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ABSTRACT

With the rapid development of deep learning-based detection algorithms, deep learning is widely used in the field
of infrared small target detection. However, well-designed adversarial samples can fool human visual perception,
directly causing a serious decline in the detection quality of the recognition model. In this paper, an adversarial
defense technology for small infrared targets is proposed to improve model robustness. The adversarial samples
with strong migration can not only improve the generalization of defense technology, but also save the training
cost. Therefore, this study adopts the concept of maximizing multidimensional feature distortion, applying noise
to clean samples to serve as subsequent training samples. On this basis, this study proposes an inverse perturbation
elimination method based on Generative Adversarial Networks (GAN) to realize the adversarial defense, and design
the generator and discriminator for infrared small targets, aiming to make both of them compete with each other
to continuously improve the performance of the model, find out the commonalities and differences between the
adversarial samples and the original samples. Through experimental verification, our defense algorithm is not only
able to cope with multiple attacks but also performs well on different recognition models compared to commonly
used defense algorithms, making it a plug-and-play efficient adversarial defense technique.
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1 Introduction

In recent years, deep learning has seen rapid advancements across various domains, including
computer vision, natural language processing, image generation, and autonomous driving. However,
Szegedy et al. [1] identified vulnerabilities in neural network-based classification tasks, highlighting
the susceptibility of deep neural networks to adversarial samples, which can significantly degrade
performance. This vulnerability is particularly concerning in applications such as infrared small target
detection, which is critical in many fields and is often challenged by adversarial attacks. To enhance the
security of infrared recognition models, it is imperative to incorporate counter-defense technologies.

Among the array of available defense mechanisms, the primary strategies include adversarial
training [2], improvements in model architecture [3], and detection of adversarial samples [4]. Nev-
ertheless, the effectiveness of these techniques is generally confined to specific attack algorithms, and
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their defensive performance heavily relies on the depth of understanding of the recognition model. An
approach that transcends the dependency on specific recognition models is adversarial disturbance
elimination via GAN. GAN leverage their potent generative capabilities to process diverse input
samples effectively. For instance, Defense-GAN was initially introduced by Samangouei et al. [5], and
more recently, Collaborative Defense-GAN was proposed by Laykaviriyakul et al. [6].

1.1 Purpose

Due to the minimal proportion of target pixels and the subtle distinction between the background
and foreground, most attack algorithms can efficiently compromise the recognition model. Conse-
quently, it is imperative to address the following challenges: (1) The design of a defense architecture
tailored for infrared small target detection, leveraging existing mature defense technologies; (2)
The enhancement of the defense model’s generalizability to effectively counter adversarial samples
generated by diverse attack algorithms.

In this study, we draw inspiration from the concept of dynamic noise injection proposed by
Liang et al. [7], and introduce a transfer perturbation algorithm centered around multidimensional
feature distortion. This algorithm aims to supply high-quality training samples for GAN, building
upon the work of Naseer et al. [8]. Furthermore, we develop a high-frequency feature extraction mod-
ule, incorporating a variable radius Fourier transform, channel and pixel-level attention mechanism,
and a reconstruction loss function. This module enables the generator to fundamentally restore the
perturbation information present in adversarial samples targeting infrared small targets.

1.2 Contributions

(1) We introduce an adversarial defense technique tailored for infrared small target recognition
models. This approach employs GAN to train generators endowed with superior denoising capabilities.

(2) Leveraging the concept of multidimensional feature distortion, we generate high-quality, cross-
task adversarial samples for GAN training. This strategy significantly reduces training costs and
enhances the generality of the generator.

(3) We develop a generator that focuses on high-frequency features, paired with a discriminator
that utilizes a channel and pixel-level attention mechanism. Additionally, we implement a loss function
specifically designed to guide the GAN’s updates.

The efficacy of our method is demonstrated through comparative analysis with other leading
defense algorithms, across a variety of attack scenarios.

2 Related Works
2.1 Adversarial Attack Methods

Adversarial samples are specifically crafted input samples designed to deceive recognition models.
This section primarily discusses various methodologies employed to generate such adversarial samples.

