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ABSTRACT

As the penetration ratio of wind power in active distribution networks continues to increase, the system exhibits
some characteristics such as randomness and volatility. Fast and accurate short-term wind power prediction
is essential for algorithms like scheduling and optimization control. Based on the spatio-temporal features of
Numerical Weather Prediction (NWP) data, it proposes the WVMD_DSN (Whale Optimization Algorithm,
Variational Mode Decomposition, Dual Stream Network) model. The model first applies Pearson correlation
coefficient (PCC) to choose some NWP features with strong correlation to wind power to form the feature
set. Then, it decomposes the feature set using Variational Mode Decomposition (VMD) to eliminate the non-
stationarity and obtains Intrinsic Mode Functions (IMFs). Here Whale Optimization Algorithm (WOA) is applied
to optimise the key parameters of VMD, namely the number of mode components K and penalty factor a.
Finally, incorporating attention mechanism (AM), Squeeze-Excitation Network (SENet), and Bidirectional Gated
Recurrent Unit (BiGRU), it constructs the dual-stream network (DSN) for short-term wind power prediction.
Comparative experiments demonstrate that the WVMD_DSN model outperforms existing baseline algorithms
and exhibits good generalization performance. The relevant code is available at https://github.com/ruanyuyuan/
Wind-power-forecast.git (accessed on 20 August 2024).
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1 Introduction

Due to its low cost, abundance, and environmental friendliness, wind energy has gained global
attention [1,2]. However, the inherent volatility, intermittence, and uncertainty of wind power pose
significant challenges to the safe and stable operation of power systems. Therefore, accurate wind
power prediction is crucial for improving the reliability and safety of system operations [3].

Currently, wind power prediction methods are mainly divided into four categories: physical
methods, statistical methods, traditional machine learning methods and deep learning methods.
Although the first three traditional ones have certain applications in wind power prediction, there are
also some limitations and challenges. The physical method has high requirements on the accuracy
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of meteorological factors, and it is difficult to cope with the complex and changeable wind field
conditions [4]. The statistical method lacks the ability to model nonlinear relationships and has poor
adaptability to complex wind farm dynamic changes [5]. Traditional machine learning performs poorly
on nonlinear and non-stationary data and has limited model generalization ability [6]. In contrast, deep
learning technology has great advantages and has become the current mainstream method [7].

In wind power prediction using deep learning, initial approaches employed single models such
as LSTM [8], CNN [9,10], GRU [11], and BiGRU [12]. However, wind power data consist of
sequential information that includes both temporal and spatial components [13]. While single models
effectively handle temporal data from time series of wind power, they often overlook spatial features.
Spatial information in this context encompasses different geographical locations [14] and diverse
meteorological factors [15]. To address these spatio-temporal characteristics, hybrid models have
been developed for wind power prediction using deep learning techniques. These include CNN-
LSTM [16], CNN-BiLSTM [17], CNN-BiLSTM-AM [18], etc. Although the above hybrid models
can effectively deal with spatio-temporal features, they also increase the complexity. The two-stream
network applied to action recognition [19] presented recently, uses parallel processing to handle spatio-
temporal features and shows superior performance than the hybrid models. Therefore, it is applied to
some fields rapidly. For example, Reference [20] proposes a two-stream three-dimensional CNN, which
captures spatial and temporal information on a fine time scale for skeletal-based action recognition.
Reference [21] proposes a DSN composed of CNN and GRU to learn spatio-temporal features from
photovoltaic power generation and meteorological data, which improved the accuracy of prediction.
Thus, it is natural to adopt it in the field of wind power prediction. However, how to improve the
construction of DSN is still a challenge. Generally, one branch of the DSN processes spatial data
while the other handles temporal data. What types of networks are used for each branch, and how
many are there? The features generated by these branches may have some redundancy. How can this
redundancy be reduced? These are some of the challenges faced in this field.

