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ABSTRACT

Demand-responsive transportation (DRT) is a flexible passenger service designed to enhance road efficiency,
reduce peak-hour traffic, and boost passenger satisfaction. However, existing optimization methods for initial
passenger requests fall short in addressing real-time passenger needs. Consequently, there is a need to develop real-
time DRT route optimization methods that integrate both initial and real-time requests. This paper presents a two-
stage, multi-objective optimization model for DRT vehicle scheduling. The first stage involves an initial scheduling
model aimed at minimizing vehicle configuration, and operational, and CO2 emission costs while ensuring
passenger satisfaction. The second stage develops a real-time scheduling model to minimize additional operational
costs, penalties for time window violations, and costs due to rejected passengers, thereby addressing real-time
demands. Additionally, an enhanced genetic algorithm based on Non-dominated Sorting Genetic Algorithm-II
(NSGA-II) is designed, incorporating multiple crossover points to accelerate convergence and improve solution
efficiency. The proposed scheduling model is validated using a real network in Shanghai. Results indicate that real-
time scheduling can serve more passengers, and improve vehicle utilization and occupancy rates, with only a minor
increase in total operational costs. Compared to the traditional NSGA-II algorithm, the improved version enhances
convergence speed by 31.7% and solution speed by 4.8%. The proposed model and algorithm offer both theoretical
and practical guidance for real-world DRT scheduling.
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1 Introduction

Rapid urbanization in China and evolving travel demands challenge traditional public trans-
portation’s adaptability [1]. The current public transportation system falls short of addressing the
increasingly varied transportation needs, particularly in high-density urban areas. While traditional
transportation methods meet most travelers’ needs, their low reliability and service levels deter many
passengers [2]. Additionally, traditional bus systems typically operate on fixed routes and schedules,
lacking the flexibility to adjust routes and timings based on passenger demand or traffic conditions.
Moreover, traditional buses have limited passenger capacity and service coverage, which can lead to
overcrowding during peak hours, increased waiting times for passengers, and an inability to meet
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the demands of certain areas or specific time periods [3]. Urban residents mainly travel short to
medium distances. Taxis offer flexibility but limited capacity, whereas subways provide high capacity
but lack flexibility. Urban public transportation systems, in contrast, offer wide coverage, large
capacity, and high flexibility [4]. Therefore, integrating existing urban public transportation systems
with passenger demands, allowing for flexible stops and routes, is essential for adaptability. Demand-
Responsive Transportation (DRT) offers flexible public transportation, providing passengers with
similar travel needs (origin, destination, and times) with direct, punctual, and reliable services based
on their requests. DRT has emerged as a promising sustainable solution to meet travelers’ diverse and
personalized needs [5–7].

Demand-Responsive Transportation (DRT) provides convenient, eco-friendly, and comfortable
services for people sharing similar departure points, destinations, and travel times [8]. Research
indicates that flexible bus services can significantly decrease private car usage [9,10]. Additionally, DRT
can alleviate urban traffic congestion [11]. Well-planned routes are crucial for effective DRT operation.
Optimal DRT route selection reduces passenger travel costs and time, improves DRT companies’
economic efficiency, lowers carbon emissions, and benefits the environment.

Extensive research has been conducted on demand-responsive buses. However, most studies
focus on DRT vehicle scheduling [12,13], benefits for enterprises and passengers [14–17], market
adaptability [18,19], fare systems [20–23], travel mode selection characteristics [24–26], travel in night
scenes [27]. Most studies primarily consider the interests of operators and passengers, overlooking
social benefits like CO2 emissions. Additionally, there is limited research on route optimization
for DRT buses. Route optimization is essential for DRT systems, directly impacting operational
costs and passenger experience. Effective route optimization can significantly reduce empty mileage
and fuel consumption, lowering operational costs. It also shortens passenger waiting and travel
times, enhancing service quality and satisfaction. Conversely, poor route planning can cause traffic
congestion and environmental pollution, negatively impacting society and the environment. Thus,
exploring a scientific and practical method for DRT route optimization is both urgent and crucial.

Meanwhile, specific optimization of DRT routes faces many challenges. Firstly, China lacks
systematic standards, scientific theories, and methods for DRT route optimization. Secondly, the tradi-
tional two-stage method used for multi-demand responsive bus parking and multi-route optimization
often compromises the global optimal solution [28,29]. Additionally, DRT route optimization models
often mix boarding and alighting stops within one area. In reality, DRT stops have separate boarding
and alighting zones on opposite sides of the road, necessitating a division of the network, which is
inconsistent with actual conditions [30–33]. More importantly, current route optimization primarily
focuses on initial optimization, neglecting real-time passenger demands. As DRT routes are usually
predetermined, buses must strictly follow these routes after receiving passenger requests. DRT buses
do not accommodate newly added passenger requests, leading to cumulative processing delays. This
raises operational costs for DRT operators, fails to address users’ real-time travel needs, and lowers
passenger satisfaction [34–38].

Considering these issues, addressing real-time DRT route optimization with random user demands
and time windows, and ensuring immediate response to passenger requests within a certain range
is crucial for route optimization. Although the core concept of demand-responsive bus route opti-
mization using multi-objective optimization models has been widely explored in previous studies, the
two-stage approach proposed in this paper offers a novel method for handling real-time requests.
By incorporating both initial and real-time scheduling, this approach ensures a more efficient and
responsive transit system. This paper proposes a multi-objective DRT service model that balances
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benefits for passengers, operators, and carbon emission reductions. Furthermore, an improved NSGA-
II genetic algorithm is proposed to address the multi-objective optimization problem of DRT routes.

The structure of this paper includes: The first section discusses relevant literature and makes
existing issues summarized. The second section describes and constructs the multi-objective opti-
mization model for demand-responsive bus routes. The third section presents the solution method
using an improved NSGA-II genetic algorithm. The fourth section conducts a case study and
comparative analysis. Finally, the paper concludes with a summary and discusses potential future
research directions.

2 Construction of DRT Bus Route Optimization Model
2.1 Problem Discussion and Model Development

The proposed immediate demand-responsive bus route optimization combines initial and real-
time bus requests. The initial request refers to passenger travel requests received before the bus departs.
Real-time requests are passenger travel requests received randomly after the vehicle has left the parking
area but before it exits the boarding area. In the first stage, passenger time windows are strict, allowing
no deviation from scheduled departure or arrival times. The scheduling system, based on pre-booked
passenger demands, creates an initial optimized route, which the bus follows to pick up and drop
off passengers. In the second stage, passenger time windows are soft, allowing some deviation but
with penalties for deviations. The system assesses real-time demands, vehicle position, capacity, and
other factors to update the route. If a new demand arises, it is inserted appropriately, updating the
route optimized in the first stage. Fig. 1 illustrates the problem within a road network, consisting
of two distinct areas: the boarding area and the alighting area, which do not overlap. The network
features four bus stops, represented as sectors and named Bus Stop 1 and Bus Stop 2. Initial travel
demands create five boarding stops (numbered 1–5) and five alighting stops (numbered 1–5), depicted
by orange ovals and squares. As new travel requests arise between departure and the vehicle leaving the
boarding area, updated stops emerge, consisting of four new boarding stops (numbered 6–9) and four
new alighting stops (numbered 6–9). An effective demand-responsive bus route optimization scheme
must accommodate passenger demands at all boarding and alighting stops, including both initial and
real-time requests. The uncertain number of passenger requests results in variable numbers of stops,
adding to the problem’s complexity. Fig. 1 encompasses four demand-responsive stops, nine boarding
stops, and nine alighting stops. The ever-increasing passenger demand poses a significant challenge
to route optimization planning, making it essential to develop a more efficient real-time DRT route
optimization method. The connections in Fig. 1 illustrate the relationships between nodes; despite map
limitations, it is assumed that all nodes are interconnected for this study.

