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ABSTRACT

Image captioning has gained increasing attention in recent years. Visual characteristics found in input images
play a crucial role in generating high-quality captions. Prior studies have used visual attention mechanisms to
dynamically focus on localized regions of the input image, improving the effectiveness of identifying relevant image
regions at each step of caption generation. However, providing image captioning models with the capability of
selecting the most relevant visual features from the input image and attending to them can significantly improve
the utilization of these features. Consequently, this leads to enhanced captioning network performance. In light of
this, we present an image captioning framework that efficiently exploits the extracted representations of the image.
Our framework comprises three key components: the Visual Feature Detector module (VFD), the Visual Feature
Visual Attention module (VFVA), and the language model. The VFD module is responsible for detecting a subset of
the most pertinent features from the local visual features, creating an updated visual features matrix. Subsequently,
the VFVA directs its attention to the visual features matrix generated by the VFD, resulting in an updated context
vector employed by the language model to generate an informative description. Integrating the VFD and VFVA
modules introduces an additional layer of processing for the visual features, thereby contributing to enhancing the
image captioning model’s performance. Using the MS-COCO dataset, our experiments show that the proposed
framework competes well with state-of-the-art methods, effectively leveraging visual representations to improve
performance. The implementation code can be found here: https://github.com/althobhani/VFDICM (accessed
on 30 July 2024).
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1 Introduction

In image captioning, the model faces the formidable task of accurately discerning the salient
objects within an image, comprehending their inherent characteristics and attributes, and effectively
conveying the intricate interactions between these detected objects. Image captioning networks typi-
cally adhere to the encoder-decoder framework. Ingrained in Convolutional Neural Network (CNN),
the encoder module diligently extracts the visual features and representations embedded within the
input image. In parallel, the decoder module, founded on Recurrent Neural Networks (RNN), assumes
the crucial role of generating a coherent textual description that encapsulates the essence of the image’s
content. This structured approach enables the model to seamlessly connect the visual and linguistic
realms, transforming visual data into meaningful and interpretable textual descriptions, thus bridging
the gap between computer vision [1–3] and natural language processing.

Despite the notable progress made in previous studies on image captioning, there are still inherent
limitations in existing approaches. Specifically, conventional visual-based image captioning methods
have a tendency to rely on the same set of visual features throughout all time steps. This uniform
treatment persists even when many object features in the input image may not be pertinent to
the linguistic context required for generating the subsequent word in the caption. This reliance on
irrelevant visual features poses a significant challenge. The inclusion of unrelated objects in the visual
input has the potential to divert the attention of the image captioning model towards incorrect visual
elements. This, in turn, can result in the generation of inaccurate words within the captions produced
by the model. Therefore, it becomes imperative to delve into and discern the most relevant visual
features at each time step. This exploration aims to augment the visual attention module, with the
ultimate goal of refining the performance of caption generators. By identifying and focusing on the
most contextually relevant visual cues during each stage of caption generation, we seek to enhance the
accuracy and overall quality of the generated captions.

In our research work, we aim to design image captioning model that can develop image descriptors
capable of efficiently exploiting the visual features of images. This proposed method can contribute to
boosting the performance of the image captioning models and generating high-quality descriptions.
The proposed new method, Visual Features Detection Based Image Captioning Model (VFDICM),
aims to exploit the visual features of the input image effectively to enhance the performance of
the image captioning models and generate more informative descriptions with higher quality. The
proposed image captioning model is essentially built on the UpDown [4] framework and incorporates
two additional modules that help leverage the visual features of the input image. These two modules
are the visual feature detector module (VFD) and the visual feature visual attention module (VFVA).
The VFD module is used to dynamically select the most related features from the visual features to
generate a new visual matrix, which consists of the top-k most related visual features to the current
linguistic context. Meanwhile, the VFVA module is used to attend to the selected visual features and
generate a new visual context vector. This generated vector is fed into the language Long Short-Term
Memory (LSTM) layer and used to generate the next word of the partial caption. An illustration of
the newly proposed image captioning model is shown in Fig. 1.

The primary objective of our algorithm is to capture the visual attributes within the input image
and emphasize their importance, as well as enhancing the performance and scoring of the model for
the captioning of the input image. In order to determine the effectiveness of our captioning network,
a comprehensive evaluation was conducted of thorough assessment by using MS-COCO [5] dataset.
The captions generated by our model display a level of quality that is on par with those produced
by numerous state-of-the-art methods when it comes to evaluation metrics, demonstrating a level of
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quality that is comparable with the results of our model. As a result of our extensive experiments,
we have conclusively demonstrated that the visual feature matrix predicted by the VFD serves as
a great guide for the decoder network, resulting in the generation of captions that are much more
informative as a result. This significantly outperforms numerous recent image captioning models,
marking a significant achievement in the field.

Figure 1: An overview of the proposed pipeline for VFDICM model

This work makes several notable contributions, which can be summarized as follows:

• We explore the impact of utilizing various sets of visual features at each time step to enhance
the quality of the generated captions.

• We propose a new method, Visual Features Detection based Image Captioning Model
(VFDICM), which aims to exploit the visual features of the input image effectively to enhance
the performance of the image captioning models and generate more informative descriptions
with higher quality.

• We propose the VFD module for dynamically predicting the most top related visual features,
and the VFVA module for addition attention of visual features processing.

• We evaluate our model VFDICM on the MS-COCO dataset, and the results show that the
proposed method performs comparably to the latest state-of-the-art techniques according to
evaluation metrics.

