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ABSTRACT

Maritime transportation, a cornerstone of global trade, faces increasing safety challenges due to growing sea traffic
volumes. This study proposes a novel approach to vessel trajectory prediction utilizing Automatic Identification
System (AIS) data and advanced deep learning models, including Long Short-Term Memory (LSTM), Gated
Recurrent Unit (GRU), Bidirectional LSTM (DBLSTM), Simple Recurrent Neural Network (SimpleRNN), and
Kalman Filtering. The research implemented rigorous AIS data preprocessing, encompassing record deduplication,
noise elimination, stationary simplification, and removal of insignificant trajectories. Models were trained using
key navigational parameters: latitude, longitude, speed, and heading. Spatiotemporal aware processing through
trajectory segmentation and topological data analysis (TDA) was employed to capture dynamic patterns. Validation
using a three-month AIS dataset demonstrated significant improvements in prediction accuracy. The GRU model
exhibited superior performance, achieving training losses of 0.0020 (Mean Squared Error, MSE) and 0.0334 (Mean
Absolute Error, MAE), with validation losses of 0.0708 (MSE) and 0.1720 (MAE). The LSTM model showed
comparable efficacy, with training losses of 0.0011 (MSE) and 0.0258 (MAE), and validation losses of 0.2290
(MSE) and 0.2652 (MAE). Both models demonstrated reductions in training and validation losses, measured by
MAE, MSE, Average Displacement Error (ADE), and Final Displacement Error (FDE). This research underscores
the potential of advanced deep learning models in enhancing maritime safety through more accurate trajectory
predictions, contributing significantly to the development of robust, intelligent navigation systems for the maritime
industry.
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1 Introduction

Ship navigation presents unique challenges compared to vehicular transport. The absence of
predefined paths for ships makes trajectory prediction a complex task [1]. Traditional methods relying
on dynamic equation construction for predicting ship paths were limited by their dependence on
extensive expert knowledge and lack of adaptability to diverse scenarios.

In recent years, machine learning has emerged as a preferred approach for ship trajectory
prediction. This shift is attributed to machine learning’s superior adaptability, achieved through its
capacity to learn from both historical and real-time driving trajectories [2].

Automatic Identification System (AIS) data plays a crucial role in modern maritime navigation,
providing essential real-time trajectory information. This data is instrumental in monitoring ship
movements, triggering collision avoidance alerts, ensuring maritime safety, and facilitating accident
investigations. Typically comprising time and location information, AIS data is visualized on electronic
charts, enabling effective tracking of ship trajectories [3,4].

The AIS technology serves as one of the most important pillars in navigation systems, offering
abundant near-real-time maritime positioning data [5]. It integrates the Maritime Mobile Service
Identity (MMSI) with crucial navigational parameters including longitude, latitude, speed, course,
and additional contextual information [6]. This comprehensive AIS dataset enables the tracking of a
vast majority of vessels and facilitates the extraction of ship navigation patterns. Moreover, time series
analysis can be employed to compare the emerging patterns among various maritime trajectories [7].

In regions with high maritime traffic and challenging conditions, enhancing ship safety is
paramount. Vessel Traffic Service (VTS) plays a crucial role by accurately monitoring and predicting
ship trajectories in real time, aiding in the early detection of potential marine accidents. Improving
ship safety in dynamic and complex sea environments [8] requires integrating trajectory prediction and
hazard warning capabilities into ships’ intelligent navigation systems. However, maritime navigation
is inherently unpredictable, particularly in congested port waters, making it challenging to anticipate
the movements of vessels. Predicting trajectories accurately and efficiently in real-time is a significant
challenge. This task spans various domains, including flight, human, and vehicle trajectory prediction
[3,9–11]. Trajectory data combine spatial and temporal dimensions, making them unique time series
datasets. Traditionally, Kalman filters have been used to forecast ship trajectories based on waypoints.

Two methods are used in the literature for vessel trajectory prediction: Physical models and
Learning models. Initial techniques rely on physical models of vessel motion, primarily employing
ship models [12,13] and lateral models [5,14]. These approaches represent the physical movement of
ships using a combination of mathematical equations and principles that consider factors such as mass,
size, inertia, and center of mass. However, the accuracy of these methods is contingent upon precise
representations of environmental conditions and assumptions about the vessel’s state, which are often
difficult to achieve in practical vessel trajectory prediction scenarios.

In contrast to physical model-based approaches [15,16], learning model-based methods for vessel
trajectory prediction rely on machine learning techniques. These methods utilize data-driven models,
such as neural networks, to learn patterns and relationships from historical trajectory data. By
leveraging large datasets, learning model-based methods aim to capture complex interactions and
dynamics inherent in vessel movements. This approach offers the potential for improved accuracy and
adaptability in predicting vessel trajectories, particularly in scenarios where precise physical modeling
is challenging.
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One prominent technique within this paradigm is the Kalman Filter. For instance, Kalman
Filter techniques utilize dynamic data from vessel targets, eliminating noise to predict the subsequent
locations of vessels [17]. Siegert et al. [18] employed an Extended Kalman Filter (EKF) to monitor
vessel trajectories, enabling failure detection through residual monitoring. Additionally, in another
study, an Extended Kalman Filter was proposed as an adaptive algorithm to estimate position,
velocity, and acceleration for predicting maneuvers in ocean vessel trajectories [3].

