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ABSTRACT

Multi-object tracking (MOT) has seen rapid improvements in recent years. However, frequent occlusion remains
a significant challenge in MOT, as it can cause targets to become smaller or disappear entirely, resulting in low-
quality targets, leading to trajectory interruptions and reduced tracking performance. Different from some existing
methods, which discarded the low-quality targets or ignored low-quality target attributes. LQTTrack, with a low-
quality association strategy (LQA), is proposed to pay more attention to low-quality targets. In the association
scheme of LQTTrack, firstly, multi-scale feature fusion of FPN (MSFF-FPN) is utilized to enrich the feature
information and assist in subsequent data association. Secondly, the normalized Wasserstein distance (NWD) is
integrated to replace the original Inter over Union (IoU), thus overcoming the limitations of the traditional IoU-
based methods that are sensitive to low-quality targets with small sizes and enhancing the robustness of low-quality
target tracking. Moreover, the third association stage is proposed to improve the matching between the current
frame’s low-quality targets and previously interrupted trajectories from earlier frames to reduce the problem of track
fragmentation or error tracking, thereby increasing the association success rate and improving overall multi-object
tracking performance. Extensive experimental results demonstrate the competitive performance of LQTTrack on
benchmark datasets (MOT17, MOT20, and DanceTrack).
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TBD Tracking-by-Detectio
LQA Low-quality targets association strategy
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IoU Intersection over Union
GIoU Generalized Intersection over Union
LRFS Labeled Random Finite Sets
Re-ID Re-identification

1 Introduction

Multi-object tracking (MOT) is a task that forms the tracks of objects by detecting and tracking
objects in a video across space and time while maintaining consistent identities [1,2]. It has been
utilized in several applications, such as autonomous driving and video surveillance. In real-time related
research [3–5], Tracking-by-Detection (TBD) has emerged as one of the mainstream paradigms for
target tracking. TBD is a two-stage method involving detection and data association steps. Initially, a
detector is employed to identify individual objects in each frame. Subsequently, the detection results
are temporally associated using a data association scheme to create continuous tracks for each object.
Recently, the rapid advancements in detection and association techniques have led to significant
performance improvements in MOT [5–8]. However, occlusion continues to be a significant challenge
in MOT, as it can cause objects to become low-quality or even disappear, like the target located by the
red boxes shown in Fig. 1. Then the targets with low-quality would cause trajectory interruption and
fragmentation, thereby reducing tracking performance. In our paper, the low-quality target is defined
by the confidence score of the target where its confidence score lies in

[
τlow, τhigh

]
.

Figure 1: Examples of low-quality targets. (a) shows all the detection boxes with their scores. (b) shows
that low score detection is associated because of attention to low-quality targets (0.1 < score < 0.6).
Red Dashed box represents associated detection, solid wire frame represents associations. The same
box color represents the same identity

Several methods have been proposed to address this. For instance, ByteTrack [5] improves tracking
by associating each detection box considering both high and low-score detection. BoT-SORT [9] uses a
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simple yet effective method for Intersection over Union (IoU) and Re-identification’s (Re-ID) cosine-
distance fusion for more robust associations between detections and tracklets. While these recent
methods enhance the performance of MOT, issues still remain with the association of low-quality
targets caused by occlusion. Firstly, the traditional IoU based measurement is susceptible to positional
deviations of low-quality targets. However, occlusion often reduces targets to smaller sizes, leading to a
lack of overlap between the bounding boxes of these targets. Consequently, the traditional IoU method
fails to accurately reflect the relative similarity between the bounding boxes, resulting in incorrect
matching of targets. Secondly, recent methods [7–10] lack the effective consideration for matching
the current frame’s detection with previously interrupted trajectories from earlier frames Lt−γ

p , where
γ = 2, 3, . . . , (t − 1). Algorithms like [11,12] addressed this issue by utilizing multiple hypothesis
associations. However, the matching schemes employed in these methods treat all targets similarly
and fail to account for attributes of low-quality targets, such as small size. This oversight would limit
the further improvement in resolving interrupted trajectories.

Therefore, we construct the LQTTrack with a Low-quality targets association strategy (LQA)
to pay more attention to low-quality targets in MOT. In our association design, during the first
stage, visual features and motion information of the previous frame’s tracklets L and the current
frame’s high-quality targets Dhigh are utilized for the initial association. Here, we integrate the multi-
scale feature fusion of Feature Pyramid Networks (FPN) [13], named MSFF-FPN, into our model
to enrich feature information by aligning semantic features with positional information, thereby
improving the success rate of associating high-quality targets with tracklets. During the second
association stage, because of the lack of appearance information on low-quality targets with small
sizes, motion information is employed to associate the unmatched previous frame’s tracklets Lu and
current frame’s low-quality targets Dlow. In this stage, normalized Wasserstein distance (NWD) [14]
replaces the traditional IoU to model the bounding box as a two-dimensional Gaussian distribution to
measure the motion similarity between Lu and Dlow, thus overcoming the limitations of the traditional
IoU-based methods that are sensitive to low-quality targets with small sizes and enhancing the
robustness of low-quality target tracking. Additionally, benefiting from the thoughts of interrupted
trajectories matching, but different with [11,12], the third association stage is proposed to improve the
matching between the current frame’s low-quality targets, Dlow, and previously interrupted trajectories
from earlier frames Lt−γ

p , thus can effectively restore the tracklets of low-quality targets, reduce
the trajectory interruption phenomena and enhance the overall accuracy of multi-object tracking.
Extensive experimental results demonstrate the competitive performance compared to the existing
state-of-the-art multi-object tracking methods [5,6,8,15,16] on benchmark datasets (MOT17 [17],
MOT20 [18], and DanceTrack [19]). The principal contributions of this work can be summarized as
follows:

1) Different from the existing methods, which discard low-quality targets directly, LQTTrack is
designed to pay attention to low-quality target association to enhance the overall accuracy of multi-
object tracking.

2) In LQA of LQTTrack, besides the employment of multi-scale feature fusion of FPN (MSFF-
FPN) in visual features enrichment during the first stage. In subsequent stages, Normalized Wasser-
stein Distance (NWD) is integrated to address the sensitivity of traditional IoU to low-quality targets
with small size and positional deviations, thus improving the robustness of multi-target tracking.