2 Related Work

A dynamic visual attention mechanism was introduced in [6–8], attention was integrated into
the captioning process [7], and adaptive attention was adopted [9]. Other developments encompass
merging top-down and bottom-up attention mechanisms [4], enhancing attention through memory
mechanisms [10], as well as introducing task-adaptive attention to non-visual words through new
models of attention [11]. The quality of captions can also be improved if two attentions are focused on
pyramid images simultaneously [12] as well the grounding networks based on clusters are considered
[13]. A new metric like Proposal Attention Correctness (PAC) [13] provide a bridge between evaluation
of the proposal’s performance and its visual grounding. Transformer, which is a multimodal model
that uses multiple modalities [14], in conjunction with a multiview feature learning system [15],
extends image captioning capabilities, collectively refining attention mechanisms and diversifying
captioning techniques in the field. Previous work [16] presents an innovative technique for generating
captions for images based on wavelet decomposition and convolutional neural networks in order to
achieve comprehensive information extraction. Reference [17] introduces a novel Image Captioning
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HANs (Hybrid Attention Networks) combine human captioning attention with machine attention
mechanisms to address issues like “object hallucination” and enhance caption diversity. Reference
[18] introduces novel attention mechanisms (LSA and LSF) to enhance local visual modeling with
leveraging the grid features. The authors in [19] present a framework for refined visual attention (RVA),
in which the internal reweighting of visual attention is dependent upon the language context. Reference
[20] introduces a GVA-based approach to image caption generation, enhancing the quality of captions
by re-adjusting attentional weights. Reference [21] introduces JRAN, an image captioning approach
that enhances caption coherence by investigating the relationships between features by incorporating
semantic features and region. Despite the effectiveness of these methods, they still grapple with
challenges. In particular, these approaches often use the same visual features at all time steps, even when
many features are irrelevant to the context needed for the next word. This reliance on irrelevant features
can misdirect the model’s attention, resulting in inaccurate words in the captions. This highlights the
necessity of developing a mechanism to investigate and identify the most relevant visual features at
each time step. Such an effort aims to refine the visual attention module, ultimately enhancing the
performance of caption generators. By pinpointing and emphasizing the most contextually relevant
visual cues during each stage of caption generation.

Image attributes have been used alongside image features to enhance caption quality [22], which
involved multimodal attribute detectors trained together with captioning models [23]. Additionally,
PoS information has been incorporated into models, guiding information flow and caption generation
[24–26]. Topics extracted from caption corpora have been integrated into captioning tasks, influ-
encing sentence generation [27–30]. Some models adopt saliency mechanisms that enhance image
representations based on visual, semantic, and sample-related saliency [31]. Attention components,
such as semantic and text-guided attention, have also been employed to identify semantic attributes
associated with image representations [32]. Multi-stage image descriptors like Stack-VS have been
designed to efficiently exploit semantic and visual information through top-down and bottom-up
techniques [33]. These diverse approaches collectively contribute to improving image captioning
by integrating various sources of information and enhancing model performance. Prior work [34]
introduces FUSECAP, enriching captions with visual expert insights and a large language model,
creating 12 million improved caption pairs. These enhanced captions improve image captioning models
and benefit image-text retrieval. Reference [35] presents a novel semantic-guided attention network
for image captioning, integrating external knowledge into a Transformer-based model. Reference [36]
introduces the Face-Att model, focusing on generating attribute-centric image captions with a special
emphasis on facial features. However, semantic attention in image captioning faces limitations such as
incomplete coverage of relevant image attributes, reliance on predefined attributes limiting adaptability
to new visual elements, sensitivity to noise in part-of-speech (PoS) information, and challenges in
effectively capturing diverse topics while avoiding biases from saliency mechanisms.

In tackling the challenge of encapsulating comprehensive visual content within a single caption,
certain image captioning methods have opted for generating multiple descriptions encompassing
various facets of an image. One such approach involves a multi-sentence image captioning model
utilizing conditional Generative Adversarial Networks (GAN) [37]. This model takes an input image
and a random vector, facilitating caption diversity through the joint training of a generator and an
evaluator. The objective is to describe various image details by leveraging multiple sentences. Another
innovative approach in this domain is the introduction of a multi-caption image captioning network
based on topics [38]. In this model, an image and a topic are used as input to generate a topic-related
caption while maintaining topical consistency. This is achieved through the fusion gate unit and the
utilization of a topic classifier for accurate topic prediction. These approaches collectively contribute
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to effectively addressing the complexity of image content representation and diversity in captioning.
More recently, a novel model presented in [39] introduces a unique approach that takes into account
the number of ground truth captions available for an image during training. This model learns from
the numbers associated with these captions and utilizes them to generate diverse captions for the
image. Rather than solely relying on the semantic information provided by ground truth captions,
this model capitalizes on the quantitative availability of multiple captions to create a varied set of
captions for images. This innovative strategy contributes to a significant advancement in the domain
of image captioning. However, generating multiple descriptions introduces complexity, and evaluating
performance requires adapted metrics. Obtaining diverse training data is essential but may be limited.
User preferences for the number and style of sentences are subjective, computational resources, risk
of redundancy, interpretability issues.