2.2 Model Assumptions

To facilitate modeling and solving, the following assumptions are made:

(1) Passenger demand at any stop within the service area is random, with real-time travel requests
following a normal distribution.

(2) Demand-responsive buses travel at a constant speed in the network, disregarding other
influencing factors.

(3) It is known that the distance between all pairs of nodes in the network is determined.
(4) All initial and real-time passenger demands are within the service area, and each demand is

met only once. There are sufficient demand-responsive buses to meet all travel demands.
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(5) The number of passengers with initial demands in the first stage is less than the bus’s seating
capacity, and the remaining seats are sufficient for passengers with real-time demands.

(6) Specify a typical passenger load factor (α = 0.9) for the first stage. This assumption ensures a
high utilization rate and operational efficiency in the initial scheduling phase.

(7) Demand-responsive buses can serve multiple stops in a single operation. Although buses maybe
go through the stop that has been served many times, every stop can’t be served again.

(8) Buses cannot travel in reverse.
(9) Boarding stops and alighting stops do not overlap, nor do boarding and alighting areas.

(10) The distances between stops are based on physical distances and are all known.
(11) All demand can be served within the service area.
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Figure 1: Road network diagram

2.3 Symbol Definitions

The symbols used in the model formulas and their descriptions are shown in Table 1.

Table 1: Notations description

Notations Description

B Group of demand-responsive bus stops in the boarding area, B = { i | i = 1, 2, ...,
m}

A Group of demand-responsive bus stops in the alighting area, A = { j | j = 1, 2, ..., n}
S0 Group of parking lots for demand-responsive buses, S0 = {s | s = 1, 2, ..., S}
P0 Group of vehicle number index for demand-responsive buses, P0 = {p | p = 1, 2, ...,

P}
Es Describes the s parking lot has R demand-responsive buses, Es= { r | r = 1, 2, ....,

R},
Drs

ij The distance from the station ith to the station jth of the rth demand-responsive
bus of the s parking lot

ni Describes the passenger count at the ith boarding or alighting station
Pr Describes the operating route of the rth car, Pr= {Bi, Ai}, i ∈ A U B U S0

(Continued)
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Table 1 (continued)

Notations Description

Lrs
B (Pr) Describes the total distance traveled by the rth demand-responsive bus in parking

lot s within boarding area B
Lrs

A (Pr) Describes the total distance traveled of the rth demand-responsive bus in the s
parking lot in the alighting area A

Lrs (A, S0) Describes the distance traveled of the rth demand-responsive the bus from the sth
parking lot travels from a station in the alighting area A back to its designated
parking lot

Lrs (B, A) Describes the total distance traveled by the rth demand-responsive bus from
parking lot s, starting from a station in boarding area B to a station in alighting
area A.

N Describes the seats of passengers that can sit of a demand-responsive bus
M A positive value M representing a severe penalty
t1 Describes the mean time for passengers to board and alight
ρ1 Describes the cost factor per unit distance for transporting passengers using

demand-responsive buses
ρ2 Describes the cost factor per unit distance for transporting passengers when

operating a demand-responsive bus with few passengers onboard
β1 Penalty for early arrival per unit time
β2 Penalty for delayed arrival per unit time
C1 Describes the fixed expense associated with operating a demand-responsive bus
C2 CO2 emission cost
Ca Cost per unit of CO2 emissions
WCa Unit of CO2 emissions
Q Describes the entire set of nodes within the road network, Q = A U B U S0

T Describes the total time of the passengers travelling in the demand-responsive bus
W Describes the overall operating costs of the demand-responsive bus company
wi Describes the discrepancy between the actual and requested passenger boarding

times.
wmax Maximum waiting time for each passenger
Tboard,i Actual boarding time of the ith passenger
Trequest,i Requested boarding time of the ith passenger
Dmax Total distance traveled by the vehicle during service.
Nrs

ij The number of passengers in the car representing the rth car of the sth parking lot
from station i to station j

q Passenger index
es

q Describes the earliest boarding time of passenger q at demand point s
ls
q Describes the latest boarding time of passenger q at demand point s.

trs Describes the actual arrival time of vehicle r at demand point s.

yrs
ij yrs

ij =
{

1, The rth demand responsive bus i in parking lots travels from location i to j
0, otherwise

(Continued)
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Table 1 (continued)

Notations Description

krs
ij krs

ij =
{

1, Nrs
ij > 0

0, otherwise

xrs
ij xrs

ij =
{

1, The rth demand responsive bus stop at parking lots, location i
0, otherwise

2.4 Real-Time Demand-Responsive Bus Route Multi-Objective Optimization Model Based on
Two-Stage

The bus route for multi-objective optimization model is divided into two stages to manage initial
and real-time travel requests. The first stage generates a demand-responsive bus route based on requests
made before departure. The second stage updates this route in real-time based on new requests. Since
both stages share consistent optimization objectives, the model is unified. The road network is divided
into boarding and alighting areas. The operation process of the demand-responsive bus involves four
components: affiliated bus station, boarding area stop, alighting area stop, and nearest bus station.

Eq. (1) shows the total distance covered by the demand-responsive bus throughout its whole travel.

L =
∑

s∈S0

∑
r∈Pr

(
Lrs

B (Pr) + Lrs(B, A) + Lrs
A (Ar) + Lrs(A, S0)

)
(1)

There are two objectives to achieve for the route improvement.

Objective 1: Minimize the total travel time for all passengers in the road network. By analyzing
the entire travel process of passengers, travel time includes waiting time, boarding and alighting time,
and time spent on the bus. Due to the high uncertainty of waiting time, influenced by various factors,
the model considers only the time passengers spend on the bus and the boarding and alighting times.
First, the time taken by passengers to leave from their starting point to the boarding stop is uncertain.
Second, the arrival times of passengers and the demand-responsive bus are uncertain.

The first part is the time passengers spend on the bus, which equals the vehicle’s travel time.
Assuming a constant vehicle speed, this time is calculated by dividing the travel distance by the speed.
Eq. (2) represents the time spent on the bus. Therefore, the overall travel time includes only the time
passengers spend on the bus and the boarding and alighting times.