3) In LQA of LQTTrack, the third association stage is integrated to enhance the matching between
the current frame’s low-quality targets and previously interrupted trajectories from earlier frames to
reduce the trajectory interruption phenomena.
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2 Related Work

With the continuous advancement of deep learning technology, multi-object tracking techniques
have seen rapid improvements in recent years [5,9,20,21]. In the following discussion, we elaborate on
two aspects of multi-object tracking: feature extraction, and data association.

2.1 Feature Extraction

Motion information and appearance cues are the main dependent features of current multi-target
tracking [22–24]. On the one hand, some researchers opt to forgo appearance information [5,25],
relying solely on high-performance detectors and motion information to achieve high operational
speed and state-of-the-art performance. For instance, ByteTrack [5] utilizes only motion information,
matching tracking through high and low-score detection boxes. Uniform Camera Motion Compen-
sation Track (UCMCTrack) [26] has designed a new motion model-based tracker robust to camera
motion, introducing an innovative non-IoU distance metric driven by motion cues alone. On the other
hand, numerous researches [6,27] still support the idea that additional appearance cues can enhance
multi-object tracking. BoT-SORT [9] proposes camera motion compensation and a more accurate
Kalman filter state vector for better bounding box localization, along with a novel fusion method
based on IoU and re-id cosine distance. Quasi-Dense Tracking (QDTrack) [28] suggests that position-
motion matching is only suitable for simple scenes, as positional information can easily mislead in
crowded and occluded scenarios. Choosing to discard position and motion information proposes
a matching method based on dense ground truth for extracting appearance features and uses Bi-
directional softmax (Bi-softmax) for bidirectional matching, achieving good tracking results using
only appearance information. Our method opts to use appearance cues to assist multi-object tracking
and embed multi-scale feature fusion to enhance features.

2.2 Data Association

Data association is an important module in the MOT and has also attracted widespread attention
and research. Multi-target Tracking using Joint Detection and Tracking (MTTJDT) [29] proposes a
multi-loss function that consists of a combination of classifications using the focal loss function and
localization loss employing the Complete Intersection Over Union (CIoU) loss function, with a loss-
scale parameter used to balance the two functions. This approach enables the prioritization of specific
factors, such as object type or position, while also accounting for imbalances in challenging classes and
samples. It also employs a dual-regression bounding box to associate objects between adjacent frames
by considering the distance between their centers. Transformer-based Assignment Decision Network
(TADN) [30] transforms information related to detections and known targets in each frame to directly
compute optimal assignments for each detection. Sparse Graph Tracker (SGT) [31] improves tracking
of low-score detection by utilizing higher-order relational features, which are more discriminative by
aggregating the features of neighboring detection and their relations. ByteTrack [5] makes full use
of low-score detection boxes by incorporating them into the process, which improves the accuracy
of data association compared to other approaches that only associate high-score detection boxes.
However, these methods lack effective consideration for matching the current frame’s detection and
previously interrupted trajectories, thus limiting the further improvement of tracking performance. To
solve this problem, algorithms like [11,12] consider the matching of previously interrupted trajectories
through multi-hypothesis data association methods. For instance, Multiple Hypotheses Tracking
(MHT) [11] uses a track tree that encapsulates multiple hypotheses starting from a single observation
and delays data association decisions by keeping multiple hypotheses active until data association
ambiguities are resolved. Tracklet-level Multiple Hypothesis Tracking (TLMHT) [12] incorporates
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a tracklet-level association pruning method into MHT and proposes a novel iterative Maximum
Weighted Independent Set (MWIS) algorithm to avoid solving the MWIS problem from scratch.
Though the effective consideration of interrupted trajectories, the employment of non-differentiate
matching schemes ignores the attributes of low-quality targets, and this oversight still forbids further
improvement in resolving interrupted trajectories. Therefore, in our paper, the target is firstly divided
into high and low-quality ones according to the confidence scores. Then, in our association scheme,
the MSFF-FPN is integrated into the first association stage to improve the success rate of high-quality
targets. For low-quality targets, the NWD is utilized to assess motion consistency between targets and
trajectories, including interrupted ones. This approach ensures that the small size of low-quality targets
does not affect the measurement, facilitating the formation of accurate target tracks.

Additionally, to address issues related to data association uncertainty, methods based on Labeled
Random Finite Sets (LRFS) model the states and measurements of targets as random finite sets.
For instance, Vo et al. [32] introduced the concept of LRFS and proposed a multi-target tracking
filter fully described by multi-object prediction and update equations, which is the first theoretical
approach capable of trajectory estimation. Additionally, Xue et al. [33] introduced a Bayesian recursive
filter tracking method that combines the Density-based spatial clustering of applications with noise
(DBSCAN) clustering algorithm with the δ-generalized label multi-Bernoulli (δ-GLMB) filter, which
enhances the ability to track clustered targets. Van Ma et al. [34] designed multi-object dynamic
and measurement models under the LRFS framework and developed a visual multi-object tracker,
based on Generalized label multi-Bernoulli (GLMB) filtering recursion, that can manage track
initialization and Re-ID. However, the type of method relies on LRFS to model the target state
and measurement information separately, where the transmitted multi-objective probability density
iterates over time, resulting in a significant increase in trajectory assumptions, thereby increasing
computational complexity. In contrast, compared with the above methods, our data association
method employs simple Kalman filtering and similarity calculation to associate and form trajectories.
Therefore, it provides enhanced efficiency and adaptability.

Moreover, compared to traditional IoU or distance-based association methods, SimpleTrack
[21] adopts Generalized Intersection over Union (GIoU) [35] for association while still utilizing
Hungarian or greedy algorithms to match trajectories and detection. However, GIoU degrades to
IoU when the predicted and ground truth boxes are completely overlapping, thus failing to capture
the relative positional relationship between them. Additionally, GIoU requires the computation of the
minimum enclosing rectangle for each predicted and ground truth box, which increases computational
complexity and limits convergence speed. In our paper, different from GIoU, NWD is adapted in our
paper to measure the motion consistency of trajectories and targets by paying attention to low-quality
targets.