Cross-entropy loss functions are used to predict the next word in ground truth captions, with
evaluation metrics used post-generation. These indistinguishable evaluation metrics have been used
to optimize image captioning models using reinforcement learning methods in recent years [40–42].
Self-critical sequence training (SCST) [43] leverages the CIDEr metric for optimization, demonstrat-
ing significant improvements in model performance, particularly in CIDEr. Based on the global-
local discrimination objective, Reference [40] introduces a reinforcement learning-based optimization
approach, incorporating local and global constraints to generate more descriptive captions with finer
visual details. Another model [44] incorporates a Kullback-Leibler (KL) divergence term in order to
differentiate between accurate and inaccurate predictions, leveraging knowledge graphs to enhance
description quality. Hierarchical Attention Fusion (HAF) [45] serves as a reinforcement learning
baseline for image captioning, incorporating feature mapping for a number of levels and a revaluing
scheme for word and sentence-level rewards. Vocabulary-Critical Sequence Training (VCST) [41] uses
a word replacement-based vocabulary critic as a means of providing nuanced credit to words, with
efficient algorithms for BLEU and CIDEr-D metric computation. Collectively, these approaches
better the quality of descriptive captions through the optimization of models based on evaluation
metrics and directly improving the accuracy of the captions.

3 Methodology

Our model focuses on optimizing the use of visual features extracted from input images in order
to improve the performance of image captioning models. By leveraging advanced techniques, we aim
to capture more nuanced details and context from images, which significantly contributes to more
accurate and descriptive captions. As illustrated in Fig. 1, the comprehensive workflow begins with
a Faster Region-based Convolutional Neural Network (Faster-RCNN) network employed to extract
visual features from the input image. Subsequently, the visual features collected are input into the
visual attention module and then into the visual Feature Detector Module (VFD) to predict the most
pertinent visual features matrix. Then, the generated visual matrix is utilized in the Visual Feature
Visual Attention (VFVA) module. This module attends to the selected visual features and generates
a visual context vector, which is crucial to the prediction of the partially generated caption of the
next word.

3.1 Input Image Visual Features

Within our captioning network, the visual features are initially extracted from the input image to
enable their utilization in subsequent processing by the language model. The initial phase of generating
a description for an image involves acquiring the visual representations of the input image. A Faster-
RCNN network utilizing ResNet-101 extracts object features from input images, producing an object
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feature matrix, represented as V , which contains N object feature vectors.

V = {v1, v2, . . . , vN} (1)

In this representation, vi ∈ R
d refers to a vector that represents the features of an object, in which

i ranges from 1 to N, and V ∈ R
N×d represents the matrix of features of the objects. In addition, a

mean-pooled object features v̄ of the input image is also used as an extra input to the image captioning
system, with the following definition:

v̄ = 1
N

N∑

i=1

vi (2)

Here, v̄ ∈ R
d.

3.2 Visual Attention Mechanism

According to the framework we propose, local visual features of the input image are essential for
boosting the model’s performance. By accurately capturing these details, we can significantly enhance
the overall effectiveness of the image captioning process. To focus on these local visual features,
our model relies on a conventional visual attention module, which enables the model to selectively
emphasize important aspects of the image. This visual attention process can be described by a set of
formulas that enable precise attention to the most important visual features as a result of this operation.

αi
t = Wc · tanh

(
Wa · ha

t + Wb · vi

)
(3)

βt = softmax (αt) (4)

v̂t =
N∑

i=1

β i
t � vi (5)

where v̂t ∈ R
d, βt ∈ R

N, and αt ∈ R
N. Wc ∈ R

e, Wa ∈ R
g×e, and Wb ∈ R

d×e are trainable weights. ha
t ∈ R

g

is the hidden state of the attention LSTM.

3.3 Language Model

A diagram illustrating the language model architecture is shown in Fig. 2. As a basis for the
approach we propose, the UpDown framework is used as the baseline structure, known for its
effectiveness in image captioning tasks. There are two LSTM layers in the framework: one for language
LSTMs, denoted LSTMlan, and another for attention LSTMs, denoted LSTMatt. As a result of
leveraging these LSTM layers, the model can better capture and integrate sequential information from
the input data. The hidden states of the attention LSTM, represented as ha

t ∈ R
g, and the language

LSTM, represented as hl
t ∈ R

g, can be determined by the following equations, which ensure that the
interaction between visual features and language generation is precise and dynamic.

ha
t = LSTMatt

(
ha

t−1;
[
hl

t−1, E · yt−1, v̄
])

(6)

hl
t = LSTMlan

(
hl

t−1;
[
ha

t , ṽt, v̂t

])
(7)

Here, E ∈ R
m×q represents the word embeddings matrix, and yt−1 ∈ R

m denotes the token generated
in the previous time step. These embeddings play a crucial role in capturing the semantic meaning of
the tokens. ṽt ∈ R

d is an updated context vector which will be explaned in Section 3.5. To predict
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the next token, the hidden state of the language LSTM, hl
t, is fed into a fully connected layer with a

softmax activation function. This setup allows the model to generate a probability distribution pt over
the entire vocabulary, ensuring that the most likely subsequent token is selected based on the context
provided by hl

t. The process is described by the following equation:

pt = softmax
(
hl

t · Wg

)
(8)

where pt ∈ R
m. Wg ∈ R

g×m represents the weights to be trained.