Additionally, to address the intermittency, volatility, and uncertainty of wind power generation,
the aforementioned models often incorporate data preprocessing methods such as empirical mode
decomposition (EMD) [22], ensemble empirical mode decomposition (EEMD) [23], wavelet transform
(WT) [24], and variational mode decomposition (VMD) [25]. Among them, the VMD technology
shows the best performance and noise robustness [16,25]. However, one of the drawbacks of this
method is that the number of mode components K and penalty factor a have a large impact on
the decomposition results [26]. Hence, it is important to consider the optimal combination of key
parameters K and a of VMD.

Motivated by the basic ideas mentioned above, the paper proposes a superior wind power named
WVMD-DSN. It first utilizes the PCC to choose some NWP features to form the feature set, Then,
it decomposes the feature set using VMD, while adopting WOA to fine-tune the number of mode
components K and penalty factor a. Finally, it constructs the DSN for short-term wind power
prediction, integrating AM, SENet, and BiGRU.

The main contributions of this paper are as follows:

1) It proposes a novel dual-stream network model and applies it to wind power generation,
achieving better prediction results than other baseline models and demonstrating strong
generalization performance.

2) In order to enhance the prediction accuracy and address potential errors, it introduces WOA
to design the key parameters of VMD adaptively.
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2 Background Technologies

In this chapter, we first discuss the theoretical foundation of VMD preprocessing technology and
the evaluation indices of envelope entropy and mutual information used for WOA-optimized VMD.
We then explain the theoretical underpinnings of SENet and BiGRU as employed in the DSN network
model.

2.1 VMD and WOA

VMD is an adaptive signal decomposition method that employs a non-recursive decomposition
scheme [27]. It decomposes signals into a specified number of IMFs with different center frequencies.
Applying the VMD decomposition preprocessing method to wind power involves the following
constrained variational model:

min|uk|.|ωk|
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In the equation, X̃ (t) is the wind power generation series; K is the number of modes to be
decomposed; δ (t) is the Dirac function; j is the imaginary unit; t is time; uk (t) is the IMF component at
time k; ωk is the central frequency corresponding to the IMF component; ∗ is convolution operation.

To solve Eq. (1), the Lagrange multiplication operator λ is introduced to transform the con-
strained problem into a non-constrained problem and obtain the augmented Lagrange expression.
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In Eq. (2), α is the penalty factor, which is used to reduce the influence of Gaussian noise. The
parameters uk, ωk and λ are iteratively updated by the alternate direction method of the multiplier.

WOA [28] is a swarm intelligence optimization algorithm that effectively prevents getting trapped
in local minima, unlike Particle Swarm Optimization (PSO) [29] and Grey Wolf Optimizer (GWO)
[30], thereby enhancing global optimization efficiency. Therefore, it is suitable to solve some complex,
changeable and nonlinear problems. Mutual Information (MI) primarily used in information theory
to quantify the degree of correlation between two events, is less susceptible to external interference
[31]. Here, we adopt WOA to optimize the key parameters K and α of VMD, and choose the envelope
entropy and MI as the fitness function. The size of the envelope entropy reflects the uncertainty of
the probability distribution. The larger the entropy, the greater the uncertainty of the signal. The
calculation of the envelope entropy Ep of signal X̃ (t) is as follows:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ep = −
N∑

t=1

pt lg pt

pt = a (t)
N∑

t=1

a (t)

(3)
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Whereas, N is the number of sampled points of the signal, a (t) is the envelope signal obtained
through Hilbert demodulation of signal X̃ (t), and pt represents the normalized result of signal a (t).

MI expression is as follows:

MI (X , Y) = H (Y) − H (Y |X) (4)

In the equation, X and Y represent different events, H (X) is the entropy of Y , H (Y |X) is the
conditional entropy of Y given X . The normalized mutual information is processed as follows:

mi = MI (X , Y)

/√
H (X) · H (Y) (5)

A higher mutual information entropy value indicates a stronger correlation between two events.
For IMF components, those that better capture the characteristic information of the wind power signal
will have a larger mutual information entropy value. The composite index established in this article is:

I = Ep ∗ mi (6)

The composite index considers both the noise level and characteristic information of IMF
components. When an IMF component contains less noise and richer characteristic information, the
composite index I has a smaller value. Therefore, the minimum value of I is adopted as the fitness
function, expressed as:

fitness = min
1∼K

{I} (7)