T1 =
∑

s∈S0

∑
r∈Pr

(∑
i∈AUB

∑
j∈AUBUS0

Drs
ij y

rs
ij

)
v

(2)

The second part is the passenger boarding and alighting time. The second factor is passenger
boarding and alighting time. Individual differences cause these times to vary and be unpredictable.
Additionally, as the number of passengers increases, boarding and alighting times extend significantly,
making it difficult to quantify exact times for each passenger. To simplify the study, this paper
considers boarding and alighting times as fixed averages. The results, based on a field survey of local
bus passengers, suggest an average boarding and alighting time of 3 s (t1 = 3 s) [39]. Thus, this model
considers only the time passengers spend on the bus and the boarding and alighting times for total
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travel time in Eq. (3).

T2 =
∑

s∈S0

∑
r∈Pr

∑
i∈A∪B

t1nixrs
i (3)

The objective function, comprising these two parts, is expressed in Eq. (4).

minT = T1 + T2 (4)

Objective 2: Minimize the whole operational expense of the demand-responsive bus corporation.
The operational costs of a demand-responsive bus company include fixed and variable costs. Fixed
costs include vehicle purchase, depreciation, and driver wages. Variable costs encompass passenger-
related and vehicle-related costs. In practice, fuel consumption and travel distance directly impact CO2

emissions; hence, CO2 emission costs are part of vehicle variable costs.

Calculation of CO2 emission costs in Eq. (5).

C2 = CaWCa

(∑
s∈S0

∑
r∈Pr

∑
i∈Q

∑
j∈Q

Drs
ij −

∑
s∈S0

∑
r∈Pr

∑
i∈Q

∑
j∈Q

Nrs
ij

)
(5)

Therefore, minimizing the whole operational expense of the bus corporation is represented in
Eq. (6).

minW =
∑

s∈S0

∑
r∈Pr

∑
i∈Q

∑
j∈Q

(
ρ1yrs

ij D
rs
ij k

rs
ij + ρ2yrs

ij D
rs
ij

(
1 − krs

ij

)) + C1 + C2 (6)

Alighting Constraint: The demand-responsive bus must adhere to the constraint in Eq. (7) when
traveling from any boarding stop to an alighting stop.∑

s∈S0

∑
r∈Pr

∑
i∈B

∑
j∈A

yrs
ij = 1, ∀i, ∀j (7)

Parking Constraint: The bus must satisfy Eq. (8) when departing from a site in the alighting area
to its adjacent parking lot.∑

s∈S0

∑
r∈PR

∑
i∈A

∑
j∈S0

yrs
ij = 1, ∀i, ∀j (8)

Demand Constraint: Eq. (9) ensures that the whole travel demand in the roadway system remains
within the available supply limits by the buses. This means the number of passengers should be less
than the aggregate number of available seats on all demand-responsive buses.∑

i∈A
ni ≤ RSN (9)

Vehicle Capacity Constraint: The number of passengers on each demand-responsive buses must
operate within their capacity limits, as shown in Eq. (10). Eq. (10) represents the passenger capacity
limit for each bus.∑

s∈S0

∑
r∈Ps

∑
i∈A

xs
irni < Q, ∀Pr (10)

Passenger Waiting Time Constraint: The waiting time for each passenger must not exceed the
specified maximum, as shown in Eq. (11).

wi ≤ wmax (11)
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Calculation of Passenger Waiting Time:

wi = Tboard,i − Trequest,i (12)

Vehicle Travel Distance Constraint: The total travel distance for each bus must not exceed its
maximum, as shown in Eq. (13).

Dmax ≤
∑

s∈S0

∑
r∈Pr

∑
i∈Q

∑
j∈Q

Drs
ij (13)

Initial Time Window Constraint: The time window for initial passengers is strict, requiring the
vehicle to arrive within the passenger’s requested boarding time window. Failure to do so incurs a high
penalty cost.

f1(t) =
{

0 es
q ≤ trs ≤ ls

q

M trs < es
q, trs > ls

q

(14)

Real-time Time Window Constraint: During real-time scheduling, inserting a new request into
the existing route must meet the strict time window constraints of current passengers and those yet to
alight. If the time window for real-time demands is also strict, meeting all conditions simultaneously
becomes difficult. Hence, during the real-time demand phase, the passenger time window is considered
a soft constraint. Typically, the penalty cost per unit for late arrival is higher than for early arrival.

f2(t) =
⎧⎨
⎩

β1

(
es

q − trs
)

trs < es
q

0 es
q ≤ trs ≤ ls

q

β2

(
trs − ls

q

)
trs > ls

q

(15)

This paper presents a two-stage real-time demand-responsive bus route optimization model for
managing all demands in the roadway system. Both stages share consistent objectives and models,
with the difference lying in the handling of initial and real-time requests.

3 Solution
3.1 Model Feature Analysis

The process is divided into pre-departure and post-departure stages, resulting in a multi-objective
optimization model. Analysis reveals two main goals: minimizing total travel time for passengers and
reducing operational costs for the bus company, making this a multi-objective problem. Typically, sub-
objectives in such optimization conflict, leading to a set of optimal solutions known as Pareto solutions
or non-dominated solutions, unlike single-objective optimization which yields a unique approach.

The two objectives presented in this paper are independent and cannot occur simultaneously.
Reducing passenger travel time involves more demand-responsive buses, increasing operational costs.
Conversely, reducing operational costs requires fewer buses, increasing passenger travel time due to
more stops per bus. Balancing these conflicting interests is essential.

Therefore, this paper must balance both interests. A single-objective genetic algorithm cannot
achieve this balance. While various multi-objective optimization techniques are available, such as
Pareto Simulated Annealing (PSA), Multi-Objective Particle Swarm Optimization (MOPSO), and
Strength Pareto Evolutionary Algorithm 2 (SPEA2), we chose NSGA-II (Non-dominated Sorting
Genetic Algorithm-II) due to its advantages, including the elitism mechanism, efficient non-dominated
sorting, diversity preservation, and extensively validated performance. Furthermore, improvements to
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NSGA-II in this study, such as natural number encoding, intra-individual crossover, and the 2-opt
mutation method, address the traditional NSGA-II’s shortcomings in solution diversity and real-time
demand responsiveness.

3.2 Improved NSGA-II Algorithm

NSGA-II is an advanced version of the original NSGA algorithm. It incorporates an elitism
mechanism and efficient non-dominated sorting, making it highly effective for addressing multi-
objective optimization problems. However, NSGA-II has some shortcomings: (1) The original NSGA-
II uses a complex gene encoding method for real-world problems, which can easily cause repetitions
and conflicts. (2) The crossover operation in the original NSGA-II can result in insufficient solution
diversity, making it prone to local optima. (3) The mutation operation in the original NSGA-II
is relatively simple, often leading to low-quality solutions. (4) The original NSGA-II often fails to
respond promptly to real-time demands, resulting in poor scheduling performance.