Figure 2: A description of the internal architecture of VFDICM’s language model for image captioning

The input word to the attention LSTM at each time step during the training phase of our models
is taken from the ground truth annotation. This approach ensures that the model learns from accurate
data. Conversely, the input word for the attention LSTM in the testing phase, as defined in Eq. (6),
comes from the word predicted in the previous time step. This method allows the model to generate
sequences based on its learned predictions. As an initial input in both training and testing, a special
“begin-of-sequence” token is used. As the generation of the description’s words continues, a special
“end-of-sequence” token will be predicted or a maximum description length will be reached indicating
the end of the generated description, ensuring a coherent and contextually relevant output.
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3.4 Visual Feature Detector (VFD)

The visual feature detector module (VFD) is an ordinary neural network that serves as a detector
to dynamically select the most relevant visual features at each time step, in our case the number of
top features is referred to as k. The VFD module consists of a concatenation layer, a fully connected
layer (FC), and a softmax layer. The input to VFD comprises the output of the conventional visual
attention module v̂t and the hidden state of the attention LSTM ha

t . The VFD module generates an
output matrix known as the selected top-related features matrix (STF), denoted as Ut, which consists
of the top-k selected local visual features of the input image. The internal structure of the VFD module
is illustrated in Fig. 3. Given the object features matrix V , the context vector v̂t, and the hidden state
of the attention LSTM ha

t ∈ R
g as input to the VFD module, we first concatenate v̂t and ha

t as follows:

xt = [
ha

t , v̂t

]
(9)

where [ ] refers to the concatenation operation. Then, a fully connected layer is used to map the resulted
vector xt ∈ R

d+g into another vector x̄t ∈ R
N whose length is equal to the number of local visual features

N as follows:

x̄t = Wx · xt (10)

where Wx ∈ R
(d+g)×N is a learnable parameter matrix. Next, we apply the softmax activation function

on x̄t to generate a new vector x̂t ∈ R
N which represents a probability distribution over N as follows:

x̂t = softmax (x̄t) (11)

FC

concatenation

softmax

select top-k visual features

ht

t

V

Figure 3: The internal structure of the VFD
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The elements of x̂t are probability values and each element of x̂t represents the probability of its
corresponding local visual feature. After that, the indexes of the k elements of x̂t with the highest
probabilities are determined and their corresponding local visual features in V ∈ R

N×d are selected to
form the matrix Ut which is given by:

Ut = {u1
t , u2

t , . . . , uk
t } (12)

where ui
t ∈ R

d and Ut ∈ R
k×d. Ut represents a subset of the local visual features the most related to the

current linguistic context at the current time step t. Fig. 4 provides an illustration of the selection of
the local visual features according to their corresponding probabilities in the VFD module.

Figure 4: An illustration of the selection of the local visual features according to their corresponding
probabilities in the VFD module

3.5 Visual Feature Visual Attention (VFVA)

After generating the STF matrix from the VFD module, we have developed an additional module
that takes the STF as its input. This module is originally a visual attention module and is referred to as
the Visual Feature Visual Attention (VFVA). The main purpose of this module is to attend to the visual
features of the STF matrix, yielding an updated context vector known as the Updated Context Vector
(UCV). The UCV is then fed into the language LSTM of the language model to guide the generation of
the subsequent word. Considering the updated context vector ṽt as defined in the following equations,
the VFVA module’s formulas demonstrate its role in attending to the importance of each of the various
visual feature vectors.

δi
t = Wd · tanh

(
We · ha

t + Wf · ui
t

)
(13)

γt = softmax (δt) (14)
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ṽt =
k∑

i=1

γ i
t � ui

t (15)

where ṽt ∈ R
d, δt ∈ R

k, and γt ∈ R
k. We ∈ R

g×e, Wf ∈ R
d×e, Wd ∈ R

e are learnable weights.

3.6 Loss Functions

Our image annotating network is trained using two stages: cross-entropy (XE) and CIDEr
optimization. In the first stage, standard cross-entropy loss is applied, which is determined as follows:

LossXE = 1
T

T∑

t=1

− log (pt (yt | y1:t−1, V)) (16)

Second stage, Self-Critical Sequence Training (SCST) is utilized alongside CIDEr-D for optimiz-
ing and training the model. The loss function at this stage is specified as follows:

LossRL = −Ew1:T ∼θ [r (w1:T)] (17)

In this context, w1:T refers to the sampled annotation, while r indicates CIDEr-D score of sampled
annotation. Gradient approximation for LossRL, symbolized as ∇θ LossRL, is detailed in Eq. (18). Here,
r
(
ŵ1:T

)
refers to the CIDEr reward for the maximally sampled annotation, and r

(
ws

1:T

)
denotes the

CIDEr reward corresponding to the randomly sampled annotation. This approach enables the model
to refine the generated annotations by aligning them more closely with human references. Utilizing the
CIDEr-D score helps the model to effectively grasp the intricacies and relevance within the sampled
annotations. Consequently, this method enhances the overall quality and accuracy of the generated
captions. Additionally, it provides a robust framework for training models in tasks that require a
nuanced understanding of content similarity.

∇θ LossRL = − (
r

(
ws

1:T

) − r
(
ŵ1:T

)) ∇θ log
(
p

(
ws

1:T

))
(18)

Algorithm 1 outlines the training process for the VFDICM model. It begins by extracting feature
representations from the input images using Eq. (1). Then, for each word position in the caption, the
algorithm computes the output of the conventional visual attention module, the selected top-related
feature matrix from the VFD module, and the output of the VFVA module using Eqs. (5), (12), and
(15), respectively. These computations aid in generating the probability distribution for the next word
using Eq. (8). The algorithm continues updating the cross-entropy loss and reinforcement learning
loss based on Eqs. (16) and (17) until convergence is achieved. Finally, it returns the generated word
probabilities and the model parameters.