2.2 SENet and BiGRU

SENet [32] is a CNN-based attention mechanism for learning feature relationships between differ-
ent channels. By introducing the squeeze-excitation (SE) module, it learns the relationship between the
CNN convolution kernel’s channels, and employs the channel AM to adaptively recalibrate channel-
wise feature responses by explicitly modeling the interdependencies. SEblock adjusts the importance
of each convolutional channel by learning their weights, thereby enhancing the network’s perception
of different feature channels. The formula is as follows:

zc = 1
h × w

∑
1 ≤ i ≤ h
1 ≤ j ≤ w

uc (i, j) (8)

s = σ (w2δ (w1z)) (9)

x̃c = sc · uc (10)

In Eq. (8), zc is the squeeze output, and uc is the eigenvalue of the characteristic graph in channel
c. In Eq. (9), w2 and w1 are fully connected layer operation, and δ denotes a ReLU layer operation.
And then the output go through the sigmoid function σ to get s which is to characterize the weights of
feature maps in matrix uc. In Eq. (10), sc reflects the importance weight of each feature channel, and
the weight coefficient of each channel can be learned through sc · uc.

As for BiGRU, it is on the base of the traditional GRU [33] network, which the transmission of
information is unidirectional. The mathematical model is shown below:

rt = σ (Wr · [ht−1, xt] + br) (11)
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zt = σ (Wz · [ht−1, xt] + bz) (12)

h̃t = tanh (Wh · [rt ∗ ht−1, xt] + bh) (13)

ht = (1 − zt) ∗ ht−1 + zt ∗ h̃t (14)

In the equations, Wr, Wz and Wh are the weights of the internal parameters of the GRU. br, bz

and bh are the biases of the internal parameters of the GRU. σ is the sigmoid function, and tanh is the
hyperbolic tangent function.

In the wind power forecasting, the current output relates not only to the state at the subsequent
time but also to the previous. The input information at each time step is fed into two GRU networks
in opposite directions in a BiGRU. Therefore, the BiGRU model can capture the strong temporal
correlations in wind power sequences effectively.

3 WVMD_DSN Model

The proposed WVMD_DSN is illustrated in Fig. 1, which primarily consists of the following
steps:

(1) Clean the data, and then split the data into NWP and wind power data.
(2) Decompose the wind power by VMD and get the IMF components. Here VMD is optimized

by WOA to select the best mode number K and penalty factor.
(3) Using PCC to calculate the correlation between NWP data and power features, and choose

those with stronger correlations to form the feature set NWPpcc.
(4) Integrating the NWPpcc and IMF components to form the input sets.
(5) Predict each value by DSN, which integrates SENet, BiGRU, and AM.
(6) Combine all the predicted values to form the final value.

3.1 Data Preprocessing

The study utilizes spatio-temporal data consisting of Wind Power, Wind Speed-10 (WS-10), Wind
Speed-30 (WS-30), Wind Speed-50 (WS-50), Wind Direction-10 (WD-10), Wind Direction-30 (WD-
30), Wind Direction-50 (WD-50), Humidity, Temperature and Atmospheric Pressure. Here, Wind
Speed-10 represents the wind speed at 10 m on the wind measurement tower, and the other numeric
features follow the same meanings. The data preprocessing methods include the mean imputation for
missing values and the MinMax scaling technique to normalize each attribute to the range of 0 to 1.
Further, it employs PCC to select highly correlated NWP features. Additionally, to reduce the non-
stationary characteristics of wind power, VMD is employed for decomposition, obtaining the IMF
components. This is illustrated in Fig. 2, where K represents the number of IMFs.