Initial attack strategies primarily exploited the nonlinearity of neural networks to generate
adversarial samples. For instance, the L-BFGS method [1] generates adversarial samples by calculating
the second derivative of the gradient and the objective function. With the advent of cutting-edge
countermeasures, specialized attack algorithms for different vulnerabilities are emerging. As a seminal
attack algorithm, the Fast Gradient Sign Method (FGSM) [9] has been extensively studied and
refined by numerous researchers. DeepFool [10] estimates the minimal distance required to alter a
sample’s classification by linear approximation, employing FGSM’s underlying principles to generate



CMC, 2024, vol.81, no.1 1237

adversarial samples. Madry et al. [11] introduced the Projected Gradient Descent (PGD) algorithm,
which iterates over multiple gradients to identify optimal adversarial samples. Building on FGSM, the
Basic Iterative Method (BIM) [12] employs multiple iterations to better simulate the effects of physical
attacks. Dong et al. [13] enhanced BIM’s generalization by integrating momentum into the process.
Concurrently with these FGSM-based approaches, several other notable attack algorithms have
been developed. Papernot [14] devised a first-order attack algorithm aimed specifically at defeating
defensive distillation strategies [15]. The Carlini-Wagner (CW) attack [16] optimizes an objective
function tailored to the target model, minimizing the perturbation introduced to the original image to
generate adversarial samples. Since the inception of adversarial sample research, numerous innovative
algorithms have been proposed. For example, Zhang et al. [17] proposed a neuron-based feature level
attack that manipulates specific neurons within the model to induce misclassification; Wang et al. [18]
introduced the Boundary Attack, which incrementally moves an input sample towards the model’s
decision boundary, causing misclassification with minimal perturbations near the boundary.

2.2 Adversarial Defense Methods

In order to deal with the influence of adversarial samples on recognition models, many scholars
have focused their research on adversarial defense. Defense technology can be divided into the
following two categories: model-based defense technology and data-based defense technology.

Model-based defense mechanisms aim to desensitize the model to adversarial perturbations.
Adversarial training, a prominent defense algorithm, was introduced alongside the FGSM and PGD
algorithms, offering defense strategies against these specific types of attacks. Shafahi et al. [19]
introduced the Free-AT method to diminish computational overhead by reusing gradient information.
Zhang et al. [20] developed TRADES, which dissects robustness error into natural error and boundary
error, elucidating the trade-off between accuracy and robustness in classification problems, and
introduced novel loss functions. Techniques such as ANP [21] and mixup [22] defend by enriching
the diversity of training data. Furthermore, model-based defense algorithms enhance the model
architecture to bolster defense; for instance, defensive distillation reduces gradient output through
secondary training, thereby curtailing the generation of adversarial samples. SLL [23] employs decision
boundary smoothing to counter model-specific attack algorithms.

Conversely, data-based defense technologies focus on diminishing disruptive information within
data. Currently, two principal defense technologies dominate this realm. The first involves the
detection of adversarial samples, with the BUE algorithm [4] distinguishing and amplifying fea-
ture discrepancies for adversarial sample detection. The second approach seeks to minimize the
disturbance introduced by adversarial samples. Liao et al. [24] proposed a feature-level method
for noise removal; Dubey et al. [25] reverted perturbations back to the nonadversarial manifold
using the K-nearest neighbor method. Image reconstruction, a rapidly evolving field, has also
yielded notable advancements in defense technologies. Through the reconstruction of benign samples,
reconstruction algorithms supply the model with undisturbed samples, facilitating effective defense.
GAN play a pivotal role in this context: initially, APE-GAN by Jin et al. [26] and Defense-GAN by
Samangouei et al. [5] demonstrated defense capabilities against most attacks, albeit not concurrently.
More recently, Zhao et al. [27] refined the GAN framework and introduced a twin synthesizer structure
to eliminate disturbances. Laykaviriyakul et al. [6] drew inspiration from the cyclic GAN structure,
applying it to adversarial sample elimination for efficient disturbance mitigation.
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3 Methodology
3.1 General Frame

In this paper, we propose an adversarial defense technique for small infrared targets, which is
based on the GAN framework. The overall framework is illustrated in Fig. 1.