Algorithm 1: VFDICM training steps
Require: Training data of image and GT caption pairs (I, C) where I is the input image and C =
{y1y2 . . . yT}.
Require: Initialize batch size Z and learning rate ψ .
Ensure: Probability of generated word yt, VFDICM Model parameters W
1: repeat
2: Compute feature representations V using Eq. (1)
3: for t = 1; t < T + 1; t + + do

(Continued)
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Algorithm 1 (continued)
4: Compute the output of conventional visual attention module v̂t using Eq. (5);
5: Compute the selected top-related feature matrix Ut from the VFD module using Eq. (12);
6: Compute the output of VFVA module ṽt using Eq. (15);
7: Compute yt using Eq. (8);
8: end for
9: Update lossXE and lossRL according to Eqs. (16) and (17);
10: until convergence
11: return yt, W

4 Experiments and Results

This section discusses various crucial aspects related to our conducted experiments, including the
evaluation metrics, the dataset used, the model’s configurations, and the training process for our image
annotation networks. Additionally, we present and analyze the experimental results and comparisons
of our networks. Furthermore, we offer an assessment of the generated text’s quality in detail.

4.1 Datasets and Evaluation Metrics

Extensive evaluations were conducted using the MS-COCO dataset [5] in image captioning. As
a popular dataset, due to its diversity and numerous caption-image pairs, this dataset served as a
solid base for evaluating the effectiveness of the models. The MS-COCO dataset, frequently employed
in tasks involving image annotation, is comprised of 123,287 images. Following Karpathy’s well-
established data splitting method [46], 113,287 images were allocated for training, 5000 images for
validation, and another 5000 images for testing. Notably, most of the MS-COCO images are associated
with a total of five ground truth captions, resulting in a substantial collection of about 616,747 different
ground truth captions for all the MS-COCO images. These captions vary in length, spanning a length
of 5 to 49 words, offering a wide spectrum of scenarios and contexts for model training and evaluation.

To assess our model’s performance, the model was tested using a series of evaluation metrics,
including CIDEr [47], METEOR [48], BLEU [49], ROUGE-L [50], and SPICE [51]. As a result, each
of these metrics offers unique insight into a variety of different characteristics of the performance of the
model. BLEU, a precision-based metric originally intended for machine translation, has been shown
to be highly correlated with human evaluation, emphasizing n-gram precision. METEOR evaluates
machine-generated translations by employing a generalized concept of unigram matching with human
reference translations, which allows for a balanced assessment of precision and recall. As part of its
similarity calculation, CIDEr uses cosine similarity between words in candidate and reference captions
based on Term Frequency-Inverse Document Frequency weighted n-grams, thereby taking both recall
and precision into account, which is particularly useful for image captioning tasks.

ROUGE, on the other hand, measures the quality of a summary by comparing it with a human-
generated summary, which helps in understanding how well the model can generate concise and
relevant descriptions. SPICE assesses how effectively captions represent attributes, objects, as well
as their relationships, offering a more semantic assessment of captions generated. To simplify the
representation of these metrics, we denote METEOR, CIDEr, ROUGE-L, SPICE, and BLEU-n (n =
1, 2, 3, 4), as M, C, R, S, and B-n (n = 1, 2, 3, 4), respectively.
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4.2 Experimental Settings

To extract features of objects from images, Faster-RCNN is used based on ResNet-101, resulting
in object features of dimensions 36 × 2048. To manage longer sentences, those exceeding 16 tokens are
truncated. In constructing our vocabulary, only words occurring more than five times are included,
yielding a vocabulary of 9487 words for MS-COCO. Word embeddings are 1000-dimensional, and
hidden states are set for both LSTMs to 1000. During our experiments, we select k to be equal to 10
since it gives us the best scores.

In our image captioning model, we utilize a visual features vector of size d = 2048 to represent the
input image. LSTM hidden state sizes g = 1000 allow for the capture of complex linguistic patterns
during caption generation. Words in our vocabulary are embedded in vectors of length q = 1000.
The features of N = 36 objects in the image are used for data extraction. The vocabulary for our
captioning task consists of m = 9487 unique words for MS-COCO. Additionally, we incorporate an
internal hidden attention mechanism of size e = 512 to improve the model’s ability to generate captions
for relevant sections of an image. The number of selected most relevant visual features is set to k = 10.

For training our annotation networks, we employ the Adam optimizer and conduct training for
50 epochs in the cross-entropy stage, followed by 100 epochs in the CIDEr optimization stage. Initially,
the learning rate is set at 0.0005 and subsequently decreases by a factor of 0.8 every 5 epochs during
cross-entropy training and every 10 epochs during CIDEr optimization. Regarding the batch size, a
batch size of 40 is chosen. The scheduled sampling percentage increases by 5% every 5 epochs until it
reaches 25% during cross-entropy training. The gradients are clipped to an absolute maximum of 0.1.
We employ a dropout ratio of 0.5 in our model. Testing is conducted with a beam size of 3 with the
beam search strategy. Our networks are developed using the PyTorch framework.