After preprocessing the data, we employ a sliding window approach to select temporal data and
prediction labels for the model. We use data from the first two hours as input, with a sample resolution
of fifteen minutes. The sliding window size is set to 8, and the label window corresponds to the next
fifteen minutes, with a prediction step of 1. Finally, the dataset is divided into training, validation, and
test sets.
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Figure 1: The architecture of WVMD_DSN

3.2 DSN Structure

In the paper, the proposed DSN consists of SENet and BiGRU, using for parallel processing of
spatio-temporal features, as shown in Fig. 3. It extracts irregular trends and complex features from
the variables of historical wind power data. The first stream uses SENet, which alone cannot capture
spatio-temporal information. Therefore, we introduce a second stream using BiGRU. The SENet
stream processes spatial data from NWP, including variables such as temperature, humidity, wind
speed, and IMF components from VMD. The BiGRU stream focuses on extracting time series data of
wind power also processed by VMD. The BiGRU stream mainly extracts the time series data of wind
power processed by VMD.
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Figure 2: Schematic diagram of spatio-temporal wind power data processing based on VMD decom-
position

Figure 3: DSN network structure

The DSN includes an input layer, multiple hidden layers, and an output layer. The SENet stream’s
hidden layers consist of convolutional layers, SEblocks, and pooling layers, which extract spatial
features from various meteorological factors influencing wind power generation, that is the NWP data.
The BiGRU stream comprises two BiGRU layers, which capture the temporal features of wind power
generation. Then, the outputs of both streams are concatenated to form a single feature vector, which
is passed to an attention module to extract more valuable output results. It produces the ultimately
wind power prediction result.

4 Experiments and Results Analysis

In this chapter, we first describe the attributes of the two wind power datasets used in this paper.
Next, we detail the WVMD preprocessing technique and the parameters employed in the DSN model.
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We then assess the efficacy of WVMD denoising by comparing the processed signals with Gaussian
white noise and a normal distribution. Following this, WVMD is applied to wind power data. Finally,
we perform ablation experiments to analyze the parallel computing time of the DSN model, compare
WVMD_DSN with the current baseline model, and conduct a generalization analysis using wind
power dataset 2. This comprehensive approach demonstrates the effectiveness of the WVMD_DSN
method in wind power prediction.

4.1 Datasets

To evaluate the proposed WVMD_DSN, it uses the actual power and weather forecast numerical
data collected from a region in Xinjiang, China. The data sampling period spans from 1 January,
2019 to December 31, 2019, with a sampling frequency of 15 min. Thus it consists in a total of
35,040 data points. Wind power generation dataset includes historical wind power and NWP data,
that is, timestamp, Wind Power (WP), Temperature (Tem), Air Pressure (AP), Humidity (Hum),
Wind Direction (WD), and Wind Speed (WS). To further investigate the generalization ability
of the WVMD_DSN model, wind power dataset 2 is adopt. This dataset originated from Inner
Mongolia, China. The specific features of wind power generation include timestamps, Air Density
(AD), Temperature (Tem), Air Pressure (AP), Humidity (Hum), Wind Speed (WS), Wind Direction
(WD), and Wind Power (WP). The sample information of the two datasets are shown in Table 1.

Table 1: Statistical information of data attributes

Datasets Attributes Mean Std Min 25% 50% 75% Max

Wind power
dataset 1

Wind power (MW) 53.90 56.73 0.258 3.526 29.037 99.741 202.22
Temperature (°C) 11.324 14.03 −18.66 −1.576 13.105 23.04 40.13
Air pressure (hPa) 888.509 5.793 −874.5 883.63 888.638 892.708 905.307
Humidity (%) 33.59 20.76 2.506 16.647 28.122 47.544 94.92
Wind direction-10 m (°) 156.22 86.821 0.00 82.25 137.966 230.509 359.946
Wind direction-30 m (°) 158.638 89.835 0.00 79.707 137.621 239.895 360.0
Wind direction-50 m (°) 11.587 16.812 0.00 5.852 6.392 11.539 355.823
Wind speed-10 m (m/s) 4.818 3.516 0.00 2.364 3.869 6.602 19.246
Wind speed-30 m (m/s) 5.347 3.836 0.00 2.62 4.481 7.312 21.056
Wind speed-50 m (m/s) 5.774 4.054 0.00 2.772 4.66 8.000 22.382