3 Method

Different from the existing methods [8,36,37], which discards low-quality targets directly, in this
work, LQTTrack with low-quality association strategy (LQA) is constructed to further improve the
performance of MOT by paying attention to low-quality targets. The overview of LQTTrack is shown
in Fig. 2.

In our LQTTrack, for each frame ft in video V, a detector (Det) is employed to generate the
detection Dt = {

dt
j

}
, j = 1, 2, 3, . . . , n. Then, the detection boxes are separated into high-quality

targets and low-quality targets according to their confidence scores and two score thresholds τlow, τhigh,
where the score of the high-quality target is higher than τhigh, and the score of low-quality targets lies
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in
[
τlow, τhigh

]
. For each tracklet l ∈ L, the Kalman Filter (KF) is utilized to predict the position of dt

l in
the current frame for subsequent correlation. Based on these, in our LQA:

First-stage association: In this stage, visual features of the previous frame’s tracklets L and
the current frame’s high-quality targets Dhigh are employed to measure the association relationship.
Considering the varying levels of network architecture, low-level receptive fields are characterized
by small spatial dimensions and high resolution, making them adept at handling small-size spatial
features. In contrast, high-level receptive fields are large and have lower resolution, which allows them
to capture extensive contextual semantic features. Therefore, considering the FPN [13] can integrate
the high-level features with low-level features, the thought of multi-scale feature fusion of FPN, named
MSFF-FPN, is incorporated into our model to obtain richer appearance information.

Figure 2: The overview of LQTTrack

Specifically, the multi-scale feature fusion of LQTTrack is shown in Fig. 3. The last three layers
of backbone [38] are utilized to output the multi-level visual clues fi ∈ R

C×H×W {i = 1, 2, 3}, then, the
effective feature representation of detection can be formed by the merge of fi:

f[i−1,i] = Cat (upsample (Conv (fi)) , Conv (fi−1)) (1)

Figure 3: The multi-scale feature fusion of LQTTrack
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In Eq. (1), Conv (·) is 1 × 1 Conv, then, fi ∈ R
C×H×W is transformed into R

2048×H×W , the unsampling
operation upsample (·) is used to modify the size of fi and expand the fi to twice the original size, the
concatenation operation Conv (·) is employed to merge the lower-level feature fi−1 with fi as [fi−1, fi].
Through this way, fi can be supplied the positional information from the lower-level features to high-
level features while retaining the semantic information.

ffinal = Smooth
(
downsample

(
f[i−1,i]

))
(2)

Finally, as shown in Eq. (2), downsampling operation downsample (·) and 3 × 3 convolution
operation Smooth (·) are adopted to reduce the noise and redundant information contained in merged
features, thereby outputting the final enhanced feature ffinal for the target with clear information
positions and substantial semantic information.

Then, based on the enhanced features, as shown in Eq. (3), the Exponential Moving Average
(EMA) is first utilized to form the feature embedding of tracklet lt−1

i ∈ L.

et−1
li

= λt−1et−2
li

+ (1 − λt−1) eenhanced (3)

In Eq. (3), et−1
li

represents the appearance embedding of tracklet lt−1
i , eenhanced is the enhanced

appearance embedding of the matched detection dt−1
j . λt−1 is a dynamic appearance weighting factor

that dynamically adjusts the proportion of visual embeddings between lt−2
i and lt−1

i based on the
confidence of different detection boxes, and can be obtained using Eq. (4), in this equation, δdet is
the confidence of the detector, σ is the confidence threshold, and λf is a fixed value.

λt−1 = λf + (
1 − λf

) (
1 − δdet − σ

1 − σ

)
(4)

After that, the appearance cost matrix between the current frame high-quality target dt
j ∈ Dhigh, j =

1, 2, 3, . . . , n and previous frames tracklet lt−1
i ∈ L, i = 1, 2, 3, . . . , m is computed based on Eq. (5). In

Eq. (5), et
dj

represents the appearance embedding of the current frame high-quality target dt
j ∈ Dhigh, et−1

li

represents the appearance embedding of tracklet lt−1
i , • denotes the dot product, and Ca [i, j] represents

the appearance cost matrix generated by enhanced appearance embeddings, reflecting the appearance
similarities between high-quality targets and tracklets, Ca [i, j] ∈ R

m×n.

Ca [i, j] = et−1
li

• et
dj

(5)

Besides the visual similarity, utilising motion information for tracklets prediction through KF,
as shown in Eq. (6), motion similarity between prediction box dt

l of tracklet lt−1
i ∈ L and the current

frame’s detection dt
j ∈ Dhigh is computed using the traditional IoU.

Cm [i, j] = et−1
li

• et
dj

(6)

Then, appearance and motion similarity matrices are integrated according to Eq. (7). Here, aw is a
weighting factor. Subsequently, based on similarity cost matrix C [i, j], the first matching is conducted
using the Hungarian algorithm.

C [i, j] = Cm [i, j] + awCa [i, j] (7)

Second Stage Association: In this stage, considering the limited visual information of low-quality
target dt

j ∈ Dlow, j = 1, 2, . . . , k, the motion information is only used to compute similarity between
prediction box dt

l of unmatched tracklet lt−1
i ∈ Lu with low-quality target dt

j ∈ Dlow. However, the
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traditional IoU metric is highly sensitive to positional deviations, thus when two bounding boxes lack
overlap, it would fail to reflect the relative similarity between the two bounding boxes. The low-quality
targets with small sizes usually have smaller bounding boxes, making them prone to non-overlapping
issues, thereby reducing the effectiveness of IoU matching. To alleviate this issue, we use NWD to
measure the similarity between bounding boxes whether the boxes in no-overlap or overlap, thus
improving the robustness and accuracy of low-quality target associations.