The Extended Kalman Filter has been extensively studied and successfully applied in various
contexts, providing a wealth of resources for exploitation. However, it’s worth noting that while
powerful, the Extended Kalman Filter may not always yield globally optimal results, highlighting the
ongoing need for research in this area.

The emergence of deep learning techniques, including convolutional neural networks [19],
recurrent neural networks (RNNs) [20] and variational autoencoders [21–23] has led to significant
advancements in generalization performance for trajectory prediction tasks. Several machine learning-
based methods [24–26] have emerged, such as the backpropagation (BP) neural network, Long
Short-Term Memory (LSTM) model [4],and the Attention-LSTM ship trajectory prediction model.
Kaiser et al. [27] utilized Automatic Identification System (AIS) data to enhance port traffic
management, while Ahmed et al. [28] employed artificial neural networks for automated ship berthing,
using two distinct feedforward networks to control rudder angle and propeller rotation. Zissis et al. [29]
combined Artificial Neural Networks (ANNs) with cloud computing for real-time ship behavior
prediction.

A significant advancement in the field is the fusion of Automatic Identification System (AIS) data
with backpropagation neural networks to enhance ship navigation behavior prediction. Concurrently,
the LSTM model, a variant of recurrent neural networks, has demonstrated remarkable efficacy in
discerning ship motion patterns for trajectory forecasting. Moreover, the traditional Encoder-Decoder
framework for trajectory prediction has undergone substantial refinement through the integration
of longitudinal attention mechanisms and the incorporation of historical positional data, thereby
augmenting its predictive capabilities.

In this paper, an advanced trajectory prediction system leveraging LSTM and GRU models for
smart vessel navigation is proposed. The system utilizes Automatic Identification System (AIS) data,
incorporating latitude, longitude, speed, and heading information as inputs for LSTM and GRU
models to forecast vessel trajectories. The validation process, conducted over a three-month AIS
dataset, demonstrates notable performance improvements.

Specifically, for GRU, the training loss is reduced by 0.0334 (Mean Squared Error, MSE) and
0.1361 (Mean Absolute Error, MAE), with validation loss reaching 0.0708 (MSE) and 0.1720 (MAE).
Similarly, LSTM exhibits reduced training loss of 0.0632 (MSE) and 0.1702 (MAE), along with
validation loss decreasing to 0.2290 (MSE) and 0.2652 (MAE). The main objectives of the paper are
as follows:

• Develop an advanced trajectory prediction system for smart vessel navigation.
• Utilize LSTM, GRU, DBLSTM, and Simple RNN models for trajectory forecasting.
• Incorporate Automatic Identification System (AIS) data, including latitude, longitude, speed,

and heading information, as inputs.
• Conduct validation using a three-month AIS dataset to assess performance improvements.
• Compare the performance of LSTM, GRU, DBLSTM, and SimpleRNN models based on

MSE, MAE, ADE, and FDE metrics.
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The rest of the paper is structured as follows: Section 2 defines the proposed methodology with
subsection of LSTM and GRU. Sections 3 and 4 describe the complete implementation and results
with brief discussion, and finally, the paper is concluded in Section 5.

2 Methodology

The proposed framework is designed with precision to sequentially process raw Automatic
Identification System (AIS) data, focusing on the extraction, preprocessing, and predictive analysis
of vessel trajectories. Initially, the framework employs a complex extraction algorithm as illustrated in
Fig. 1 to filter through the extensive AIS-dataset and extracts the data through two distinct approaches.

Figure 1: Abstract trajectory prediction model with data preprocessing steps

The first approach involves extracting individual ship data over a three-month period. This
method ensures that the privacy of each ship is maintained, as the data remains isolated and more
concise. Due to the smaller dataset size, simpler models that require less data can be effectively utilized,
providing precise and efficient analysis for each ship.

The second approach aggregates data from all ships into a single, comprehensive dataset, resulting
in a significantly larger data volume. This aggregated dataset facilitates a more holistic analysis of ship
trajectories but necessitates the use of more complex models that can handle large-scale data to derive
meaningful insights.

This dual extraction method is crucial for accurately isolating trajectories associated with each
ship, thereby ensuring the precision of the data used in subsequent analyses. Following extraction, each
trajectory undergoes a rigorous preprocessing sequence aimed at eliminating anomalies and outliers,
thereby preserving the integrity and reliability of the data. This thorough preprocessing is essential for
maintaining the quality and accuracy of the predictive analyses that follow.

The framework utilizes raw Automatic Identification System (AIS) data for preprocessing and
subsequent vessel trajectory prediction. Two deep learning models, Gated Recurrent Unit (GRU) and
Long Short-Term Memory (LSTM) networks, are employed for the prediction process. The raw AIS
data is first preprocessed to obtain clean data, which is then used as input for trajectory prediction.