Wind power
dataset 2

Air density (°C) 1.106 0.053 0.981 1.062 1.105 1.147 1.246
Temperature (°C) 1.537 12.309 −28 −8 1 12 32
Air pressure (hPa) 86.95 0.55 85.38 86.6 86.9 87.4 88.7
Humidity (%) 56.51 22.36 5.00 39.2 57.3 75.4 100.5
Wind speed-weather (m/s) 7.377 3.197 0.00 5.00 7.20 9.6 20.8
Wind direction-weather (°) 243.9 81.11 0.00 214.0 270.0 297.0 359.0
Wind speed-farm (m/s) 8.057 3.847 0.00 5.190 7.650 10.680 26.77
Wind direction-farm (°) 202.04 105.94 3.00 89.00 232.00 294.00 359.00
Wind Power (MW) 20.205 15.610 0.00 5.46 17.850 34.450 50.230
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4.2 Experimental Parameter Settings

The experiments in this study are conducted using Python 3.7 and the TensorFlow framework.
They are performed on a server equipped with an AMD Ryzen 9 5900HX CPU @ 4.6 GHz, an
NVIDIA GeForce RTX 4090 GPU, and 24 GB of RAM.

The WVMD_DSN model uses the Adam optimization algorithm with training epochs set to 100.
Table 2 illustrates the parameter settings for the WOA optimization algorithm and the parameter
settings for the DSN dual-stream network structure.

Table 2: WVMD_DSN model parameter settings

Type Parameter

Convolutional layer Filter: 8; Kernel size: 1
SE block layer Ratio: 2
Convolutional layer Filter: 16; Kernel size: 3
Max pooling layer Pooling size: 2
BiGRU layer Hidden units: 32
BiGRU layer Hidden units: 16
Attention layer Units: 96
WOA Population size: 20; Maximum number of iterations: 40
VMD Initial (K, a) value is (7, 500); Optimized (K, a) value is (9, 619)

4.3 WVMD Processing

4.3.1 Analysis of WVMD Decomposition Techniques

In this section, we compare the effectiveness of the WVMD technique with VMD and WOA-
VMD. The comparison includes simulated signals with Gaussian white noise and signals with normally
distributed noise. Simulated Signal 1 contains four distinct frequency components: a1, a2, a3, and a4,
sampled at 500 Hz. The original signal is a superposition of a1, a2, a3, and a4. Signal 1 with noise
includes Gaussian white noise with a signal-to-noise ratio of 10 dB, while Signal 2 with noise contains
normally distributed noise with a signal-to-noise ratio of 15 dB. The Formula (15) as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ti = 30π

500
· i, i ∈ [0, 499]

a1 = 1.2 cos (0.1πti + π/4)

a2 = 0.8 sin (0.3πti + π/6)

a3 = 1.5 cos (0.5πti + π/3)

a4 = 1.0 sin (0.7πti + π/2)

s = a1 + a2 + a3 + a4

ξ = noise 1
y = a1 + a2 + a3 + a4 + ξ

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ti = 30π

500
· i, i ∈ [0, 499]

a1 = 1.5 cos (0.2πti + π/3)

a2 = 1.0 sin (0.5πti + π/4)

a3 = 2.0 cos (0.8πti + π/6)

a4 = 1.2 sin (1.2πti + π/2)

s = a1 + a2 + a3 + a4

ξ = noise 2
y = a1 + a2 + a3 + a4 + ξ

(15)

To verify the WVMD decomposition and denoising capabilities, we denoise the simulated signal by
WVMD, WOA-VMD and VMD separately. The parameter combination [K, α] for VMD is [7, 500].
In Signal 1, the values of [K, α] for WOA-VMD are [3, 140], with a fitness value of 8.5471, and for
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WVMD are [10, 916], with a fitness value of 0.8965. In Signal 2, the values of [K , α] for WOA-
VMD are [9, 532], with a fitness value of 8.6098, and for WVMD are [9, 334], with a fitness value
of 1.1014. As shown in Table 3, the WVMD decomposition method outperforms WOA-VMD and
VMD. Specifically, the WVMD-denoised signal has the highest SNR and R values and the lowest
RMSE value. In both signals, compare the methods VMD and WOA-VMD, WVMD shows superior
performance.