4.3 Building the Vocabulary and Preparing Captions

To construct the vocabulary for our proposed model, we underwent several processing steps
with the ground truth caption corpus. Initially, we analyzed all the ground truth sentences, totaling
6,454,115 words, and identified 27,929 unique words. Following word counting, we retained words that
appeared more than five times, resulting in a vocabulary of 9486 unique words, while discarding 18,443
unique words. These discarded words constituted approximately 66% of the total unique words in the
caption corpus. However, in terms of overall word count, they represented merely 0.5%. While the
percentage of discarded unique words may seem high, the actual impact on the model’s performance
is negligible due to their small contribution to the total word count. All discarded words were replaced
with the ‘Unknown’ special token, which was subsequently added to the vocabulary, expanding it
to 9487 words. Additionally, we tokenized all ground truth sentences, replacing each word with its
corresponding unique index or integer value assigned from the vocabulary. Sentences longer than 16
words were truncated, and those shorter than 16 words were padded using a ‘0’ digit, serving as zero
padding. Furthermore, we prepended the beginning-of-sequence token to the start of each ground
truth caption and appended the end-of-sequence token to the end. These preprocessing steps prepared
the ground truth captions for training our models.

4.4 Quantitative Scores

As shown in Table 1, our model performed in cross-entropy and CIDEr optimizations using MS-
COCO data. The cross-entropy results indicate that our proposed image captioning model surpasses
the baseline in most evaluation metrics, notably excelling in METEOR, BLEU-4, SPICE, CIDEr, and
ROUGE. Furthermore, experimental results underscore the superiority of our model over the baseline
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in terms of CIDEr optimization scores across various evaluation metrics, with significant differences
observed in BLEU-4, BLEU-1, ROUGE, METEOR, and CIDEr metrics. These scores unequivocally
demonstrate the superior performance of our proposed framework, highlighting the effectiveness and
value of our approach.

Table 1: The scores of our model on the MS-COCO dataset for cross-entropy (XE) and CIDEr
optimization (RL)

Model B1 B4 M R C S

Baseline (XE) [4] 76.6 36.2 27.0 56.4 113.5 20.3
VFDICM (XE) 76.4 36.3 27.7 56.6 113.9 20.6
Baseline (CIDEr) [4] 79.8 36.3 27.7 56.9 120.1 21.4
VFDICM (CIDEr) 80.8 37.2 28.3 57.9 122.4 21.5

VFDICM demonstrated significant enhancement during the CIDEr phase, where optimization
considers caption quality and diversity. Significant advancements were observed in the BLEU-4,
BLEU-1, METEOR, CIDEr, and ROUGE metrics. The integration of VFD and VFVA within
our network significantly improves the image captioning algorithm’s ability to capture rich visual
representations and features, resulting in improved overall performance and description generation.
The VFD module updates the visual features matrix, while the VFVA module directs attention to
this matrix, generating an updated context vector for the language model to produce informative
descriptions.

4.5 Comparison Results

The comparison of other models with our model using the MS-COCO dataset is detailed in
Tables 2 and 3, covering cross-entropy optimization and CIDER stages. Table 2 focuses on the cross-
entropy results, where our model demonstrates remarkable performance. Specifically, our model
outperforms most other models in several key metrics, including ROUGE-L, BLEU-4, BLEU-3,
and SPICE. Additionally, it achieves the second-highest scores in CIDEr, BLEU-1, and BLEU-2.
It is noteworthy that the r-GRU model secured METEOR’s highest score in this phase. Significant
differences in scores between our model and others across the majority of metrics underline its greater
capabilities during the cross-entropy training phase. Moving on to Table 3, which displays the results
from the CIDEr optimization stage, our model continues to excel. It achieves top scores in several
metrics such as ROUGE-L, BLEU-3, BLEU-4, BLEU-2, BLEU-1, and METEOR. However, it ranks
second in the CIDEr and SPICE metrics. The significant variance between our model’s performance
and that of other models in metrics like METEOR, BLEU-3, BLEU-2, and BLEU-1 further highlights
the effectiveness of our model at this optimization stage.

In more detail, the cross-entropy phase results in Table 2 reveal that our model is not only
competitive but often leading in many critical areas. For example, its performance in BLEU-3 and
BLEU-4 indicates strong capabilities in generating accurate and contextually appropriate sequences.
The high scores in ROUGE-L and SPICE metrics suggest that our model excels in generating
linguistically rich and semantically relevant annotations. Despite the r-GRU model’s achievement of
the highest METEOR score, our model’s close performance in this metric indicates its robustness
and reliability. Similarly, the CIDEr optimization results shown in Table 3 confirm our model’s strong
performance across multiple evaluation criteria. Its leading scores in BLEU-1 through BLEU-4
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metrics indicate consistent and high-quality output. The model’s top performance in METEOR and
ROUGE-L underscores its ability to produce both precise and contextually appropriate annotations.
While the Stack-VS model attains the highest CIDEr score, our model’s second-place ranking in this
metric and others like SPICE demonstrates its overall superior performance across the board.

Table 2: The performance of other models and VFDICM trained on MS-COCO using cross-entropy
optimization (XE) is compared, with scores for the top two positions highlighted in bold and underline,
respectively

Model B1 B2 B3 B4 M R C S

RFNet [52] 76.4 60.4 46.6 35.8 27.4 56.5 112.5 20.5
UpDown [4] 77.2 – – 36.2 27.0 56.4 113.5 20.3
RecallNet [53] 73.4 – – 32.2 25.9 53.9 101.6 –
VIS_SAS [31] 72.5 52.6 38.2 28.1 23.7 55.4 82.1 –
SCST [43] – – – 30.0 25.9 53.4 99.4 –
HAF [45] 75.9 59.5 45.4 34.4 26.8 – 109.0 –
MRRC [54] 75.5 59.8 46.0 35.2 26.5 55.9 108.0 19.7
Vis-to-lang [32] 73.9 56.4 41.7 30.9 27.1 – – –
TAAIC [11] 71.0 – – 27.7 23.8 51.1 93.2 18.3
r-GRU [55] 77.2 61.3 46.3 35.6 30.2 55.7 109.2 –
NumCap [39] 66.9 49.4 36.5 27.3 24.1 50.7 85.3 17.0
CSA [56] 77.2 59.8 46.0 36.2 27.9 56.4 114.6 –