CMC, 2024, vol.81, no.1 1793

GRU and LSTM models are applied for predicting vessel trajectories, chosen for their renowned
efficiency in processing and predicting sequential data patterns compared to other deep learning
models. This approach underscores the framework’s focus on improving the accuracy and reliability
of trajectory predictions in maritime navigation. Finally, the model performance is evaluated using
Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) metrics for vessel trajectory
prediction.

The framework is constructed on the foundation of raw AIS data, which undergoes preprocessing
before being utilized for vessel trajectory prediction. The prediction methodology incorporates
multiple deep learning techniques, including GRU, LSTM networks, BDLSTM, and Simple RNN, all
renowned for their proficiency in processing and predicting sequential data patterns. For comparative
analysis, traditional methods such as the Kalman Filter were also implemented. The preprocessed AIS
data serves as input for all trajectory prediction models. The vessel trajectory prediction is executed
through the application of these advanced neural network models, emphasizing the framework’s focus
on enhancing the accuracy and reliability of trajectory predictions in maritime navigation.

The model’s performance is assessed using a diverse set of evaluation metrics: Root Mean
Square Error (RMSE), Mean Absolute Error (MAE), Average Displacement Error (ADE), and Final
Displacement Error (FDE) for vessel trajectory prediction. The incorporation of ADE and FDE
metrics offers a more comprehensive evaluation framework for the prediction models by quantifying
both the average trajectory accuracy and the terminal position accuracy, respectively. This multifaceted
approach to performance assessment is particularly relevant in maritime navigation contexts, where
both continuous path accuracy and final destination precision are crucial.

Section 4.2 presents a comparative analysis that demonstrates the superior performance of the
Gated Recurrent Unit (GRU) model across the majority of datasets. The GRU produces lower
values for Test Loss, Mean Squared Error (MSE), Mean Absolute Error (MAE), Average Dis-
placement Error (ADE), and Final Displacement Error (FDE) relative to other models, including
Long Short-Term Memory (LSTM), Bidirectional LSTM (BDLSTM), Simple Recurrent Neural
Network (SimpleRNN), and the Kalman Filter. These results demonstrate the GRU’s effectiveness in
capturing temporal dependencies and generating accurate predictions. Furthermore, this comparison
emphasizes the critical importance of selecting appropriate models based on the specific characteristics
of the dataset and the unique requirements of the application domain.

2.1 GRU Model for Trajectory Prediction

Recurrent Neural Networks (RNNs) are a specialized class of neural networks designed for
processing sequential data, characterized by their cyclically connected units [30]. While RNNs are
frequently employed for short-term prediction tasks, they are prone to the gradient vanishing problem
during training. To mitigate this limitation, Chung et al. [31] introduced the Gated Recurrent Unit
(GRU) model as an enhancement to conventional RNNs. GRU incorporates the hidden layer state
concept from RNNs and shares architectural similarities with Long Short-Term Memory (LSTM)
models. However, GRU offers improved computational efficiency compared to LSTM by combining
the forget and input gates into a unified update gate. This design enables GRU to effectively retain
historical time-series information. Through its gating mechanism, GRU can preserve past trajectory
information while reducing computational complexity. In contrast to LSTM, GRU features a more
streamlined hierarchical structure and fewer parameters, yet it can achieve comparable performance.
Fig. 2 illustrates the fundamental principles underlying the GRU structure.
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(A) (B) (C)

Figure 2: Schematic representation of an abstract trajectory prediction model based on the Gated
Recurrent Unit (GRU) neural network architecture: (a) The GRU unit at time step t − 1; (b) Detailed
internal structure of the GRU unit at the current time step t, illustrating the complex transition
mechanisms; and (c) The GRU unit at the subsequent time step t + 1

To comprehensively analyze the mechanics of the Gated Recurrent Unit (GRU) neural network
architecture, it is essential to examine the dynamics of its hidden layer. When processing an input
sequence denoted xi (for i = 1, 2, . . . , n), the hidden layer’s state at any given time step i can be
characterized by the following formulation:

ui = σ(Vu · [gi−1, xi]) (1)

yi = σ(Vy · [gi−1, xi]) (2)

ĝi = tanh(V · [ui � gi−1, xi]) (3)

gi = (1 − yi) � gi−1 + yi � ĝi (4)

Here, σ represents the sigmoid function
(

σ(x) = 1
1 + e−x

)
, and tanh(x) = e2x − 1

e2x + 1
. The notation

[] signifies the concatenation of two vectors, � denotes element-wise multiplication, and · symbolizes
matrix multiplication, expressed as:

a � b =

⎡
⎢⎢⎢⎢⎣

a1

a2

a3

...
an

⎤
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⎤
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...
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⎤
⎥⎥⎥⎥⎦

The training of the GRU network at time i involves optimizing the weight matrices Vu, Vy, and V ,
which are each a sum of two distinct weight matrices as follows:

Vu = Vux + Vug (5)

Vy = Vyx + Vyg (6)

V = Vx + Vg (7)
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The weight matrices Vux, Vyx, and Vx establish the connections between the input and the update
gate, reset gate, and candidate state, respectively. Concurrently, the matrices Vug, Vyg, and Vg facilitate
the connections from the previous hidden state to the update gate y, the reset gate u, and the candidate
state ĝ, in that order.