Table 3: Evaluation metrics for denoising simulated signals

Simulated signal Decomposition method RMSE R SNR

Gaussian white noise Signal 1 VMD 0.4208 0.9660 11.7269
WOA-VMD 0.3682 0.9742 12.8857
WVMD 0.3336 0.9787 13.7432

Normally distributed noise Signal 2 VMD 0.3810 0.9840 14.7885
WOA-VMD 0.3143 0.9886 16.4613
WVMD 0.2973 0.9899 16.9435

4.3.2 Decomposition Results Based on WVMD

To further improve the data quality and eliminate the effects of noise, WVMD is adopted to
decompose the wind power dataset 1. The number of whales is set to 20, the maximum number of
iterations is 40, the number of variables is 2, the penalty factor is [100, 2000], and the K value range
is [2, 10] and includes only integers. From Fig. 4a, it can be seen that the whale algorithm is gradually
stable after twelve iterations, and the optimal fitness function is 2.140759. The optimization curve of
the penalty factor a is shown in Fig. 4c. After twelve iterations, the optimal penalty parameter is 619.
From Fig. 4b, the optimal number for the IMF is 9. Fig. 5b shows the spectra of each IMF component.
The time domain of modal components obtained by WVMD decomposition is presented in Fig. 5a.

Figure 4: (a) Fitness curve of WVMD application in wind power; (b) Mode components K; (c) Penalty
factor a
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Figure 5: (a) WVMD decomposition of wind power; (b) Spectra of each IMF component

4.4 Comparison Analysis of WVMD_DSN

4.4.1 Ablation Study

In this section, using wind power generation datasets as an example, we validate the rationality of
the WVMD_DSN model construction. As shown in Table 4, compared to the single models BiGRU
and SENet, the hybrid model SENet-BiGRU shows an increase in RMSE and MAE by 11% and
11.5%, respectively. Similarly, compared to the hybrid model, the dual-stream model SENet-BiGRU
exhibits an increase in RMSE and MAE by 4% and 8.3%, demonstrating the superior effectiveness of
the DSN model over single and hybrid models. Incorporating WVMD as a preprocessing method
before the DSN model notably enhances prediction accuracy, with RMSE, MAE, and NRMSE
reaching as low as 1.1453, 0.8985, and 0.0056, respectively. Finally, the WVMD_DSN model, enhanced
with attention mechanisms, achieves optimal performance with an RMSE of 1.0199 and an R2 value
of 99.95%. The predictive performance of the WVMD_DSN method is illustrated in Fig. 6, showing
that the predicted residuals consistently fluctuate around the zero scale line of the original wind power
sequence.
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Table 4: Ablation study results

Model RMSE MAE NRMSE R2

BiGRU 7.9515 4.7374 0.0394 0.9693
SENet 8.1671 4.4482 0.0404 0.9676
SENet-BiGRU (Hybrid model) 7.0702 4.1940 0.0350 0.9757
SENet-BiGRU (Dual-stream) 6.7830 3.8480 0.0336 0.9776
VMD-Dual-stream 4.2683 2.2497 0.0211 0.9911
WOA-VMD-Dual-stream 1.1453 0.8985 0.0056 0.9993
WVMD_DSN 1.0199 0.7298 0.0050 0.9995

Figure 6: Prediction results and residual plot of WVMD_DSN

4.4.2 Comparison with Baseline Model
Comprehensive Analysis of the DSN Model

In this section, the proposed DSN model is analyzed in detail. According to Table 5, CNN has a
training time of 94.5, making it the fastest among the models compared. CNN typically outperforms
GRU and LSTM in processing sequence data because it uses parallel computing for feature mapping,
rather than sequentially processing each element like recurrent neural networks. However, the RMSE
and MAE of CNN alone are 9.2461 and 5.4185, respectively, indicating relatively poor prediction
performance.