To address these issues, the NSGA-II algorithm is improved as follows: (1) Natural Number
Encoding Method: Each gene fragment corresponds to a unique boarding and alighting stop, avoiding
repetitions and conflicts. This method enhances solution quality by ensuring that each gene encoding is
unique and that all demand points are represented without redundancy. (2) Intra-individual Crossover
Method: The crossover operation is performed within the same chromosome, maintaining population
diversity and preventing data repetition. This method improves the effectiveness of the solution by
ensuring diverse and unique offspring, which helps avoid premature convergence to local optima.
(3) 2-opt Mutation Method: This mutation method optimizes the path by swapping the positions
of two genes, improving mutation efficiency and solution quality. The 2-opt mutation is particularly
effective for route optimization problems as it can significantly reduce travel distances and improve
route efficiency. (4) Insert Algorithm for Decoding and Real-time Demand Handling: This algorithm
identifies the best insertion position for real-time demands, ensuring responsiveness to real-time
requests and real-time route updates. By dynamically adjusting routes based on real-time data, this
method enhances the model’s ability to handle real-time passenger demands effectively.

3.3 Basic Procedures of the Improved NSGA-II Algorithm

The specific steps of the improved NSGA-II algorithm in this study are as follows:

Input Parameters: Input information such as stops, vehicle capacity, and passenger travel demands.

Encoding Design: This study uses a natural number encoding method, encoding demand points
and bus stops into the chromosome structure. First, passengers meeting time window constraints are
arranged on the same bus. Duplicate demand points are then removed. If the number of passengers
exceeds the vehicle’s capacity, additional vehicles are dispatched until all passengers are assigned.

Initial Population: A three-step approach is used to generate the initial population. First, chro-
mosomes for the parking section population are generated. Second, chromosomes for the boarding
stop section population are created. Third, chromosomes for the alighting stop section population
are produced. These three segments are combined to form a complete demand-responsive bus route
optimization chromosome.

Fitness Function: The objective functions are used as the fitness function to find the optimal
solution.

Crossover Operation: This operation is performed among individuals. Starting with the first
chromosome, the passenger’s boarding time window is used to identify possible crossover points in



452 CMC, 2024, vol.81, no.1

subsequent chromosomes. If suitable points that meet the constraints are found, the chromosomes
are crossed. If not, the process skips to the next chromosome and repeats until all chromosomes are
checked. If no crossover points are identified, the chromosome remains unchanged. In the encoding
design stage, depots are included in the chromosome, excluding the first and last points from crossover.

Fig. 2 illustrates the crossover operation. For example, in Individual 1, point a1 on Chromosome
1 can cross with point a2 on Chromosome 4. This creates a new Chromosome 1 from segment A
of Chromosome 1 and segment D of Chromosome 4, and a new Chromosome 4 from segment B of
Chromosome 1 and segment C of Chromosome 4, as shown in crossover diagram 1. The algorithm
then continues to the next chromosomes. If point b1 on Chromosome 2 can cross with point b2 on
Chromosome 4, a new Chromosome 2 forms from segment A of Chromosome 2 and segment D
of Chromosome 4, and a new Chromosome 4 from segment B of Chromosome 2 and segment C
of Chromosome 4, as shown in crossover diagram 2. This process continues for each chromosome
sequentially until all are processed, ultimately producing a new individual.

Chromosome1 Chromosome2 Chromosome3 Chromosome4 Chromosome5 Chromosome6 Chromosome7

(a) (b)
(c) (d)

a1 b1 b2 a2 c1 c2

(a) (b) (c) (d)

a1 b1 b2 a2 c1 c2

(a) (b)
(c) (d)

a1 b1 b2a2 c1 c2

c1 c2a1 b1 b2a2

Individual 1

Cross figure 1

Cross figure 2

Cross figure 3

New individual

Chromosome1 Chromosome2 Chromosome3 Chromosome4 Chromosome5 Chromosome6 Chromosome7

Chromosome1 Chromosome2 Chromosome3 Chromosome4 Chromosome5 Chromosome6 Chromosome7

Chromosome1 Chromosome2 Chromosome3 Chromosome4 Chromosome5 Chromosome6 Chromosome7

Figure 2: Intra-individual crossover

Mutation Operation: In randomly selected chromosomes from the parent chromosome, two
positions of randomly generated natural numbers are swapped, while the remaining positions remain
unchanged, creating a new offspring.

Fig. 3 depicts the crossover operation. Each trip chromosome’s genes include the departure
station, demand points, and return station. Numbers 0 and 9 denote the vehicle’s start and end points.
The chromosome code indicates Vehicle 1 departs from station 0, serves passengers at Points 7, 6, 3,
2, and 8, and returns to Station 9. The stop sequence is influenced by factors such as maximum time
in the vehicle and departure time windows.
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0 7 6 3 2 8 9Prochromosome

0 7 6 3 2 8 9
Selective natural

number

0 7 2 3 6 8 9
The 2-opt mutation

is complete

Figure 3: Crossover operation diagram

Initial fitness of each path is calculated, and the best value is selected for the iteration list.

Crossover and mutation operations are then performed on each population to create various
vehicle paths. The fitness of each population is evaluated, the best one is selected for the iteration list,
and gen is incremented by 1 until either the maximum number of iterations is reached or the difference
between the global optimal values of the last two iterations is minimal.

Compare the optimal values of each generation to determine the global optimal value.

Terminate the genetic algorithm and output the objective function value, vehicle path, and fitness
function graph.

The genetic algorithm designed in this study has several improvements over the traditional genetic
algorithm: (1) Both algorithms use natural number encoding, but the traditional algorithm only
considers vehicle capacity. This study also considers constraints such as time, demand, and vehicle
travel distance, leading to better solutions. (2) The traditional genetic algorithm uses inter-individual
crossover, often resulting in duplicate data and cumbersome solving. The improved algorithm uses
intra-individual crossover, ensuring each gene encoding is a unique natural number, increasing pop-
ulation diversity. (3) The traditional genetic algorithm uses random mutation, whereas the improved
algorithm uses 2-opt mutation, which is more efficient.

Real-time scheduling is initiated based on the initial scheduling route and real-time requests,
followed by checking strict constraints such as vehicle capacity and maximum travel time. All strict
constraints include: Vehicles depart from a boarding area bus stop and return to a nearby alighting
area bus stop. The number of passengers inside the vehicle does not exceed its capacity. The passenger
alighting time is later than the boarding time, and travel time from the boarding point to the alighting
point does not exceed the maximum travel time. The vehicle’s maximum travel distance constraint.
Each vehicle can only visit one demand point once. Vehicles cannot travel in reverse. Boarding stops
and alighting stops do not overlap, nor do boarding areas and alighting areas. Vehicles arrive within
the reserved boarding time window at the boarding point. If these constraints are met, the optimal
insertion position is determined; otherwise, the new request is rejected.

Determine if the insertion point meets the time window constraints. If not, the penalty cost is
calculated based on the deviation time; otherwise, the new request is inserted, generating a new vehicle
route.

The flowchart of the optimal insertion algorithm is shown in Fig. 4. In this flowchart: Set X
represents the collection of real-time objective values obtained by solving the new vehicle route. Set Y
represents the route collection corresponding to the minimum value stored in set X, i.e., the optimal
insertion path of real-time demands in the route, obtained by selecting routes in set R. Set Z represents
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the collection of optimal objective function values. Set H represents the optimal insertion route set,
i.e., the optimal insertion routes for real-time demands, obtained by selecting routes in set Y.

