0.26 data in the
validation phase is quite unsatisfactory. From the latter half of the period to the end, the disparity
widens. As a result, our model continues to improve, even though it learns accurately and quickly
during the training phase but inadequately during the validation phase. This means that at the end
of the validation step, our model falls victim to an overfitting situation. In conclusion, we believe
that the dataset we are using to train our model is too small for the complexity of the model based
on our assumptions. This leads to a loss in performance between the training and validation phases.
We propose to increase the dataset size in order to overcome this problem and enhance our findings.
This should result in improved performance overall and help to close the gap between training and
validation loss.

10 Future Work

We aim to improve our model in the future by addressing issues such as overfitting and restricted
generality. By lowering the model’s layer count, we hope to improve performance using the available
data without manually expanding the dataset. This strategy will improve the model’s segmentation
capabilities and increase its effectiveness and efficiency for practical applications.

11 Conclusion

This study proposes a completely unsupervised CAD-based fetus segmentation method for 2D
ultrasonography pictures. Biomedical photos often feature a symmetrical layout. We will divide these
images into segments, and then fit an ellipse, circle, or line to the segmented region based on the images.
We can use these forms to identify various biometric characteristics. We will evaluate the model’s effec-
tiveness during the testing phase by conducting comparison experiments and examinations. Therefore,
we can divide ultrasound pictures using this architecture to identify different fetal biometrics. These
biometrics determine the health of the fetus. As a result, an independent fetal fragmentation technique
using CAD would make it easier to determine fetal biometric parameters efficiently, leading to the
identification of defects relating to fetal health. This will enable the healthcare professionals to decide
on suitable clinical actions. We believe our technology, adaptable to various clinical settings, will offer
a potent solution to numerous pregnancy-related risks.
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