Table 5: Analysis of time efficiency of the DSN model

Model Training time/s

GRU [11] 213.7
LSTM [8] 205.5

(Continued)
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Table 5 (continued)

Model Training time/s

CNN [9] 94.5
BiGRU [14] 266.5
CNN-BiLSTM [18] 194.9
CNN-BiGRU [17] 186.2
SENet-BiGRU 214.5
DSN 170.0

To address this, CNN is combined with BiGRU, CNN-BiLSTM, and other models. The CNN-
BiGRU model has a shorter training period and higher prediction accuracy than BiGRU. This
improvement is due to CNN’s ability to effectively extract features from input data, especially when
dealing with spatially structured data. By incorporating CNN, the output feature maps become more
concise and representative, which reduces the data and complexity that BiGRU needs to handle.
Although combining CNN with SENet and BiGRU improves prediction performance, it also increases
time complexity. This is mainly because SENet includes an attention mechanism, which adds more
parameters and complexity to the model.

Compared to GRU, BiGRU, and CNN-BiGRU, the DSN model shows improved prediction
accuracy. However, its training cycle increases by 20.4%, 36.1%, and 8.6%, respectively. RMSE rises
by 21.1%, 14.6%, and 8.3%, while MAE increases by 31.6%, 18.7%, and 16.6%. Overall, DSN offers
advantages in terms of prediction accuracy despite a longer training time.

Compare the Proposed WVMD_DSN Model

We compare the proposed WVMD_DSN model with other commonly used similar algorithms.
The specific results are detailed in Table 6. The WVMD_DSN method shows improvements compared
to single models GRU, CNN, and LSTM, with R2 increasing by 3.7%, 4.2%, and 3.5%, respectively, and
RMSE increasing by 7, 8, and 8 percentage points. MAE also increases by 5, 4.9, and 4.8 percentage
points. Compared to the hybrid model CNN-BiLSTM, WVMD_DSN increases RMSE by around
6 percentage points, improves R2 by 2.6%, and increases MAE by 3.7 percentage points. Similarly,
compared to other hybrid models, WVMD_DSN shows corresponding improvements in RMSE,
MAE, NRMSE, and R2. This validates that WVMD_DSN performs better than single models and
hybrid models for wind power prediction. Compared to the original DSN, WVMD_DSN increases
RMSE by approximately 5 percentage points, improves R2 by 2.3%, and increases MAE by 2.9
percentage points. Therefore, the proposed WVMD_DSN model demonstrates superior predictive
accuracy. The two streams of DSN proposed in this paper consist of SENet and BiGRU. The Table 6
shows that BiGRU has an RMSE 7.5% and 12.9% higher than GRU and LSTM, respectively. Thus,
BiGRU is preferred for the second stream to handle wind power time series data. SENet, which is
an improvement over CNN, has an RMSE 11.6% higher than CNN. Therefore, SENet is better for
the first stream to capture spatial characteristics of wind power. An attention mechanism is then
used to remove redundant data from both streams. Finally, combined with WVMD preprocessing
technology, this approach shows a greater improvement compared to DSN alone. The prediction
results are depicted in Fig. 7, showing substantial overlap between the WVMD_DSN approach and
the original sequences, indicating its superior predictive performance.
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Table 6: Experimental results of different models for wind power prediction

Model RMSE MAE NRMSE R2 EVS MBE

GRU [11] 8.5975 5.6291 0.0426 0.9641 0.9647 −1.13
CNN [9] 9.2461 5.4185 0.0458 0.9585 0.9634 3.15
LSTM [8] 9.1380 5.4973 0.0453 0.9595 0.9653 3.46
BiGRU [14] 7.9515 4.7374 0.0436 0.9693 0.9693 −1.08
CNN-LSTM [16] 7.6317 4.7129 0.0378 0.9717 0.9737 2.05
CNN-BiGRU [17] 7.3976 4.6190 0.0366 0.9734 0.9737 −0.76
CNN-BiLSTM [18] 7.2538 4.3032 0.0359 0.9744 0.9751 1.147
DSN [21] 6.8500 3.7651 0.0339 0.9772 0.9717 −1.01
WVMD_DSN 1.0199 0.7298 0.0050 0.9995 0.9995 0.26

Figure 7: Prediction results and residual plot of WVMD_DSN

Compare the Combination of VMD with Multiple Models

The parameter settings for VMD and model parameters remain consistent with those previously
described. VMD is combined with LSTM, CNN-LSTM, CNN-GRU, CNN-BiLSTM, and DSN,
as shown in Table 7. These combinations significantly enhance prediction accuracy, with the DSN
model demonstrating superior performance. Compared to LSTM, CNN-LSTM, CNN-GRU, and
CNN-BiLSTM, integrating VMD with DSN results in RMSE increases of 65.5%, 26.9%, and 13.3%,
respectively, MAE increases of 53%, 26.9%, and 2.7%, respectively, and R2 increases of 4.4%, 1.3%,
and 0.11%, respectively. This further confirms the DSN model’s superiority in wind power prediction.
Additionally, using WOA optimization further enhances prediction accuracy when combining VMD
with DSN.