Specifically, we first model the bounding boxes as two-dimensional gaussian distribution and
then use NWD to compute the similarity. Due to the elliptical shape of the density contour of the
two-dimensional gaussian distribution, the distribution situation of the gaussian distribution can
be represented by the inscribed ellipse of the bounding box. Therefore, the bounding boxes can be
modeled as a two-dimensional gaussian distribution, where the center pixel of the bounding box has
the highest weight, and the importance of the pixel gradually decreases from the center to the boundary
[39]. The bounding box R = (

cx, cy, w, h
)

can be modeled into a two-dimensional gaussian distribution
N (μ, Σ) as shown in Eq. (8).

μ =
[

cx

cy

]
, Σ =

⎡
⎢⎢⎣

w2

4
0

0
h2

4

⎤
⎥⎥⎦ (8)

Then, the similarity between bounding box A and box B can be converted to the distribution
distance between two-dimensional gaussian distributions. According to Wasserstein distance comes
from the Optimal Transport theory [14], for two-dimensional gaussian distributions N1 = N (μ1, Σ1)

and N2 = N (μ2, Σ2), the 2nd order Wasserstein distance between N1 and N2 is defined as in Eq. (9),
where || · ||F is the Frobenius norm.

W 2
2 (N1,N2) = ||μ1 − μ2||2

2 + ||Σ1/2
1 − Σ1/2

2 ||2
F (9)

Furthermore, for gaussian distributions Na and Nb which are modeled from bounding boxes A =(
cxa, cya, wa, ha

)
and B = (

cxb, cyb, wb, hb

)
. We use NWD to measure the similarity between bounding

boxes. As shown in Eq. (10), C is a constant closely related to the dataset, W 2
2 (Na,Nb) is the 2nd order

Wasserstein distance metric.

NWD (Na,Nb) = exp

(
−

√
W 2

2 (Na,Nb)

C

)
(10)

Finally, we use NWD to associate prediction box dt
l of unmatched tracklet lt−1

i ∈ Lu and detection
box dt

j ∈ Dlow, as shown in Eq. (11). Then, based on the cost matrix Cu [i, j], the matching is conducted
similarly to the first stage.

Cu [i, j] = NWD
(
dt

l , dt
j

)
(11)

Third Stage Association: For the current frame’s low-quality target dt
j ∈ Dlow, j = 1, 2, . . . , n′,

n′ < k, different from the related methods, the third association stage is integrated to enhance the
matching between the current frame’s low-quality target dt

j ∈ Dlow, j = 1, 2, . . . , m′, m′ < k and
prediction box dt

l of previously interrupted trajectory lt−γ

i ∈ Lt−γ

p , γ = 2, 3, . . . , (t − 1) from earlier
frames, where Lt−γ

p ∈ Lu, thus reducing the trajectory interruption phenomena and enhancing the
overall accuracy of multi-object tracking. As shown in Eq. (12), where dt

l exists time interval below
threshold γ from dt

j .
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Cp [i, j] = NWD
(
dt

l , dt
j

)
(12)

Then, based on the cost matrix Cp [i, j], according to the threshold ε to update the matched
tracklets L. Through this way to mitigate the issue of trajectory fragmentation caused by occlusions.

The pseudo-code is demonstrated in Algorithm 1, in the designed algorithm, for the input video
sequence V, along with an object detector Det and Kalman Filter KF, two thresholds τhigh, τlow, ψ , ε

are set for different stages of an association scheme. The output of the algorithm is the tracks L of
the video. Firstly, we predict detection boxes & scores, and then, Kalman Filter is used to predict new
locations of tracklets of lt−1

i ∈ L (Lines 1 to 18). Then, the first stage association (Lines 19 to 28) is
performed to match the tracklet lt−1

i ∈ L with high-quality targets dt
j ∈ Dhigh; after that, the second

stage association (Lines 29 to 36) is carried out to align the unmatched tracklet lt−1
i ∈ Lu and low-

quality targets dt
j ∈ Dlow. Next, the third stage association (Lines 37 to 43) is additionally executed to

add the consideration of the match between the interrupted tracklet from the earliest frames lt−γ

i ∈ Lt−γ

p

and low-quality targets dt
j ∈ Dlow. Finally, the unmatched detection is initialized as new tracklets and

removed tracklets that exceed the max age from the tracking list (line 44).

Algorithm 1: Low-quality targets association strategy
Input: Video Sequences V, Detection results Det, Kalman Filter KF, Thresholds τhigh,τlow,ψ ,ε
Output: Tracks L

1. Initialization: L
2. for frame ft in V do
3. /∗ predict detection boxes & scores ∗/
4. Dt←Det (ft)

5. Dhigh←φ

6. Dlow←φ

7. for dt
j in Dt do

8. if dt
j .score > τhigh then

9. Dhigh← ∪{dt
j }

10. end
11. else if dt

j .score > τlow then
12. Dlow ← ∪{dt

j }
13. end
14. end
15. /∗ predict new locations of tracks ∗/
16. for lt−1

i in L do
17. dt

l ←KF (lt−1
i )

18. end
19. /∗ First stage association: Associate tracklets and high-quality targets by IoU & appearance ∗/
20. for dt

j in Dhigh and lt−1
i in L do

21. obtained C [i, j] of dt
l and dt

j according to Eq. (7)
22. if C [i, j] > ψ then
23. L← ∪{

lt−1
i

}← ∪{
dt

j

}
(Continued)
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Algorithm 1 (continued)
24. end
25. else
26. Lu← ∪{

lt−1
i

}
27. end
28. end
29. /∗Second stage association: Associate unmatched tracklets Lu and low-quality targets

Dlow by NWD∗/
30. for dt

j in Dlow and lt−1
i in Lu do

31. obtained Cu [i, j] of dt
l and dt

j according to Eq. (11)
32. if Cu [i, j] > ε then
33. L ← ∪{

lt−1
i

}← ∪{
dt

j

}
34. delete: lt−1

i from Lu

35. end
36. end
37. /∗ Third stage association: Associate current frame detection with an interval of γ frames

Lt−γ

p ∈ Lu and low-quality targets Dlow by NWD ∗/
38. for dt

j in Dlow and lt−γ

i in Lt−γ

p do
39. obtained Cp [i, j] of dt

l and dt
j according to Eq. (12)

40. if Cp [i, j] > ε then
41. L← ∪{

lt−γ

i

}← ∪{
dt

j

}
42. end
43. end
44. Initialized unmatched detection as new tracklets and clear the unmatched tracklets
45. end
46. Return: L

4 Experiments
4.1 Setting

4.1.1 Datasets

We conducted a fair evaluation of several publicly available datasets, including MOT17 [17],
MOT20 [18], and DanceTrack [19]. MOT17 and MOT20 are both pedestrian tracking datasets with
predominantly linear motion. Notably, MOT20 has a significantly higher density of pedestrians, and
the crowded scene means more occlusion, making it a challenging dataset to track. The main task of
DanceTrack is to track actors on stage with complex patterns of target movement and large amplitude
of movement while multiple targets are dressed in the same costume with similar appearances. For
ablation studies, we follow by using the first half of each video in the training set of MOT17 for training
and the last half for validation.