A higher value of yi at any time i means the state gi−1 from the previous timestep influences
the current state gi less, and the candidate state ĝi has more impact. Conversely, a value of yi close
to 1 indicates that the previous state gi−1 has a significant contribution to the current state gi. This
mechanism allows the GRU to capture dependencies over longer sequences effectively. Similarly, a
higher value of ui enhances the influence of the candidate state ĝi on the update process, enabling the
model to incorporate information from further back in the sequence. If ui is near zero, it suggests that
the past state gi−1 has little to no effect on the candidate state ĝi, emphasizing the model’s capacity to
prioritize recent information over older data in the sequence analysis.

The Gated Recurrent Unit (GRU) architecture represents an evolution of the Long Short-
Term Memory (LSTM) model. It merges the LSTM’s forget gate f and input gates i into a single
update gate zi. Additionally, it combines the hidden and cell states of the LSTM, introducing a
reset gate ri. The role of the reset gate ri is crucial as it regulates how much information from
previous time steps is permitted to contribute to the current hidden state, particularly concerning the
navigation path of a vessel. The update gate zi plays a key role in incorporating past state information
into the current state. It manages how new trajectory data and past memories are combined to
determine the pertinent information for the current state, which is then used to compute the state
information for the ensuing time step. By carefully applying the GRU’s gating mechanisms, essential
data is preserved, thus preventing information decay over long data propagation intervals. The GRU’s
inherently efficient design requires fewer parameters to be learned, which translates to a faster training
process for the model.

2.2 LSTM Model for Trajectory Prediction

The neural network (NN) proposed integrates a LSTM component with a single-hidden layer
Multilayer Perceptron (MLP). The LSTM is adept at leveraging historical data insights. The MLP,
despite its limitations in dynamic environments, offers a streamlined architecture ideal for capturing
localized features. Despite the MLP’s known limitations in dynamic environments, its simplicity and
effectiveness have led to pervasive utilization across various domains. The NN model in question
consists of an input layer, which introduces features as defined by Eq. (11), an LSTM layer for temporal
processing, a fully-connected layer for feature integration, and an output layer that generates two
features as specified in Eq. (24).

This architecture employs a conventional LSTM configuration, incorporating three gates as
detailed in [32]. The model is specifically designed to address the challenges inherent in processing
asynchronous, time-sampled spatiotemporal data, aligning with the proposed spatiotemporal-aware
methodology outlined in Eqs. (8)–(10). Fig. 3 presents a comprehensive depiction of the architecture,
illustrating the LSTM model’s four input data streams and its ultimate output in the form of latitude
and longitude coordinates. This structure enables the network to effectively capture and process
complex spatiotemporal relationships within the input data, facilitating accurate predictions in a
geographic context.

�τ p
i (l) = τ p

i (l) − τ p
i (l − 1) (8)

�ξ p
i (l) = ξ p

i (l) − ξ p
i (l − 1) (9)
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�ηp
i (l) = ηp

i (l) − ηp
i (l − 1) (10)

Figure 3: A complete architecture with four input data to LSTM model and final output as latitude
and longitude

For each time step l = 1, . . . , ni − 1, with ni representing the length of the i-th path (signifying the
total count of path points), the NN receives the input vector:

�vp
i (l) = [

�ξ p
i (l), �ηp

i (l), �τ p
i (l), �τ p

i (l + 1)
]

(11)

To manage variability in trajectory lengths, a standard zero-padding technique [33] is applied. This
ensures each trajectory length matches the longest trajectory in the dataset by appending zero-value
segments at the start of each trajectory.

To streamline the notation in the LSTM equations, the indices p and i are omitted. Thus, at each
time step l, the LSTM unit ingests the input vector �v(l + 1), the preceding cell state c(l), and the
prior hidden state h(l). Additionally, An intermediate state c̃(l + 1) is also generated, representing
the candidate state for the memory cells. The LSTM architecture incorporates three gate mechanisms,
the forget (f ), input (i), and output (o) gates, along with the intermediate state c̃, cell state c, and hidden
state h, These components undergo updates as follows:

f(l + 1) = σ(Wf · �v(l + 1) + Uf · h(l) + bf ) (12)
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i(l + 1) = σ(Wi · �v(l + 1) + Ui · h(l) + bi) (13)

o(l + 1) = σ(Wo · �v(l + 1) + Uo · h(l) + bo) (14)

c̃(l + 1) = tanh(Wc · �v(l + 1) + Uc · h(l) + bc) (15)

c(l + 1) = f(l + 1) � c(l) + i(l + 1) � c̃(l + 1) (16)

h(l + 1) = o(l + 1) � tanh(c(l + 1)) (17)

where W, U, and b denote the input, recurrent weight matrices, and bias vectors respectively, �
symbolizes the Hadamard product, and tanh(·) and σ(·) represent the Hyperbolic tangent and sigmoid
activation functions, respectively. The LSTM’s outputs then feed into a Fully Connected Layer (FCL)
with a rectified linear unit activation function:

�(v) = max(0, v) (18)