VFDICM (ours) 76.4 60.4 46.9 36.3 27.7 56.6 113.9 20.6

Table 3: comparison of the performance of other models and VFDICM trained on the MS-COCO
dataset using CIDEr optimization (RL). Scores for the top two places are bolded and underlined,
respectively

Model B1 B2 B3 B4 M R C S

RFNet [52] 79.1 63.1 48.4 36.5 27.7 57.3 121.9 21.2
UpDown [4] 79.8 – – 36.3 27.7 56.9 120.1 21.4
RecallNet [53] 75.8 – – 33.1 24.7 54.9 103.7 –
HAF [45] 80.5 62.9 47.7 35.5 27.3 – 116.4 –
Stack-VS [33] 79.4 63.6 49.0 37.2 27.9 57.7 122.6 21.6
SCST [43] – – – 34.2 26.7 55.7 114.0 –
TDA+GLD [40] 78.8 62.6 48.0 36.1 27.8 57.1 121.1 21.6
TAAIC [11] 78.6 – – 37.1 27.5 57.2 119.6 21.2
MRRC [54] 75.3 59.7 46.0 35.3 26.6 55.7 108.2 19.7

VFDICM (ours) 80.8 64.2 49.3 37.2 28.3 57.9 122.4 21.5
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These findings strongly underscore the significant improvements our proposed method brings
to model performance. The incorporation of the Visual Feature Decoder (VFD) and Visual Feature
Visual Attention (VFVA) modules plays a crucial role in this enhancement. By integrating these
modules, our model can more effectively harness visual features from input images, which leads to the
generation of more detailed and informative descriptions. The VFD module is designed to dynamically
identify and extract relevant features from the visual input. This process results in the creation of a new
visual matrix that encapsulates the most important aspects of the image. In turn, the newly formed
visual matrix is used by the VFVA module, focusing its attention on these critical features. In this way,
VFVA updates the contextual data that the language model uses to predict the next word.

This sophisticated interplay between the VFD and VFVA modules significantly boosts model
performance on a range of standard evaluation metrics. The VFD module’s ability to distill relevant
visual information ensures that the model captures essential details from the input images. Meanwhile,
the VFVA module’s attention mechanism allows the model to maintain a contextual understanding of
these visual features, thereby enhancing the accuracy and relevance of the generated descriptions. A
further advantage of this method is that it is designed to ensure that each word prediction is informed
by a comprehensive understanding of the visual context, which in turn contributes to the model’s
robust performance. This approach not only improves the model’s descriptive capabilities but also
ensures consistency and coherence in the generated text. As a result, the model excels across multiple
evaluation metrics, demonstrating superior performance compared to methods that do not leverage
such advanced visual feature integration.

4.6 Ablation Studies

We conducted several experiments using MS-COCO dataset, refer to Table 4. In experiment
VFDICM_sig2, we employed a sigmoid activation function within the VFD component, instead of the
softmax activation function of the VFD. In the language LSTM, we concatenated only two inputs: ha

t

and ṽt, removing v̂ from the inputs of the language LSTM. In contrast, in experiment VFDICM_soft2,
we used the same two inputs in the language LSTM as the VFDICM_sig2 but applied a softmax
activation function in the VFD component.

Table 4: Ablation study of the model with different activation functions and various numbers of inputs
to the language LSTM using MS-COCO dataset

Model B1 B2 B3 B4 M R C S

VFDICM_sig2 79.7 62.5 47.4 35.1 27.5 56.9 117.1 20.7
VFDICM_soft2 79.4 62.1 47.1 34.9 27.4 56.8 116.3 20.7
VFDICM_sig3 80.6 63.8 49.0 36.7 28.3 57.9 122.5 21.5
VFDICM (VFDICM_soft3) 80.8 64.2 49.3 37.2 28.3 57.9 122.4 21.5

In experiment VFDICM_sig3, we again used a sigmoid activation function within the VFD
component. However, in the language LSTM, we concatenated three inputs: the output of the first
attention mechanism (v̂t), along with ha

t and ṽt. The VFDICM_soft3 experiment is our proposed model
which uses softmax activation function in the VFD with three inputs into the language LSTM.

To demonstrate and analyze the significance of the second attention mechanism and the impact of
the absence of ṽt, we conducted several experiments using MS-COCO dataset, refer to Table 5, where
the attention mechanism was replaced with the mean of features (ṽt = 1

k

∑k

i=1 ui
t).
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Table 5: Ablation study for replacing VFD component with the mean of features with different
activation functions and various numbers of inputs to the language LSTM using MS-COCO dataset

Model B1 B2 B3 B4 M R C S

VFDICM_soft2_m 78.8 61.2 46.2 34.2 27.0 56.1 112.6 20.1
VFDICM_sig2_m 79.0 61.7 46.7 34.6 27.3 56.5 114.0 20.4
VFDICM_soft3_m 80.9 63.9 48.8 36.6 28.1 57.7 121.1 21.5
VFDICM_sig3_m 80.8 63.9 49.0 36.8 28.2 57.9 122.0 21.3
VFDICM 80.8 64.2 49.3 37.2 28.3 57.9 122.4 21.5

In experiment VFDICM_sig2_m, we used a sigmoid activation function in the VFD component
and two inputs in the language LSTM: ha

t and the mean of features (ṽt). Conversely, in experiment
VFDICM_soft2_m, we used the same inputs in the language LSTM but with a softmax activation
function.