4.1.2 Compared Algorithms

In this section, ByteTrack [5], TLMHT [12], GLMB [34], TADN [30], SGT [31], StrongSORT++
[6], Observation-Centric SORT (OC-SORT) [16], FairMOT [8], RelationTrack [40], Correlation
Tracker (CorrTracker) [41], and Transformer for MOT (TransMOT) [42] are compared with the
proposed LQTTrack. Among these, TADN [30] introduces a transformer-based assignment detection
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network as an alternative to traditional data association methods for MOT. SGT [31] and ByteTrack
[5] focus on improving the tracking of low-score detections. TLMHT [12] addresses trajectory
interruption issues through multiple hypotheses data association. GLMB [34] develops a multi-target
tracker using the LRFS framework. Based on this analysis, the experimental section specifically
analyzed and compared with ByteTrack, TLMHT, GLMB, TADN, and SGT.

4.1.3 Metrics

This experiment employs CLEAR metrics [43], including Multiple object tracking accuracy
(MOTA), Higher order tracking accuracy (HOTA) [44], Identification F1 (IDF1), Identity switches
(IDSW) [45], etc., to evaluate the tracking performance comprehensively in various aspects. MOTA
emphasizes the tracker’s performance, while IDF1 measures the tracker’s ability to maintain consistent
IDs (Identity documents). We also emphasize the use of Association accuracy score (AssA) to
evaluate the association performance. On the other hand, HOTA achieves a balance between detection
accuracy, association accuracy, and localization accuracy, making it an increasingly important metric
for evaluating trackers. False positives (FP) represents the number of false positives in the entire video
sequence, while False negatives (FN) represents the number of false negatives. IDSW denotes the
number of identity swaps among tracked targets. Additionally, Frames processed per second (FPS)
is utilized to evaluate our tracker’s speed (FPS).

4.1.4 Implementation Details

Inspired by ByteTrack’s high and low score matching framework and considering the effective
use of appearance features, we revised Deep OC-SORT using ByteTrack’s matching strategy. We
used the revised version as the baseline. To ensure a fair comparison of tracking performance, we
employed the same yolox detector as in recent works [5,6,9]. For Re-ID, we used fast-reid [46] with
the SBS-50 model, trained with its default training strategy on MOT17, MOT20, and DanceTrack
for 60 epochs. For experiments on MOT17 and MOT20, we set aw to 1.25 for adaptive weighting and
2.25 for DanceTrack. The low detection score threshold τlow was set to 0.1 for MOT17, MOT20, and
DanceTrack. The high detection score threshold τhigh is set to 0.6 for MOT17 and DanceTrack, and
0.4 for MOT20. Across all experiments, λf is fixed as 0.95 for a dynamic appearance, threshold ψ

is set to 0.3 for the first association, and threshold ε is 0.6 for the second and third associations to
accommodate varying confidences of low-quality targets.

4.2 Benchmark Evaluation

In this section, we present benchmark results for multiple datasets. We conduct experiments on
MOT17 [17], MOT20 [18], and DanceTrack [19]. The best results for each indicator are displayed in
bold. ↑/↓ respectively indicate that higher/lower is better. The baseline represents the revised version
of Deep OC-SORT after using ByteTrack’s high and low score matching strategy, which is the baseline
of the LQTTrack.

4.2.1 MOT17

In this part, MOT17 is first used to verify the performance of LQTTrack. For the experiments
on the MOT17-test, we employed a proprietary detector to generate detection and aligned them
with ByteTrack [5] to ensure fairness. Experimental results and comparisons of MOT17 are shown in
Table 1. Through the analysis, it is easy to find that LQTTrack achieves the best performance in 64.8,
80.6, 65.8, and 1008 in HOTA, IDF1, AssA, and IDSW. Compared to TLMHT [12], which addresses
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tracklet interruption but does not distinguish between high and low-quality targets, LQTTrack places
a greater emphasis on low-quality targets. Our method improves upon TLMHT by 28.7, 24.1, and
399 in MOTA, IDF1, and IDSW, respectively. These improvements further demonstrate the superior
performance of our approach relative to TLMHT. Compared to GLMB [34], which uses the LRFS
framework, our method surpasses GLMB by 5.9, 5.4, 9.1, and 2247 in HOTA, MOTA, IDF1, and
IDSW. Compared to TADN [30], which also addresses occlusion issues, our method surpasses TADN
by 24.7, 31.6, and 3861 in MOTA, IDF1, and IDSW. Compared to SGT [31] and ByteTrack [5], which
also focus on low-quality targets, our method exceeds SGT by 2.9, 7.8, and 3098 in MOTA, IDF1,
and IDSW. Additionally, our method outperforms ByteTrack by 1.7, 3.3, 3.8, and 1188 in HOTA,
IDF1, AssA, and IDSW. Moreover, compared to the baseline, LQTTrack improved the method by 1.1,
1.7, and 2.2 in HOTA, IDF1, and AssA. The superior performance demonstrates that the proposed
LQTTrack has the ability to improve the association success rate for low-quality targets and optimize
the accuracy of MOT by leveraging a more reasonable low-quality targets association strategy.