Figure 4: Flowchart of the optimal insertion algorithm
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4 Case Analysis
4.1 Case in the First Stage

In a district of Shanghai, the road network includes four bus stops (labeled a, b, c, d). Before
the demand-responsive bus departs, numerous bus requests are received. After checking, six boarding
stops (numbered 1–6) and six alighting stops (numbered 7–12) are established. The placement of
these stops within the roadway system is illustrated in Fig. 5. In Fig. 5: White sectors represent bus
stops. Orange ovals represent boarding stops. Yellow rounded rectangles represent alighting stops. The
connections between nodes indicate connectivity without any other implication. Given the extensive
number of stops, it is assumed that all nodes are interconnected within the road network, even if direct
links are absent. Table 2 details the passenger count at each boarding stop and the distances to parking
lots and alighting stops. Network distance has been used, considering the actual road network and
traffic conditions.

Figure 5: First stage road network diagram

Table 2: Distance between nodes (Unit: km)

Distance a b c d 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

a 0 3.1 1.2 1.9 1.6 4.5 2.1 2.8 3.6 7.1 8.2 6.2 8.5 6.4 7.3 6.6 1.1 0.9 3.4 3.6 1.4
b 3.1 0 3.3 2.9 2.6 1.2 1.4 2.2 3.5 8.4 9.6 7.1 8.8 7.6 7.9 7.2 3.6 2.8 0.9 1.8 2.6
c 1.2 3.3 0 2.8 0.9 4.2 2.5 2.8 2.1 5.4 7.5 4.9 8.5 5.4 6.6 6.5 1.9 1.2 4.3 5.1 4.8
d 1.9 2.9 2.8 0 3.6 2.9 1.8 4.1 5.3 7.1 9.8 6.5 9.9 8.1 8.5 8.1 2.7 1.2 1.8 4.1 4.2
1 1.6 2.6 0.9 3.6 0 3.8 1.8 2.1 1.2 6.2 8.4 5.9 7.7 6.5 6.8 5.9 3.8 3.4 1.2 0.6 2.5
2 4.5 1.2 4.2 2.9 3.8 0 3.2 4.1 5.2 9.1 8.8 8.1 8.9 8.5 8.2 9.1 2.4 2.1 2.6 2.9 1.7
3 2.1 1.4 2.5 1.8 1.8 3.2 0 2.3 3.2 7.3 8.8 6.2 8.9 6.1 6.9 7.7 1.9 2.8 4.3 4.1 0.9
4 2.8 2.2 2.8 4.1 2.1 4.1 2.3 0 2.9 6.9 7.2 5.9 8.4 6.6 7.5 6.9 3.4 2.7 0.8 2.4 3.3
5 3.6 3.5 2.1 5.3 1.2 3.2 3.2 2.9 0 5.8 7.1 4.8 8.7 6.7 7.5 5.9 2.6 2.4 2.5 1.4 1.1
6 7.1 8.4 5.4 7.1 6.2 7.3 7.3 6.9 5.8 0 1.4 1.9 3.2 3.4 3.9 1.3 5.2 1.9 3.6 1.1 2.9
7 8.2 9.6 7.5 9.8 8.4 8.8 8.8 7.2 7.1 1.4 0 4.1 1.2 2.8 3.1 1.8 1.9 9.4 3.1 3.8 3.4
8 6.2 7.1 4.9 6.5 5.9 6.2 6.2 5.9 4.8 1.9 4.1 0 3.2 1.6 2.4 2.1 3.6 3.1 5.1 2.4 3.2
9 8.5 8.8 8.5 9.9 7.7 8.9 8.9 8.4 8.7 3.2 1.2 3.2 0 2.8 1.7 2.6 4.1 3.8 2.4 5.9 2.8
10 6.4 7.6 5.4 8.1 6.5 6.1 6.1 6.6 6.7 6.4 2.8 1.6 2.8 0 1.8 2.3 2.9 3.4 3.2 2.8 6.7
11 7.3 7.9 6.6 8.5 6.8 6.9 6.9 7.5 7.5 3.9 3.1 2.4 1.7 1.8 0 2.7 6.1 7.1 6.2 4.5 5.4
12 6.6 7.2 6.5 8.1 5.9 7.7 7.7 6.9 5.9 1.3 1.8 2.1 2.6 2.3 2.7 0 6.4 8.8 8.4 7.1 6.2
13 1.1 3.6 1.9 2.7 3.8 2.4 1.9 3.4 2.6 5.2 1.9 3.6 4.1 2.9 6.1 6.4 0 6.5 5.9 4.1 5.8

(Continued)
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Table 2 (continued)

Distance a b c d 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

14 0.9 2.8 1.2 1.2 3.4 2.1 2.8 2.7 2.4 1.9 9.4 3.1 3.8 3.4 7.1 8.8 8.4 0 7.1 7.8 7.1
15 3.4 0.9 4.3 1.8 1.2 2.6 4.3 0.8 2.5 3.6 3.1 5.1 2.4 3.2 6.2 8.4 6.9 6.7 0 3.1 4.8
16 3.6 1.8 5.1 4.1 0.6 2.9 4.1 2.4 1.4 1.1 3.8 2.4 5.9 2.8 4.5 7.1 6.4 7.9 6.5 0 8.7
17 1.4 2.6 4.8 4.2 2.5 1.7 0.9 3.3 1.1 2.9 3.4 3.2 2.8 5.4 5.4 6.2 5.7 7.8 7.8 6.9 0

Table 3 provides information about each stop. From Table 3, we can see: Passengers at boarding
stop 1 go to alighting stop 10. Passengers at boarding stop 2 go to alighting stop 9. Passengers
at boarding stop 3 go to alighting stop 11. Passengers at boarding stop 4 go to alighting stop 12.
Passengers at boarding stop 5 go to alighting stop 8. Passengers at boarding stop 6 go to alighting
stop 7.

Table 3: Initial stage stop details

Boarding station number Passengers’ number Alighting station number

1 22 10
2 30 9
3 36 11
4 21 12
5 15 8
6 17 7

The study’s key parameters include: Vehicle capacity: 40 persons/vehicle. Average travel speed:
40 km/h. Unit transportation cost with passengers: 200 yuan/km. Empty load cost: 50 yuan/km. Fixed
vehicle cost: 400 yuan/vehicle. Average boarding time per passenger: 3 s. Fuel cost for a 40-seat vehicle:
3.3 yuan/km [37]. Maximum operation time: 720 min. Passenger travel time window: 5 min. Number
of potential stops: 17. A route optimization plan must be created before the bus departs to minimize
both operational costs and passenger travel time.

Table 4 displays the parameter settings for the initial vehicle route optimization model.