In the FCL, each neuron is interconnected with all neurons from the preceding layer, effectuating
an operation for neuron n as follows:

n =
∑

m

αmhm + βn (19)

where hm denotes the response of the preceding layer and the m-th input to neuron n, αm is the m-th
weight, and β is the bias. Consequently, the FCL’s output is calculated by:

fcl(l + 1) = ρ(α(l + 1)Th(l + 1)) (20)

where α(l + 1) are the weights of the FCL. The NN’s overall predicted output �̂d(l + 1) results from
a linear combination of the FCL’s responses fcl(l + 1) and the final regression coefficients α̂(l + 1), as
described by:

�̂d(l + 1) = α̂(l + 1)Tfcl(l + 1) (21)

The intended outputs of the NN and the framework are detailed as follows:

�dp
i (l + 1) = [�ξ p

i (l + 1), �ηp
i (l + 1)] (22)

dp
i (l + 1) = [ξ p

i (l + 1), ηp
i (l + 1)] (23)

Upon completion of the prediction process, the model forecasts the deviations between successive
points, specified as:

�d̂ip(l + 1) = [�ξ̂ ip(l + 1), �η̂ip(l + 1)] (24)

Lastly, �̂dip(l+1) is transformed into the predicted framework output d̂ip(l+1), applying Eqs. (5)–
(7) for ξ ip(l + 1) and η

p
i (l + 1):

d̂ip(l + 1) = [̂ξ ip(l + 1), η̂p
i (l + 1)] (25)

3 Case Study: AIS Dataset Analysis and Vessel Trajectory Prediction
3.1 AIS Dataset Description

The AIS data utilized in this paper was sourced from EHSolution Company in South Korea
and remains proprietary, not available for public use. Our research primarily aimed at analyzing
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vessel movements, so we concentrated on the positional information provided in the data. This
extensive dataset, totaling 7.0 terabytes, includes MMSI , time stamps, speed, heading, latitudes, and
longitudes, covering a period from January 2020 to December 2020. Given the enormity of the data,
our examination was confined to AIS records from 01 February 2020, to 30 April 2020.

3.2 Data Preprocessing

In this research, the raw dataset provided by EH Solution presents a challenge in preprocessing
for precise trajectory predictions. Our methodology involves a comprehensive approach to refine
the dataset for enhanced predictive accuracy. We implement a collection of statistical strategies to
purify the data. Specifically, for each maritime entity, our data refinement routine encompasses
the elimination of duplicate records (by discarding entries with identical timestamps or those with
temporal discrepancies under one second), the removal of anomalies (by excluding records with
velocities exceeding the upper limit vcrit), and the simplification of static records (by omitting entries
indicating near-zero movement, i.e., velocities beneath the lower limit vidle). This latter step is essential
to ensure that machine learning algorithms do not process static segments of the trajectory data.
Trajectories with a sparse distribution of data points, falling below the threshold λthresh, are deemed
non-contributory and are consequently removed to align with the objectives of learning algorithms.
The Automatic Identification System (AIS) plays a pivotal role in contemporary maritime navigation,
offering vital capabilities such as target identification and location marking. Raw AIS data is utilized
to create a benchmark dataset and establish a historical matrix of AIS information, represented as:

ZT = [z1, z2, . . . , zM ]T (26)

where M denotes the aggregate count of AIS messages and

zj = [IDj, τj, φT
j , χj, ωj] (27)

with j ∈ {1, 2, . . . , M}. Here, IDj, τj, φT
j , and ωj signify the Maritime Mobile Service Identity (MMSI),

the time stamp, geospatial coordinates (longitude and latitude), course over ground (COG), and speed
over ground (VOG), respectively. The MMSI uniquely identifies each maritime vessel.

In preprocessing, we discard any data points associated with stationary or inconsistent vessel
behavior. A minimal trajectory time span of 1200 s is established, informed by the typical AIS data
reception interval, which ranges between 5 to 10 min, with any interval surpassing 20 min being
earmarked for subsequent navigational status phases. The trajectory optimization is conducted via
a dedicated function, as defined in Algorithm 1, ensuring the exclusion of irrelevant noise from the
initial dataset. The refined data, representing vessels in travel, facilitates a smoother trajectory analysis.

Algorithm 1: Data preprocessing
1: Input: Original dataset Dorig, minimum voyage time interval threshold τmin.
2: Output: Trajectories Pprocessed.
3:
4: 1: Establish connection to data storage.
5: 2: Retrieve Si, where i ∈ Range(O) and Si/�T is the total time interval of journey i.
6: 3: If Mcurrent = Mprev.mmsi & & Vcurrent < 1kn & & �time < 1200 s where �time = Tcurrent − Tprev, Mi is

the following state of Si, V current is the speed of the vessel, �time is the time gap between states.
7: 4: Execute Path Optimization (Si, Pprocessed) = Si/Optimize(·), which is the function for optimizing

the trajectory.
8: Return: Pprocessed.
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The statistical analysis of raw AIS data has indicated potential inaccuracies, as it showed
maximum latitude (LAT) and longitude (LON) values of 91.00 and 181, respectively. These values
are beyond the geographical limits of the Korean Peninsula, underscoring the raw data’s potential
inaccuracies. However, the accuracy improves significantly after preprocessing the data. The normal-
ized values for LAT and LON become 39.97 and 136.8, respectively. These adjusted values are much
more consistent with the geographical boundaries of the region, making them highly appropriate for
incorporation into deep learning models designed for the Korean Peninsula. This underscores the
critical role of data preprocessing in ensuring the accuracy and usability of data for specific regional
applications.