Table 1: Comparison with state-of-the-art MOT methods on the MOT17 test set

MOT17

Tracker HOTA↑ MOTA↑ IDF1↑ FP(104)↓ FN(104) ↓ IDSW↓ ASSA↑ FPS↑
FairMOT [8] 59.3 73.7 72.3 2.75 11.70 3303 58.0 25.9
RelationTrack [40] 61.0 73.8 74.7 2.80 11.86 1374 61.5 8.5
CorrTracker [41] 60.7 76.5 73.6 2.98 9.95 3369 58.9 15.6
TransMOT [42] 61.7 76.7 75.1 3.62 9.32 2346 59.9 9.6

StrongSORT++ [6] 64.4 79.6 79.5 2.79 8.62 1194 64.4 7.1
OC-SORT [16] 63.2 78.0 77.5 1.51 10.70 1950 63.2 29.0
TLMHT [12] – 50.6 56.5 2.22 25.50 1407 – –
GLMB [34] 58.9 73.9 71.5 2.51 11.90 3255 – –
TADN [30] – 54.6 49.0 3.63 21.49 4869 – –
SGT [31] – 76.4 72.8 2.60 10.29 4101 – –
ByteTrack [5] 63.1 80.3 77.3 2.55 8.37 2196 62.0 29.6
Baseline 63.7 79.3 78.9 1.68 9.92 1074 63.6 11.3
LQTTrack(ours) 64.8 79.3 80.6 1.60 9.97 1008 65.8 11.8

4.2.2 MOT20

In this section, MOT20 is employed to further evaluate the performance of the proposed. Unlike
MOT17, MOT20 contains more crowded scenes where higher occlusion implies more low-quality
targets and higher chances of unmatched targets. The experimental results presented in Table 2,
LQTTrack still surpasses the current SOTA (State-of-the-art) algorithms and achieves 64.0, 78.9, and
65.8 in HOTA, IDF1, and AssA. Compared with ByteTrack [5], our method outperforms 2.7, 3.7,
6.2, and 386 in HOTA, IDF1, AssA, and IDSW. Additionally, compared to SGT [31], our method
outperforms 2.7, 8.3, and 1637 in MOTA, IDF1, and IDSW. Compared to GLMB [34], our method
surpasses GLMB by 9.8, 7.8, 11.6, and 2074 in HOTA, MOTA, IDF1, and IDSW. Moreover, compared
to the baseline, LQTTrack improved the method by 2.6, 4.4, 4.0, 3.3, and 973 in HOTA, MOTA,
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IDF1, AssA, and IDSW. When facing scenarios with many low-quality targets, our processing of low-
quality targets significantly improves the accuracy of multi-target tracking. All of these indicate the
effectiveness of the proposal.

Table 2: Comparison with state-of-the-art MOT methods on the MOT20 test set

MOT20

Tracker HOTA↑ MOTA↑ IDF1↑ FP(104)↓ FN(104) ↓ IDSW↓ ASSA↑ FPS↑
FairMOT [8] 54.6 61.8 67.3 10.34 8.90 5243 54.7 13.2
RelationTrack [40] 56.5 67.2 70.5 6.11 10.46 4243 56.4 2.7
CorrTracker [41] – 65.2 69.1 7.94 9.59 5183 – 8.5
TransMOT [42] 61.9 77.5 75.2 3.42 8.08 1615 60.1 –

StrongSORT++ [6] 62.6 73.8 77.0 1.66 11.79 770 64.0 1.4
OC-SORT [16] 62.4 75.7 76.3 1.91 10.59 942 62.0 18.7
SGT [31] – 72.8 70.6 2.52 11.30 2474 – –
GLMB [34] 54.2 67.7 67.3 2.96 13.45 2911 – –
ByteTrack [5] 61.3 77.8 75.2 2.62 8.76 1223 59.6 17.5
Baseline 61.4 71.1 74.9 4.78 10.02 1810 62.5 2.3
LQTTrack(ours) 64.0 75.5 78.9 1.74 10.87 837 65.8 1.7

4.2.3 DanceTrack

In this part, DanceTrack is utilized to validate the performance of the proposed. DanceTrack is a
dataset with the challenges of complex object motion patterns and similar appearances. The validated
results and comparisons are exhibited in Table 3. From this presentation, we can see that the proposed
achieves better results of 92.0 and 82.1 in MOTA and Detection accuracy (DetA) when compared
with the majority of trackers. The better performance demonstrates the effectiveness of our proposed
method. However, LQTTrack did not show a significant improvement in HOTA and AssA compared
to the baseline. The analysis indicates that using the same parameters (specifically, aw and τhigh) as in
MOT17 led to an increase in missed detection, resulting in comparable or slightly lower metrics such
as HOTA. This finding demonstrates that the proposed method needs further optimization for better
generalization in complex motion scenes.

Table 3: Comparison with state-of-the-art MOT methods on the DanceTrack test set

DanceTrack
Tracker HOTA↑ MOTA↑ DetA↑ AssA↑
FairMOT [8] 39.7 82.2 66.7 23.8
CenterTrack [47] 41.8 86.8 78.1 22.6
QDTrack [28] 45.7 83.0 72.1 29.2
OC-SORT [16] 55.1 92.0 80.3 38.3

(Continued)
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Table 3 (continued)

DanceTrack
Tracker HOTA↑ MOTA↑ DetA↑ AssA↑
ByteTrack [5] 47.3 89.5 71.6 31.4
Baseline 59.6 90.9 81.5 43.7
LQTTrack(ours) 58.9 92.0 82.1 42.3

Furthermore, with the IDF1-MOTA-HOTA comparisons displayed in Fig. 4, the superior per-
formance, especially in MOT20, indicates the robust performance in handling numerous low-quality
targets.

Figure 4: IDF1-MOTA-HOTA comparisons of state-of-the-art trackers with our proposed LQTTrack
on the MOT17 and MOT20 test sets. The x-axis is MOTA, the y-axis is HOTA, and the radius of the
circle is AssA. There is still excellent performance on MOT20 test sets with many low-quality targets

4.3 Benchmark Evaluation

In this section, ablation studies are conducted to verify the contributions of the designed Low-
quality targets association strategy (LQA), Multi-Scale Feature Fusion of FPN (MSFF-FPN) and
Normalized Wasserstein distance (NWD) which are the main modules in LQTTrack. Additionally,
to avoid potential detector bias, we uniformly employed bytetrack’s yolox-x ablation study weights,
which were trained on the first half of sequences from CrowdHuman and MOT17.