Table 4: Vehicle information

Vehicle capacity Setup cost (yuan) Fuel cost (yuan/km) Carbon emission cost (yuan/km)

40 400 3.3 6.2

In the first stage, the route is optimized based on the initial travel demands received by the
roadway system before the leaving of the demand-responsive bus. The proposed solution algorithm
is implemented in Java, using a population size of 200, running for a maximum of 200 generations,
with crossover probability set to 0.8 and mutation probability set to 0.1. After a runtime of 29.6 s, it
successfully optimized the initial stage of demand-responsive bus routes, yielding the Pareto solution
set. Detailed outcomes are presented in Tables 5 and 6.
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Table 5: First stage result (Pareto Solution 1)

Vehicle Route Number of
people served

Attendance rate
(%)

Vehicle
operating cost
(yuan)

Average
in-vehicle time
of passages
(min)

Travel time
(min)

Cost target
(yuan)

1 a-1-6-10-7-c 39 97.5 1004.25 12.1 471.9 4872.36
2 a-3-11–d 36 90 956.25 9.2 331.2 4008.50
3 b-4-5-12-8-c 36 90 971.00 10.3 370.8 4111.60
4 b-2-9-d 30 75 1004.25 7.6 228.0 4833.30

Total travel time
(min)

1401.9

Total cost target
(yuan)

17,825.76

Table 6: First stage result (Pareto Solution 2)

Vehicle Route Number of
people served

Attendance rate
(%)

Vehicle
operating cost
(yuan)

Average
in-vehicle time
of passages
(min)

Travel time
(min)

Cost target
(yuan)

1 a-1-5-10-8-c 37 92.5 952.00 9.8 362.6 3699.20
2 a-2-9-d 30 70 1035.60 8.9 267.0 5513.76
3 b-4-6-12-7-c 38 95 987.15 11.7 444.6 4462.14
4 b-3-11-d 36 90 959.60 10.1 363.6 3864.16

Total time target
(min)

1437.8

Total cost target
(yuan)

17,539.26

Fig. 6 displays these solutions. Both Pareto solutions in Fig. 6 effectively minimize passenger travel
time and operational costs.

(1) Result Comparison 1: The time of passengers’ journey. According to Tables 5 and 6, there is
the whole travel time of 1401.9 min in Pareto Solution 1. It sends two buses from parking lot a to serve
boarding stops 1, 6, and 3, transporting passengers to alighting stops 7, 10, and 11, and then stopping
at parking lots c and d, taking 629.6 min. Parking lot b sends two buses to serve boarding stops 4, 5,
and 2, transporting passengers to alighting stops 8, 12, and 9, taking 598.8 min. There is the whole
travel time of 1401.9 min in Pareto Solution 2. It sends two buses from parking lot a to serve boarding
stops 1, 5, and 2, transporting passengers to alighting stops 10, 8, and 9, taking 629.6 min. It sends
two buses from parking lot b. The first bus picks up 36 passengers, transports them to the alighting
stop, and returns to parking lot c; the second bus follows route b-3-11-d, serving boarding stop 3 and
alighting stop 11, taking 363.6 min.

(2) Result Comparison 2: Tables 5 and 6 show the operational cost for two buses is 8880.86 yuan
from parking lot a in Pareto Solution 1. For parking lot b, the cost is 8944.9 yuan, including vehicle
costs, making the total 17,825.76 yuan. It sends two buses for three boarding stops from parking
lot a in Pareto Solution 2, then three alighting stops, finally returning to parking lot c and d, costing
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9212.96 yuan. Parking lot b sends two buses for three boarding stops and three alighting stops, costing
8326.3 yuan, plus a fixed vehicle cost of 400 yuan, totaling 17,539.26 yuan.
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Figure 6: The allocation of the two Pareto-optimal solutions achieved in the first stage

Fig. 7 shows Total passenger travel time for Pareto Solutions 1 and 2. There is the whole travel time
of 1401.9 min in Pareto Solution 1, while Pareto Solution 2 has 1437.8 min. This means Pareto Solution
1 reduces travel time by 35.9 min. From a passenger perspective, shorter travel time is preferable,
making Pareto Solution 1 more attractive.
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Figure 7: Total passenger travel time for Pareto Solutions 1 and 2

Fig. 8 compares the total operational costs for the demand-responsive bus company under both
Pareto solutions. Pareto Solution 1 incurs 286.47 yuan more in operational costs than Pareto Solution
2. Thus, adopting Pareto Solution 2 can save costs for the bus company.

In summary, Figs. 7 and 8 demonstrate that two Pareto Solutions have distinct superiority in
reducing total passenger travel time and operational costs for the bus company. Pareto Solution 1
reduces passenger travel time by 35.9 min compared to Pareto Solution 2, making it more beneficial
for passengers. From the bus company’s perspective, Pareto Solution 2 saves 286.47 yuan in operational
costs compared to Pareto Solution 1, making it more cost-effective. However, the final route optimiza-
tion scheme should be chosen with comprehensive consideration to avoid disadvantaging either party.
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Tables 7 and 8 demonstrate that expanding the time window allows vehicles to serve more
passengers, significantly increasing the response rate. To meet real-time demands, vehicles may need
to make detours, pass stops, and alter routes, inevitably increasing the average time passengers spend
on the bus and time. The results confirm that as the time window expands, both the total operational
cost for vehicles and the average time passengers spend on the bus increase. When the time window
is shorter, passenger waiting time can be somewhat reduced, but the number of rejected passengers
increases rapidly, adversely affecting the attractiveness of public transportation. Although a longer
time window allows more passengers to be served, the waiting time and time spent on the bus increase
sharply, reducing passengers’ willingness to travel. When the time window is at an intermediate level,
operational travel costs and penalty costs decrease, particularly when the time window is set to
15 min. Therefore, to achieve better results, this study will set the time window to 15 min in subsequent
experiments.
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Figure 8: Total operating expense for Pareto Solutions 1 and 2

Table 7: Comparison of scheduling results in different time windows

Time
window

Time window
deviation
penalty cost
(RMB)

Average
passenger
in-vehicle
time (min)

Demand
served
(person)

Total vehicle
travel time
(min)

Average load
ratio (%)

Response
rate (%)

5 40.7 8.7 71 320.4 92.3 50.3
10 36.3 9.4 110 339.45 94.2 78.0
15 18.5 10.1 115 363.6 93.8 81.56
20 8.6 10.9 114 381.11 94.6 80.8

Table 8: Objective cost values for different time windows

Scheduling mode Vehicle operating cost
(RMB)

CO2 emission cost (RMB) Time window deviation
penalty cost (RMB)

5 961.1 121.73 40.7
10 983.3 83.4 36.3

(Continued)
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Table 8 (continued)

Scheduling mode Vehicle operating cost
(RMB)

CO2 emission cost (RMB) Time window deviation
penalty cost (RMB)

15 985.4 64.8 18.5
20 996.5 69 8.6

4.2 Case in the Second Stage

In the first stage, initial passenger requests before departure were screened and processed to form
6 boarding stops and 6 corresponding alighting stops. The improved NSGA-II algorithm solved the
model, yielding two Pareto solutions. The second stage involves immediate route improvement based
on the results from the first stage.