4 Discussion

The vessel trajectory datasets undergo a rigorous classification process following comprehensive
data preprocessing, utilizing a diverse array of routes and ship experimental datasets. This classification
methodology involves a tripartite partitioning of the data into training, validation, and testing subsets.
The training subset serves as the foundation for model development, while the validation subset is
employed to assess model performance and enhance its generalization capabilities. The test subset is
utilized to generate predictions based on an input-output mapping of N to 1, where the status vectors of
the initial N time steps function as input sequences, with the subsequent vessel status serving as output
vectors. This approach enables the prediction of vessel states N minutes into the future, utilizing the
initial trajectory as the input data.

In this study, we systematically classified the experimental data as follows: 70% for the training set,
15% for the validation set, and the remaining 15% for the test set. This partitioning strategy ensures a
robust evaluation of the model’s predictive capabilities while maintaining sufficient data for training
and validation purposes.

This methodological approach facilitates a comprehensive assessment of the model’s performance
across various operational scenarios, thereby enhancing the reliability and applicability of the predic-
tive framework in real-world maritime contexts.

Xstd = x − xmin

xmax − xmin

(28)

where Xstd denotes normalized data, xmin represents the minimum sample value. Following normaliza-
tion, data are confined to the interval [0, 1]. The neural network’s output, within the [0, 1] interval, is
denormalized to the original scale by:

Xscalar = Xstd(xmax − xmin) + xmin (29)

In this analysis, Xscalar denotes the data post-denormalization. To assess the performance of the
Gated Recurrent Unit (GRU) in predicting vessel traffic flow, a Long Short-Term Memory (LSTM)
model serves as a comparative baseline. The performance evaluation employs two key metrics: Mean
Squared Error (MSE) and Mean Absolute Error (MAE). These metrics function as the primary
error analysis indices during the model training phase, providing quantitative measures of prediction
accuracy and model performance.

MAE = 1
n

n∑
i=1

|yi − ŷi| (30)
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MSE = 1
n

n∑
i=1

(yi − ŷi)
2 (31)

where yi denotes ground-truth trajectory value and ŷi denotes predicted value. The selection of
parameters plays a crucial role in determining the efficacy of recurrent neural networks. Generally,
an increase in the number of hidden layers corresponds to enhanced model performance and learning
capacity. For optimization, this study employs the Adam optimizer [34], a method that combines
stochastic gradient descent with adaptive learning rate optimization.

The sampling rate is fixed at 1, while two essential hyper-parameters, batch size and the number
of neurons are empirically evaluated to determine their optimal combination [35]. The experimental
design considers batch sizes of 8, 16, 24, and 32, while the number of neurons is varied among
60, 80, 100, 120, 140, and 160. This systematic approach to hyper-parameter tuning ensures a
comprehensive exploration of the model’s parameter space, facilitating the identification of the most
effective configuration for the task at hand.

The parameter selection process reveals an inverse relationship between batch size and computa-
tion time, with larger batches reducing calculation time proportionally. However, extreme batch sizes
lead to increased errors. A comparison of 16 and 24 neuron configurations shows similar computation
time, but the 16-neuron setup yields lower error rates, indicating its optimality. As neuron count
increases, so does processing time, while prediction errors decrease from 60 to 120 neurons. Beyond
120 neurons, error rates rise. Considering these factors, a configuration of 100 neurons appears to offer
an optimal balance between computational efficiency and prediction accuracy.

Based on extensive experimental testing and parameter optimization, the Gated Recurrent Unit
(GRU) architecture has been designed with the following structure: a fully connected layer, an
activation layer, dual GRU layers, and a dropout mechanism, collectively forming the GRU recurrent
neural network. The second and fourth layers, denoted as gru1, and gru2, respectively, represent the
GRU layers, each containing 120 hidden units.

The third and fifth layers implement the dropout method, which serves a dual purpose: maintain-
ing model robustness by mitigating information loss during training, and acting as a regularization
technique to reduce weight connections. This approach enhances the network’s resilience when specific
connection information is absent. The final layer is a fully connected layer comprising two neurons.
The architectural representation of this GRU neural network is illustrated in Fig. 4.

4.1 Experiment on Large Dataset

This experiment involved multiple ship datasets. Notably, the model parameters were personalized
to each dataset, reflecting a complex configuration to optimize performance. In our experimental
results, the focus is on two key neural network models, namely LSTM and GRU, for trajectory
prediction tasks. The aim is to comprehensively evaluate and compare the predictive performance of
LSTM and GRU models, seeking to determine the most suitable option for trajectory prediction tasks.
The aim is to comprehensively evaluate and compare the predictive performance of LSTM and GRU
models, seeking to determine the most suitable option for these tasks. We have proposed an efficient
LSTM and GRU based smart vessel trajectory prediction using AIS data. The proposed system takes
latitude, longitude, speed, and heading from the AIS dataset and provides them as input to the LSTM
and GRU to predict the vessel trajectory. Three months of AIS data have been used to validate the
results of our model.