For experiment VFDICM_sig3_m, we utilized a sigmoid activation function in the VFD compo-
nent and three inputs in the language LSTM: v̂t, ha

t , and ṽt. Similarly, in experiment VFDICM_soft3_m,
we used the same inputs in the language LSTM as VFDICM_sig3_m but with a softmax activation
function in the VFD component.

To evaluate the impact of selecting the most relevant visual features at every time step (top-k)
on VFDICM performance, we performed ablation experiments varying the k parameters using MS-
COCO dataset, refer to Table 6. Different versions were compared with top-k values of 1, 10, 15, 20.
We observed a significant correlation between parameter k and overall performance. With k = 10, the
version outperformed the others with k = 1, 15, and 20. Therefore, we chose the configuration with k
= 10 since it yielded the best results for integration.

Table 6: Ablation studies involving different top-k parameters in the phase of CIDEr optimization
applied to the MS-COCO dataset

Top-k B1 B2 B3 B4 M R C S

k = 1 80.6 63.8 48.8 36.5 28.1 57.8 120.7 21.3
k = 10 80.8 64.2 49.3 37.2 28.3 57.9 122.4 21.5
k = 15 81.0 64.2 49.3 37.0 28.2 57.9 122.4 21.5
k = 20 80.6 63.8 48.9 36.7 28.1 57.7 121.7 21.5

4.7 Qualitative Evaluation

In addition to conducting quantitative score analysis, we must assess the quality of the captions
produced by VFDICM. Fig. 5 displays a selection of sample images from the test dataset, accompanied
by their respective captions. Each image in Fig. 5 is associated with two different types of description.
First, we describe the image using our proposed model, followed by the ground truth image captions.

For instance, consider the picture located in row one, column one, top left. The caption for our
proposed model, “two men are skiing on a snowboard in the snow,” describes the scene in greater detail
by identifying “two men.” This caption is very similar to the human-generated caption, “Two men
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use their snowboards to go down a snowy incline,” demonstrating our model’s capability to generate
human-like captions. In another example, look at the image in the first column and first row from
the right. According to our model, “a teddy bear sitting on top of a wooden table,” accurately depicts
the image. In this caption, the human-annotated ground truth caption is very similar, “A cake shaped
as a Teddy Bear on a wooden table.” VFDICM’s performance and quality of generated descriptions
remain high, significantly exceeding that of the baseline on standard evaluation metrics, as shown by
the scores in Table 3. These examples illustrate the model’s ability to understand and describe various
contexts effectively. Moreover, the consistency in generating accurate captions across different images
underscores the robustness of our model.

Figure 5: Examples of the generated captions from VFDICM model. The VFDICM generates caption
V, while the GT represents the ground truth captions
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4.8 Discussion

In this work, we have introduced an innovative image captioning model that utilizes the visual
characteristics of the input image to produce informative sentences. This model places a strong
emphasis on the local visual features of the input image, enabling it to guide the prediction of the next
word in the evolving caption. Through the integration of the Visual Feature Detector (VFD) and Visual
Feature Visual Attention (VFVA) modules, the model effectively harnesses the visual representations
of the input image, leading to a significant enhancement in the performance of the image captioning
model.

VFDICM exclusively relies on the visual attributes of the input image, without depending on
semantic information such as topics, attributes, or Parts of Speech (PoS). This reliance solely on the
visual features empowers the model to exploit the richness of the visual content within the input image,
ultimately generating high-quality text. Additionally, the proposed framework operates independently
of any external data sources, other than the adopted dataset, allowing the model to concentrate
entirely on the available visual data within the image content. As well as its simplified architecture
and fewer hyperparameters, our model is a good choice as a baseline for more complicated models
and architectures.

Furthermore, the VFDICM model, as proposed, makes a substantial contribution to improving
the efficiency of image captioning algorithms and producing high-quality descriptions. This novel
approach effectively exploits the visual features of the input image to improve the performance
of image captioning models and generate more accurate and informative descriptions. Our model
incorporates two additional modules, VFD and VFVA, to facilitate this. The VFD module dynamically
selects the most relevant features of the input, creating a new visual matrix that consists of these
relevant visual features in the current linguistic context. Meanwhile, the VFVA module attends to these
selected visual features and generates a new visual context vector, which is then utilized for generating
a new word in the evolving caption.

5 Conclusion

An innovative approach for improving image captioning is presented in this paper. VFDICM
model comprises the Visual Feature Detector (VFD) and Visual Feature Visual Attention (VFVA)
modules, which dynamically select and emphasize relevant visual features at each time step. Through
rigorous experimentation to substantiate the advantages of VFD and VFVA modules, the outcomes
illustrate that the methodology attains state-of-the-art performance of the model trained with both
cross-entropy loss and RL-based loss. By selectively emphasizing pertinent visual features, we aim
to enhance caption accuracy and relevance, contributing to the advancement of image captioning
technology. This work deepens the understanding of how selective attention to visual features can
improve image captioning quality. In the future work, we aim to explore the integration of Transformer
architectures, specifically by incorporating VFD and VFVA within the Transformer decoder and
multi-head self-attention into our model architecture. This research also offers promising directions
for future studies in this field, ultimately leading to more accurate and informative image descriptions
for real-world applications.
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