Because the demand-responsive bus should update its route in real time whenever there are real-
time requests within the response range before leaving the boarding area, the number of responses
will vary based on the number of real-time requests. Each response requires recalculating the model.
The second stage proposes generating real-time travel requests at 3-min intervals. Assuming that at the
3-min mark, based on real-time travel requests generated in the roadway system, the bus corporation
processes and adds 3 new boarding stops (numbered 13–15) and 3 new alighting stops (numbered
16–18). The road network for the second stage is shown in Fig. 9. In Fig. 9, the orange nodes indicate
stops serviced by the demand-responsive bus within 3 min. This frequency is chosen based on a balance
between responsiveness to real-time passenger demands and computational efficiency. Generating
requests too frequently (e.g., every minute) could lead to excessive computational overhead, making
the optimization process too slow to be practical for real-time applications. On the other hand,
generating requests too infrequently (e.g., every 10 min) might result in delayed responses to passenger
needs, reducing the effectiveness of the demand-responsive system. The 3-min interval ensures timely
responses to passenger requests and manageable computational loads, allowing near real-time updates
to routes and schedules, thereby enhancing service quality and passenger satisfaction. Parallelograms
and diamonds represent the newly formed boarding and alighting stops based on real-time passenger
requests at the 3-min mark. Relevant information for each stop is provided in Table 9. According to
Table 9: Passengers at boarding stop 13 need to go to alighting stop 17. Passengers at boarding stop
14 need to go to alighting stop 16. Passengers at boarding stop 15 need to go to alighting stop 18.
Table 2 provides the distances between nodes. All parameters remain consistent with the first stage.
The second stage aims to minimize total operational costs and passenger travel time through real-time
route optimization of demand-responsive bus routes.

The proposed solution algorithm, implemented in Java, is used in this stage. The optimized
route for the second stage was obtained after running for 36.7 s. Detailed results are presented in
Tables 10 and 11. Comparing the second stage scheme with the first stage shows differences due to
increased boarding and alighting stops and the available seat count on buses for new real-time requests.
Additionally, the initial position of every bus upon receiving real-time requests must be determined to
improve the route.
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Figure 9: Second stage road network diagram

Table 9: Real-time stage stop details

Boarding station number Passengers’ number Alighting station number

13 3 17
14 5 16
15 4 18

Table 10: Second stage solution result (Pareto Solution 1)

Vehicle Route Number of
people served

Attendance rate
(%)

Vehicle
operating cost
(yuan)

Average
in-vehicle time
of passages
(min)

Travel time
(min)

Cost target
(yuan)

1 a-1-6-10-7-c 39 97.5 1004.25 12.1 471.9 4872.36
2 a-3-13-11-17-d 39 97.5 1190.30 10.4 405.6 4995.60
3 b-4-5-15-12-8-

18-c
40 100 1378.36 12.7 508.0 5155.36

4 b-2-14-9-16-d 35 87.5 1119.00 9.2 322.0 5090.08

Total time target
(min)

1707.5

Total cost target
(yuan)

20,113.40

Table 11: Second stage solution result (Pareto Solution 2)

Vehicle Route Number of
people served

Attendance rate
(%)

Vehicle
operating cost
(yuan)

Average
in-vehicle time
of passages
(min)

Travel time
(min)

Cost target
(yuan)

1 a-1-5-13-10-8-
17-c

40 100 1412.52 10.9 436.0 4812.8

2 a-2-14-16-9-d 35 87.5 1071.40 11.1 388.5 5288.96

(Continued)
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Table 11 (continued)
Vehicle Route Number of

people served
Attendance rate
(%)

Vehicle
operating cost
(yuan)

Average
in-vehicle time
of passages
(min)

Travel time
(min)

Cost target
(yuan)

3 b-4-6-12-7-c 38 95 987.15 11.7 444.6 4462.14
4 b-3-13-17-11-d 39 97.5 1211.00 12.1 471.9 4923.12

Total time target
(min)

1741

Total cost target
(yuan)

19,487.02

Tables 10 and 11 show the real-time stage optimization scheme. Fig. 10 illustrates the arrangement
of these results.

(1) Result Comparison 1: The time of passengers’ journey. Tables 10 and 11 show that Pareto
Solution 1 uses 4 demand-responsive buses. It sends two buses in parking lot a. The first bus follows
the route a-1-6-10-7-c departing from parking lot a, stopping at boarding stops 1 and 6 to pick
up passengers. After stop 6, the bus has 39 passengers. With this number, it cannot pick up more
passengers at the next stop. It then proceeds to alighting stops 10 and 7, and returns to parking lot
c, taking 471.9 min in total. The second bus follows route a-3-13-11-17-d, carrying 39 passengers. It
serves two boarding and two alighting stops, taking 405.6 min. Parking lot b also sends two buses. The
first bus follows route b-4-5-15-12-8-18-c. After picking up passengers at stops 4, 5, and 15, the bus is
full with 40 passengers. It then proceeds to the alighting stops, completing the route in 508 min. The
second bus follows route b-2-14-9-16-d, carrying 35 passengers and taking 322 min. Pareto Solution
2 uses 4 demand-responsive buses, with dispatching two buses from parking lots. The first bus follows
route a-1-5-13-10-8-17-c departing from parking lot a, stopping at boarding stops 1, 5, and 13. After
these stops, the bus is full. It then proceeds to alighting stops 10, 8, and 17, and returns to parking
lot c, taking 436 min in total. The second bus follows route a-2-14-16-9-d, carrying 35 passengers and
taking 388.5 min. It sends two buses for the remaining passengers from parking lot b. The first bus
follows route b-4-6-12-7-c, carrying 38 passengers and taking 444.6 min. The second bus follows route
b-3-13-17-11-d, carrying 39 passengers and taking 471.9 min.

Fig. 11 compares the total passenger travel time for Pareto Solutions 1 and 2 in the second stage.
As depicted in Fig. 11, Pareto Solution 1 has a total travel time of 1707.5 min, whereas Pareto Solution
2 has 1741 min. Thus, Pareto Solution 2’s travel time is 33.5 min longer than that of Pareto Solution
1. These results suggest that Pareto Solution 1 is better for minimizing total passenger travel time,
allowing passengers to complete their trips more quickly.

(2) Result Comparison 2: Total Operational Expense for the Demand-Responsive Bus Firm.
Fig. 12 compares the total operational costs for the bus company between Pareto Solutions 1 and
2 in the second stage. As shown, there is a total cost of 20,113.4 yuan in pareto solution 1, whereas
Pareto Solution 2 costs 19,487.02 yuan. The costs for Pareto Solution 1 include 9867.96 yuan from
parking lot a and 10,245.44 yuan from parking lot b. For Pareto Solution 2, the costs are 10,101.76
yuan for parking lot a and 9385.26 yuan for parking lot b. Fig. 12 indicates that Pareto Solution 2
saves 626.38 yuan, making it more cost-effective than Pareto Solution 1. Minimizing operational costs
while meeting passenger demands is crucial for the bus company. Therefore, the company would likely
choose Pareto Solution 2.
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Figure 10: The allocation of the two Pareto-optimal solutions achieved in the first stage
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Figure 11: Total travel time for Pareto Solutions 1 and 2
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Figure 12: Total operating expense for Pareto Solutions 1 and 2

In conclusion, Figs. 11 and 12 show that Pareto Solutions 1 and 2 each have benefits in minimizing
passenger travel time and operational costs, respectively. Pareto Solution 1 is 33.5 min shorter in travel
time, increasing passenger satisfaction. Conversely, Pareto Solution 2 is 626.38 yuan cheaper, making
it more attractive for the bus company. Passengers and the bus company have conflicting interests.
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Solely pursuing one party’s interests harms the other. Thus, a balanced route optimization plan that
considers both parties’ interests is necessary.