CMC, 2024, vol.81, no.1 1801

Figure 4: GRU model used in our proposed system

Table 1 presents the performance comparison between LSTM and GRU models for predicting
the trajectory of ship ID AXZ-00797, while Fig. 5 presents trajectory predictions. Both models are
trained and validated on the AIS dataset, with their respective training and validation losses noted.
For the LSTM model, the MSE during training is 0.0156, and during validation, it slightly increases
to 0.0159. Similarly, the MAE for training is 0.0815, and for validation, it rises slightly to 0.0834.

Table 1: Comparison of LSTM and GRU models for actual and predicted trajectories

Ship ID Model Training loss Validation loss

MSE MAE MSE MAE

AXZ-00797 LSTM 0.0156 0.0815 0.0159 0.0834
GRU 0.0060 0.0354 0.0053 0.0320

On the other hand, the GRU model exhibits lower losses across both training and validation.
Specifically, it achieves an MSE of 0.0060 during training and 0.0053 during validation. Correspond-
ingly, the MAE for the GRU model is notably lower, with values of 0.0354 for training and 0.0320
for validation. Overall, the results indicate that the GRU model outperforms the LSTM model in
predicting the ship’s trajectory, as it consistently demonstrates lower losses for both training and
validation datasets. These results demonstrate that the GRU architecture may be more effective in
capturing the temporal dependencies and patterns in the trajectory data, leading to more accurate
predictions. However, further analysis and experimentation are necessary to understand the underlying
reasons for the observed differences in performance between the two models. Fig. 5 shows the
comparison of LSTM and GRU models for actual and predicted trajectories.
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Figure 5: Actual and predicted trajectory prediction model based on LSTM and GRU model.
Trajectory plot with the following legends: History, Target, and Predicted. The x-axis represents
longitude (°), and the y-axis represents latitude (°)

4.2 Experiments on Small Dataset

This section analyzes the results from experiments on small datasets, comparing the performance
of several neural network models and the Kalman Filter. The models tested include LSTM, GRU,
DBLSTM, and Simple RNN. These experiments, conducted on datasets associated with various ship
IDs, offered a wide range of scenarios to evaluate how well these models performed. Fig. 6 displays
sample trajectories obtained from the LSTM and GRU model simulations.

Figure 6: (Continued)
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Figure 6: (a–d) show the Actual trajectories vs. predicted trajectories for different ship IDs using GRU
and LSTM. Trajectory plot with the following legends: History, Target and Predicted. The x-axis
represents longitude (°), and the y-axis represents latitude (°)

The analysis focuses on four key performance metrics: MSE, MAE, ADE, and FDE. These
metrics are crucial for assessing model accuracy and reliability, revealing distinct patterns across
different models and datasets.

The results presented in Table 2 show that the GRU model consistently demonstrates superior
performance across multiple datasets, frequently achieving lower MSE and MAE values compared
to other models. This suggests that the GRU is capable of generating more precise predictions with
fewer significant errors. For instance, in datasets such as ABX-00001 and ABX-00002, the GRU model
outperforms the LSTM and other models in terms of MSE and MAE. Furthermore, the GRU model
excels in ADE and FDE, metrics that gauge both average and final prediction accuracy, reinforcing
the notion that GRU is particularly effective in modeling time-series data, making it a strong candidate
for maritime navigation tasks.

Table 2: Comparison of different models across datasets

Dataset Model Test loss MSE MAE ADE FDE

ABX-00001 GRU 0.00208 0.00207 0.03343 0.05133 0.05763
LSTM 0.00117 0.00117 0.02588 0.04008 0.05850
DBLSTM 0.00143 0.00143 0.02801 0.04247 0.02972
SimpleRNN 0.00162 0.00162 0.02856 0.04398 0.03197
Kalman Filter – 0.04112 0.16211 0.23618 0.18917

ABX-00002 GRU 0.00192 0.00190 0.03089 0.04907 0.01014
LSTM 0.00224 0.00225 0.03431 0.05381 0.01829
DBLSTM 0.00257 0.00257 0.03767 0.05898 0.00275
SimpleRNN 0.00215 0.00213 0.03352 0.05343 0.01460
Kalman Filter – 0.04998 0.17716 0.27874 0.57921

(Continued)
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Table 2 (continued)

Dataset Model Test loss MSE MAE ADE FDE

ABX-00003 GRU 0.00038 0.00038 0.01507 0.02314 0.02614
LSTM 0.00042 0.00042 0.01495 0.02318 0.01931
DBLSTM 0.00044 0.00044 0.01468 0.02319 0.03369
SimpleRNN 0.00035 0.00035 0.01299 0.02064 0.00610
Kalman Filter – 0.05158 0.18858 0.28551 0.36748