(1) The effect of LQA.

i) LQA with NWD without MSFF-FPN. We used LQA as a universal tool into the Baseline, Deep
OC-SORT, and OC-SORT methods to verify the effectiveness of LQA. The validation results based
on the MOT17 dataset are shown in Table 4. Compared to the baseline, the using of LQA improved
the method baseline by 1.39, 0.45, 0.54, and 0.95 in HOTA, MOTA, IDF1, and AssA. Compared
to Deep OC-SORT, the method of Deep OC-SORT was improved by 0.2, 1.91, 0.57, and 1.51 in
HOTA, MOTA, IDF1, and AssA. Similarly, compared to OC-SORT, using LQA improved the OC-
SORT method by 0.83, 0.65, 1.64, 1.81, and 68 in HOTA, MOTA, IDF1, AssA, and IDSW. The above
performance improvements indicate that LQA is superior in handling low-quality targets.
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Table 4: Ablation study on MOT17-val

MOT17

Method original MSFF NWD LQA HOTA↑ MOTA↑ IDF1↑ AssA↑ IDSW↓
Baseline � 68.97 78.37 82.73 73.06 104

� � 70.29 78.36 83.22 73.95 89
� � � 70.36 78.82 83.27 74.01 99
� � � � 70.61 78.79 83.66 74.40 84

Deep OC-SORT � 70.20 76.93 82.78 72.54 95
� � 70.51 78.85 83.41 74.10 81
� � � 70.40 78.84 83.35 74.05 95
� � � � 70.56 78.79 83.49 74.28 83

BoT-SORT � 68.88 78.40 81.50 71.20 177
� � 69.34 78.50 82.40 72.00 159

OC-SORT � 65.95 75.06 76.78 67.07 320
� � � 66.78 75.71 78.42 68.88 252

Furthermore, video MOT20-03 is selected to further verify the effectiveness of our module on low-
quality targets for its dense scenes and many low-quality targets. In this part, we set the detection of
τlow < score < τhigh as low-quality targets, as shown in the Fig. 5, after the second stage which integrates
NWD, the low-quality targets are below 612 compared with the baseline. And after the third stage
which additionally considers the current frame’s unmatched targets and tracklets of previous early
frames, it is obvious to find that the number decreases again, and the low-quality targets decrease
by 1282 after the third stage. All of these depict the effectiveness of the proposed in optimizing the
accuracy of MOT.

Figure 5: Example of the advantage of LQTTrack. In the second and third associations, we processed
low-quality targets separately. LQTTrack effectively reduces the number of low-quality targets on
MOT20-03
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ii) LQA without NWD and MSFF-FPN. Furthermore, we embed LQA without NWD into the
Deep OC-SORT and OC-SORT methods to verify the effect of LQA without NWD. The validation
results based on the MOT17 dataset are shown in Table 5. Compared to Deep OC-SORT, the utilizing
of LQA improves the method Deep OC-SORT by 0.14, 2.15, 0.39, and 1.19 in HOTA, MOTA, IDF1,
and AssA. Similarly, compared to OC-SORT, the method OC-SORT has been improved by 0.6, 1.53,
2.23, and 109 in HOTA, IDF1, AssA, and IDSW. The above performance improvements indicate
that LQA without NWD and MSFF-FPN can significantly improve the original performance, which
validates the effectiveness of the proposed third-stage association.

Table 5: Ablation study on MOT17 with LQA∗. LQA∗ represent LQA without NWD and MSFF-FPN

MOT17

Tracker HOTA↑ MOTA↑ IDF1↑ AssA↑ IDSW↓
Deep OC-SORT 70.20 76.93 82.78 72.54 95
Deep OC-SORT(LQA∗) 70.34 79.08 83.17 73.73 90
OC-SORT 65.95 75.06 76.78 67.07 320
OC-SORT(LQA∗) 66.55 74.63 78.31 69.30 211

iii) The effect of LQA with both NWD and MSFF-FPN. Moreover, the proposed association
is completely integrated into Baseline and Deep OC-SORT. From the results described in Table 4
for Baseline and Deep OC-SORT, the integration of the proposed has improved the performance
of baseline by 1.64, 0.42, 0.93, 1.34, and 20 in HOTA, MOTA, IDF1, AssA, and IDSW, the same
optimization of Deep OC-SORT by 0.36, 1.86, 0.71, and 1.74 in HOTA, MOTA, IDF1, and AssA.
This further validates the effectiveness and superiority of LQTTrack.

The optimization performance of LQA, both with and without NWD and MSFF-FPN, demon-
strates LQTracker’s superiority in reducing track fragmentation and tracking errors.

(2) The effect of MSFF-FPN. This work utilizes the multi-scale feature fusion strategy of FPN
(MSFF-FPN) to achieve rich feature information. Therefore, MSFF-FPN is embedded in Baseline,
Deep OC-SORT, and BOT-SORT. The experimental results are shown in Table 4. Compared to the
baseline, the using of MSFF-FPN improves the method baseline on MOT17 datasets by 1.32, 0.49,
and 0.89 in HOTA, IDF1, and AssA. Compared to the Deep OC-SORT method, the method of Deep
OC-SORT on MOT17 datasets has been improved by 0.31, 1.92, 0.63, and 1.56 in HOTA, MOTA,
IDF1, and AssA. Similarly, compared to the Deep OC-SORT, using MSFF-FPN improves the BoT-
SORT method on MOT17 by 0.46, 0.9, and 0.8 in HOTA, IDF1, and AssA. These results demonstrate
the effectiveness of MSFF-FPN.