4.4.3 Generalization Analysis

In this section, the generalization ability of the WVMD_DSN model is primarily examined by
using a wind power dataset 2. The optimized parameters (K, a) obtained from WVMD are (8, 100).
Comparative evaluation metrics performance of WVMD_DSN and baseline models are shown in
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Table 8. It can be observed that WVMD_DSN achieves an RMSE of 0.3704 and MAE of 0.2593.
Compared to the single GRU model, these represent improvements of 89.6% and 88.9%, respectively.
Compared to the hybrid CNN-BiGRU model, WVMD_DSN improves by 84.9% and 70.5%, and
compared to the DSN model, improvements are 83.2% and 66.8%, respectively. The WVMD_DSN
model continues to demonstrate superior performance on wind power dataset 2, highlighting its strong
generalization capability.

Table 7: The combination of VMD and multiple models

Methods RMSE MAE R2

VMD-LSTM [34] 7.7063 3.9861 0.9544
VMD-CNN-GRU [35] 5.6425 2.5621 0.9834
VMD-CNN-BiLSTM [36] 3.0625 1.9259 0.9954
VMD-DSN 2.6559 1.8733 0.9965
WVMD_DSN 1.0199 0.7298 0.9995

Table 8: Experimental results of different models for wind power dataset 2

Model RMSE MAE NRMSE R2

GRU 3.5829 2.3403 0.0808 0.9380
CNN 3.2300 2.1261 0.0654 0.9561
LSTM 3.1703 2.2935 0.0642 0.9577
BiLSTM 2.9219 1.9735 0.0592 0.9640
CNN-GRU 2.7328 1.7667 0.0553 0.9685
CNN-LSTM 2.7535 1.1669 0.0582 0.9601
CNN-BiGRU 2.4602 0.9832 0.0520 0.9682
CNN-BiLSTM 2.5754 1.2528 0.0544 0.9651
DSN 2.2087 0.7818 0.0508 0.9713
WVMD_DSN 0.3704 0.2593 0.0075 0.9994

5 Conclusion and Future Work

The paper proposes a short-term wind power prediction method that integrates WVMD with a
novel DSN model. The main conclusions are as follows:

(1) Through experiments on actual wind power data, it is shown that WVMD can address the
adaptiveness in selecting the mode number K and penalty factor a more effectively.

(2) The paper proposes a novel DSN model, which combines AM and SENet-BiGRU, demon-
strating a significant improvement in the accuracy of wind power prediction. When combined
with the WVMD preprocessing method, the effectiveness of wind power forecasting is further
enhanced. Moreover, to verify the generalization capability of the WVMD_DSN method,
experiments were conducted using real wind power dataset 2, which also exhibit volatility and
instability, fully proving that WVMD_DSN has excellent generalization ability.
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(3) After a comprehensive analysis, the improved DSN model outperforms GRU, BiGRU, and
CNN-BiGRU in both training time and prediction accuracy. While DSN shows better pre-
diction accuracy, its training times increase by 20.4%, 36.1%, and 8.6% compared to GRU,
BiGRU, and CNN-BiGRU, respectively. RMSE and MAE also increase by 21.1%, 14.6%, and
8.3% and 31.6%, 18.7%, and 16.6%, respectively. This model effectively enhances grid reliability
and security and reduces scheduling time for integrating renewable energy into the power grid.

In the future, we will utilize some adaptive optimization algorithms to consider the learning rate
and batch size parameters of the DSN network model. Additionally, we will use various data sources
to improve the wind power generation forecasting model, including meteorological data, GIS data,
wind farm layout data, and real-time monitoring data.
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