ABX-00004 GRU 0.00039 0.00040 0.01448 0.02260 0.01523
LSTM 0.00061 0.00063 0.01890 0.02953 0.01653
DBLSTM 0.00061 0.00062 0.01846 0.02919 0.02090
SimpleRNN 0.00036 0.00036 0.01410 0.02144 0.00915
Kalman Filter – 0.03396 0.15278 0.23795 0.19048

ABX-00005 GRU 0.00235 0.00240 0.03727 0.05609 0.00598
LSTM 0.00360 0.00364 0.04508 0.06752 0.00607
DBLSTM 0.00261 0.00267 0.03641 0.05540 0.00682
SimpleRNN 0.00203 0.00203 0.03237 0.04916 0.01005
Kalman Filter – 0.03726 0.15485 0.22973 0.14313

ABX-00006 GRU 0.00041 0.00041 0.01509 0.02368 0.03514
LSTM 0.00063 0.00063 0.01803 0.02864 0.04255
DBLSTM 0.00076 0.00077 0.02029 0.03210 0.05357
SimpleRNN 0.00042 0.00043 0.01466 0.02256 0.01039
Kalman Filter – 0.03984 0.16385 0.25527 0.49360

In contrast, while the LSTM model exhibits competitive performance, particularly during the
training phases, it generally records higher losses in both MSE and MAE during validation across
several ship IDs. For example, in dataset ABX-00001, although the LSTM achieves a lower training
loss, it records a slightly higher validation loss compared to the GRU, indicating a potential tendency
towards overfitting. A notable exception is observed with Ship ID ABX-00002, where the LSTM model
performs better in training MSE than the GRU. However, the GRU exhibits a slight advantage in
validation MAE, hinting at superior generalization capabilities.

In some instances, such as with dataset ABX-00003, the DBLSTM records lower MAE but
struggles with higher ADE and FDE values. This indicates that while it may reduce average errors,
its final predictions can occasionally deviate more significantly from the target.

The SimpleRNN model, characterized by its simpler architecture, tends to record higher errors
across all metrics. For example, in dataset ABX-00004, SimpleRNN shows relatively higher MSE and
MAE, underscoring its limitations in capturing complex temporal dependencies as effectively as the
more advanced models like GRU and LSTM.

The Kalman Filter, included as a baseline non-neural approach, predictably records higher errors
across all metrics when compared to the neural network models. Across all datasets, the Kalman Filter
exhibits significantly higher MSE, MAE, ADE, and FDE values, highlighting the clear advantages of
utilizing deep learning models for time-series prediction tasks within the context of AIS data.



CMC, 2024, vol.81, no.1 1805

The GRU model is efficient and less demanding on computational resources, making it a
good choice for situations with limited computing power, like onboard maritime systems. Its strong
performance across different datasets shows it’s ideal for real-time predictions where both accuracy
and efficiency are important.

The LSTM model can still be useful when there is plenty of training data available, as it can
effectively use its longer memory. The DBLSTM, while not always better than other models, should
be explored more for cases where understanding context from both directions is important. Despite
its higher error rates, the Kalman Filter remains relevant in contexts where model simplicity and
interpretability are prioritized over precision.

Overall, the results suggest that GRUs are particularly advantageous for handling AIS datasets
and related problem settings, with their lower losses indicating a reduced likelihood of significant
prediction errors as shown in Fig. 7. This makes them a preferable choice for critical applications like
maritime navigation and predictive maintenance, where consistent and reliable model performance is
essential.

Figure 7: Comparison of actual and predicted trajectory prediction model based on LSTM model

5 Conclusion

This paper evaluates vessel trajectory prediction using advanced neural network models LSTM,
GRU, DBLSTM, SimpleRNN, and the Kalman Filter based on three months of AIS data. The GRU
model consistently outperforms with lower MSE (0.00208) and MAE (0.03343) compared to LSTM
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(MSE: 0.00117, MAE: 0.02588), DBLSTM (MSE: 0.00143, MAE: 0.02801), and SimpleRNN (MSE:
0.00162, MAE: 0.02856). In terms of trajectory accuracy, GRU achieves lower Average Displacement
Error (ADE) and Final Displacement Error (FDE) across multiple datasets, with values as low as
0.02314 (ADE) and 0.00598 (FDE) in some cases. While LSTM shows strong training performance,
its tendency to overfit suggests GRU as a more reliable choice. The DBLSTM, despite its potential,
does not consistently surpass GRU, and the SimpleRNN and Kalman Filter, though simpler, lack the
accuracy of the more sophisticated models, with the Kalman Filter often showing MSE values above
0.03 and MAE values exceeding 0.15. These results highlight the effectiveness of GRU for real-time
maritime applications such as collision avoidance, where both prediction accuracy and computational
efficiency are crucial.

While our preprocessing efforts significantly improved data quality, the study was constrained by
the dataset’s limited size and proprietary nature. Future research will explore integrating GRU with
encoder-decoder architectures and federated learning techniques, allowing multi-horizon predictions
and combining data from multiple ships. We also aim to develop hybrid approaches that merge
deep learning with traditional methods, investigate transfer learning, real-time implementations, and
incorporate environmental data to enhance model accuracy and applicability. Additionally, improving
model explainability will be crucial for its practical adoption by maritime professionals.
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