(3) The effect of NWD. To address the incomplete consideration of low-quality targets in IoU
measurement methods, NWD is adopted to handle low-quality targets with small sizes. Therefore,
to measure the contribution of NWD, this section integrates GIoU and NWD into the Deep OC-
SORT and OC-SORT methods with high-low-scores mechanism and verifies its effectiveness using the
MOT20 dataset, which contains more low-quality targets with small sizes. The validation results are
presented in Table 6. Compared to Deep OC-SORT, which utilized IoU originally, the employment of
GIoU has achieved the improvement of 0.8, 3.56, 2.87, 2.05, and 316 in HOTA, MOTA, IDF1, AssA,
and IDSW, but the employment of NWD has a more substantial enhancement 0.23, 0.31, 0.63, 0.45,
and 83 in HOTA, MOTA, IDF1, AssA, and IDSW compared with GIoU. Similarly, for OC-SORT,
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compared to the original IoU, the use of GIoU leads to the increment of metrics, but NWD shows the
best performance.

Table 6: Ablation study on MOT20 with a single NWD

MOT20

Tracker HOTA↑ MOTA↑ IDF1↑ AssA↑ IDSW↓
Deep OC-SORT(IoU) 59.98 69.94 75.24 58.61 1182
Deep OC-SORT(GIoU) 60.78 73.50 78.11 60.66 866
Deep OC-SORT(NWD) 61.01 73.81 78.74 61.11 783

OC-SORT(IoU) 55.95 69.56 72.56 54.42 1297
OC-SORT(GIoU) 55.32 69.56 72.53 54.47 1320
OC-SORT(NWD) 56.03 69.54 72.56 54.55 1322

From the experimental results and analysis, it is easy to find that IoU is sensitive to positional
deviations of the target. GIoU can the IoU by introducing a minimum bounding rectangle to represent
the distance between two boxes, addressing the positional relationship when the bounding boxes do
not overlap. However, GIoU remains reliant on IoU and defaults to IoU when the bounding boxes
contain overlapping information. In contrast, NWD leverages Gaussian distribution to account for
the overall distribution characteristics of the target area, and this approach can effectively measure the
similarity even when there is limited overlap or mutual containment between bounding boxes, and it is
less sensitive to scale. Consequently, NWD is more suitable for low-quality targets and demonstrates
greater robustness in target association.

4.4 Parameter Sensitivity Study

(1) Threshold for high and low-quality targets selection.

In order to verify the influence of high and low score thresholds on data association, we only
change the score thresholds τlow and τhigh of the data association for the LQTTrack and conduct
experiments on the MOT17 set to compare experiment results with different thresholds. We change
τlow from 0.1 to 0.3 and τhigh from 0.6 to 0.8, the results are shown in Table 7. As seen from the Table 7,
when the low score threshold τlow is 0.1, and the high score threshold τhigh is 0.6, LQTTrack achieves
optimal performance. Therefore, the low and high score thresholds τlow and τhigh in our algorithm are
taken to be 0.1 and 0.6, respectively. Reasonable threshold selection has a positive impact on the data
association, the suitable score thresholds significantly improve the association indicators, reducing
trajectory fragmentation and identity switching.

Table 7: Comparative experiments of different thresholds in LQTTrack

MOT17
Threshold HOTA↑ MOTA↑ IDF1↑ AssA↑ IDSW↓
τlow = 0.1, τhigh = 0.6 70.61 78.79 83.66 74.40 84

(Continued)
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Table 7 (continued)

MOT17
Threshold HOTA↑ MOTA↑ IDF1↑ AssA↑ IDSW↓
τlow = 0.2, τhigh = 0.7 70.35 78.95 83.27 74.01 84
τlow = 0.3, τhigh = 0.8 68.97 78.82 83.11 73.89 94

(2) Parameter for similarity computation.

The parameter adaptive weight aw and dynamic appearance value λf are sensitive hyper-
parameters and need to be carefully tuned in the task of multi-object tracking. Based on the experience
of [10], we change aw from 1.0 to 2.25 and λf from 0.75 to 1.0 and compare the HOTA, AssA, and
IDSW of LQTTrack. The results are shown in Fig. 6. From the results, we can see that 1.25 and 0.95
are appropriate choices for aw and λf . More suitable parameters can better weigh the appearance and
motion features, improve matching accuracy, and enhance the effectiveness and performance of multi-
target tracking. Therefore, we will also consider incorporating research on λf adaptive parameters in
our future work, which will contribute to the advancement of our subsequent efforts.

Figure 6: Study for the parameter of the adaptive weight aw and dynamic appearance value λf on the
MOT17 validation set

4.5 Runtime

The FPS is measured with NVIDIA GeForce RTX 3080Ti GPU. The FPS of the proposed is
analyzed on the test set of MOT17 and MOT20, and the results are represented in Fig. 7. MSFF-FPN
represents a multi-scale feature fusion module combined with the baseline, whereas LQA denotes a
low-quality target association strategy without the MSFF-FPN, also combined with the baseline.
For MOT17, from Fig. 7a, MSFF-FPN exhibits relatively lower operational efficiency, but LQA
demonstrates a comparative advantage in operational efficiency, achieving increased FPS. Overall,
LQTTrack enhances performance without imposing additional computational burdens. For MOT20,
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from Fig. 7b, the effect of MSFF-FPN and LQA on FPS is similar to the MOT17 sets. However,
LQTTrack exhibits relatively lower operational efficiency. Substantially, MSFF-FPN exhibits rela-
tively lower operational efficiency, but LQA demonstrates a comparative advantage in operational
efficiency, achieving increased FPS. This is primarily due to the increased computational complexity
resulting from feature fusion while enhancing model performance and reducing processing speed. We
will also focus on optimizing the efficiency of LQTTrack in our next phase of work.

Figure 7: FPS of the method on the test sets of MOT17 and MOT20. (a) represents the FPS
performance comparison of each module on the MOT17 dataset, (b) represents the FPS performance
comparison of each module on the MOT20 dataset

5 Conclusion

In this work, we present an effective method LQTTrack for multi-object tracking with low-quality.
LQTTrack is very effective in occlusion with the help of low-quality association schemes and NWD
and feature fusion, enhancing the accuracy and robustness of multi-object tracking. We have verified
the effectiveness of our method on MOT17, MOT20, and DanceTrack benchmarks. In the future, we
will perform additional research on feature extraction and data association techniques to enhance the
outcomes of multi-object tracking.
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