4.3 Case Analysis

The two-stage route optimization results are analyzed as follows.

Since the second stage builds on the first, it is assumed that real-time travel requests do not exceed
the total capacity of the buses used in the first stage. The second stage uses the same number of
remaining seats and vehicles as the first, requiring 4 buses to meet the demand of 183 passengers.
Similarly, the first bus route in Pareto Solution 2 is the same in both stages: b-4-6-12-7-c. This indicates
that some first-stage optimized routes cannot accommodate real-time requests in the second stage. This
may be due to two reasons: First, if first-stage vehicles have a high occupancy rate, remaining seat
capacity may not accommodate new passengers. Second, real-time request locations may be outside
the service range or far from the travel routes of certain vehicles. These findings highlight the need
to consider real-time requests in real-time and adjust routes to balance operational efficiency and
passenger satisfaction.

In the second stage, optimized bus routes achieved higher occupancy rates than in the first stage.
This improvement is seen in both individual and average occupancy rates. Details are provided in
Table 12. There are minimum, maximum, and average occupancy rates of 75.0%, 97.5%, and 88.125%
in Pareto Solution 1 in the first stage, respectively. For Pareto Solution 2, these rates were 70%, 85%,
and 81.045%, respectively. The average occupancy rate for the initial phase was 84.585%. There are
minimum, maximum, and average rates of 87.5%, 100.0%, and 95.625% in the second stage in Pareto
Solution 1, respectively. For Pareto Solution 2, these rates were 87.5%, 100.0%, and 95%. The average
seat utilization for the immediate phase was 95.3125%. In comparison to the initial phase, the average
occupancy increased by 10.7275%, with individual buses improving by up to 17.5%. Except for 2 buses
on the same routes, the two-stage method resulted in a significant improvement in occupancy rates.
Without the two-stage method, two issues might arise. First, if real-time requests aren’t timely serviced,
more empty seats waste resources. Second, dispatching a new bus for real-time requests increases
operational costs. Thus, the two-stage method effectively addresses immediate requests, optimizing
occupancy and minimizing costs.

Table 12: Comparison of seat occupancy rates

Two-stage Car type Metric Pareto Solution 1 Pareto Solution 2

Initial stage Individual car Minimum
attendance rate (%)

75 70

Maximum
attendance rate (%)

97.5 85

Average attendance
rate (%)

88.125 81.045

(Continued)
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Table 12 (continued)

Two-stage Car type Metric Pareto Solution 1 Pareto Solution 2

Immediate stage Individual car Minimum
attendance rate (%)

87.5 87.5

Maximum
attendance rate (%)

100 100

Average attendance
rate (%)

95.625 95

To validate the improved NSGA-II genetic algorithm, it was compared to the traditional NSGA-II
algorithm in solving the vehicle scheduling problem under the muti-objective DRT service model. Both
algorithms used the same parameters: population size of 100, crossover probability of 0.8, mutation
probability of 0.1, and 100 iterations. Fig. 13 shows the results of the two algorithms. As shown, the
improved NSGA-II algorithm has significant advantages in convergence speed and objective function
results. According to Table 13, compared to the traditional NSGA-II algorithm, although average in-
vehicle time for passengers increased by 1.9%, the number of trips and total travel time decreased by
25.9% and 13.1%, respectively, effectively improving vehicle utilization. The runtime of the improved
NSGA-II algorithm was reduced by 4.8%, demonstrating its effectiveness.

Minimum fitness of 

improved NASA-II algorithm

Minimum fitness of 

NASA-II genetic algorithm

Figure 13: Comparison of results of improved genetic algorithm and traditional algorithm

Unlike the initial scheduling stage, where initial routes are generated based on subscription
demands, the real-time scheduling stage involves vehicles receiving real-time requests during operation.
The vehicle routes are dynamically adjusted according to time windows, boarding, and alighting
points. The adjusted routes will change passengers’ in-vehicle time, the number of served passengers,
vehicle operation time, and other factors. The following experiment aims to observe the changes in
travel expense and passengers’ number who has been served when applying the real-time scheduling
stage during operation. The specific results are shown in Tables 13 and 14.
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Table 13: Comparison of results of the two-phase scheduling scheme

Scheduling
mode

Average
passenger
in-vehicle time
(min)

Number of
people served

Total operating
time of vehicle
(min)

Average full
load rate (%)

Response
rate (%)

Initial
scheduling

9.9 141 1419.8 84.6 60.1

Real-time
scheduling

11.3 183 1724.3 95.3 90.3

Table 14: The total system cost of the two-phase scheduling scheme

Scheduling mode Vehicle operating
cost (RMB)

CO2 emission ost
(RMB)

Time window
violation penalty
cost (RMB)

Initial scheduling 1208.8 362.2 0
Real-time scheduling 1385.4 64.8 18.5

5 Conclusion

This paper explores real-time demand-responsive bus route optimization using a two-stage way
to handle immediate travel requests and achieve route updates. A multi-objective optimization model
is developed, aiming to minimize vehicle operation costs, travel costs, CO2 emissions, time window
deviations, and penalties for rejecting passengers, taking into account the interests of both passengers
and operators. An improved NSGA-II genetic algorithm is proposed to address immediate bus route
improvement with random user demands. The first stage addresses initial travel requests, generating
an initial optimized bus route. The second stage manages real-time travel requests, updating the bus
route accordingly. An insertion algorithm is designed to handle the model’s characteristics.

To verify the model and method’s effectiveness, they were applied to a two-stage case study for
comparison. Analysis results show: (1) Using existing vehicles for real-time travel requests, instead of
dispatching new ones from the parking lot, can save operational costs. (2) With the same demand,
setting the time window too large can rapidly increase waiting time, while setting it too small can
drastically reduce the number of served passengers. (3) Using real-time scheduling increases vehicle
operating costs by 12.6% and reduces CO2 emission costs by 82.1%. This serves more passengers,
greatly improves vehicle utilization, and significantly reduces CO2 emission costs. Despite slightly
higher operational and detour costs, the method attracts more passengers by reducing penalties for
rejecting passengers and deviating from passenger time windows.

This study assumes vehicle speed to be constant, without considering the impact of real-time fac-
tors on speed, simplified assumptions and limited real-time data usage. Additionally, the consideration
of multiple stops is limited. Future research can focus on various potential improvements, such as the
cost and comfort of different vehicle types, the impact of real-time road condition changes on vehicle
speed, modeling passenger comfort, integration with intelligent transportation systems, and advanced
data analysis. These efforts aim to ultimately enhance urban mobility and passenger experience.
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