Figure 1: Adversarial defensive defense-based training framework

Our method comprises four main components: 1) Initially, transferable perturbations (P) are
generated through the maximization of multidimensional feature distortion, forming adversarial
samples (Xadv) together with real samples (Xreal) as the output of the generator. The input samples
will simultaneously have a perturbation budget between 0 and 1 with noise z making it dynamic;
2) Generate inverse perturbation (IP) more accurately using a generator capable of extracting high-
frequency information combined with Convolutional Block Attention Module (CBAM) [28]; 3) Fake
adversarial samples (X’

adv), composed of inverse perturbations and real samples, are discriminated
by the discriminator to determine whether they belong to the same domain as the real adversarial
samples. The discriminator possesses pixel-level discrimination capability, which aligns closely with
the characteristics of infrared small target images; 4) Fake real samples (X’

real), formed by combining
inverse perturbations with real adversarial samples, are fed into a pre-trained recognition network.
The restoration degree of fake real samples is judged by a pixel-level Intersection over Union (IOU)
loss. We will describe these four components in the following sections.

3.2 Transferable Perturbation

Currently, prevalent attack methodologies share a common characteristic: the adversarial samples
they generate induce significant distortions at the feature layer of the target network, thereby hindering
accurate identification by the target network. In Fig. 2, we used the Mean Squared Error (MSE)
between the adversarial sample and the real sample on this layer as a measure of feature distortion,
along with the IOU value of as an indicator of adversarial sample quality. From the trend of the curves
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in the figure, it can be seen that there is a positive relationship between the degree of feature distortion
and the strength of the attack on the antagonistic samples. Therefore, with the goal of maximizing the
degree of feature distortion, we propose a method for generating transferable perturbations based on
multidimensional feature distortion (MFDP).

Figure 2: Diagaph of adversarial sample quality and degree of feature distortion

This method produces high-quality adversarial samples that are capable of spanning across tasks
and networks, aimed at enhancing the generalizability of our defense algorithm.The self-supervised
perturbation generation approach proposed by Naseer et al. [8] focuses predominantly on feature
distortion analysis from the network’s deep features, yet it overlooks the variance in distortion across
multidimensional features. By simultaneously perturbing multiple feature dimensions, adversarial
samples can be more covertly integrated into the data, rendering the model’s detection and coun-
termeasures more challenging.

Moreover, considering the small pixel proportion of small infrared targets, adversarial samples
generated by mainstream attack algorithms often contain isolated noise points that resemble target
features. Therefore, we aim for the adversarial samples to retain partial small target features of the
deep features. From the output of the real samples on the deep features, areas likely to be targets are
selected. Randomly, 1–3 areas outside of this region in the deep feature output image of the sample are
chosen. The generation of adversarial samples is then guided by the objective of minimizing the degree
of feature distortion between these areas. Adversarial samples are subjected to random perturbations
with pixel values ranging between (0,1) as input samples for GAN training. This approach is adopted
because, although perturbations generated through multidimensional feature distortion possess strong
transferability, the degree of distortion produced on the target network’s feature layer by different
attack methods can vary.

The generation method of transfer disturbance is shown in Fig. 3. In our defined loss function,
α, β, and γ are hyperparameters, set to 0.2, 0.6, and 0.2, respectively. The loss function of the four
feature layers can be explained by the following formula:

Llayeri = d (Layeri (Xadv), Layeri (Xreal)) (1)

This loss function represents the difference between the output of Xadv and Xreal in the i th feature
layer, i takes 1–4; the fourth layer is the difference between parts of the output of the feature layer.
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Figure 3: Tranfer disturbance based on multidimensional feature distortion

3.3 Reverse Disturbance

3.3.1 Generator

To extract features from high-quality adversarial samples and restore the perturbations within
them, we have designed a generator structure based on high-frequency features, incorporating an
encoder-decoder architecture. In infrared images, high-frequency features often contain more noise
information; hence, we designed the high-frequency feature extraction module (HFIM) structure,
as shown in Fig. 4. The parameter Radius is involved in GAN training, allowing for the dynamic
adjustment of Radius to extract high-quality high-frequency feature information. This generator
structure will also serve as a denoising framework within the recognition network, filtering out
perturbations from the input samples.

Figure 4: HFIM based on variable fourier radius

The process of the generator: Adversarial samples first enter the encoding structure, where features
across different dimensions are extracted. Features of different dimensions are transformed into high-
frequency features after HFIM. After this, an attention mechanism is utilized to feed the feature
fusion map of different dimensions into the decoder. Finally, the decoder then gradually restores the
perturbations based on the feature fusion information, outputting an inverse perturbation image.
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3.3.2 Discriminator

The discriminator, tasked with discerning whether the inverse perturbations generated by the
generator share the same content as the original perturbations, can guide the generation of inverse
perturbations. We believe that directly discriminating between inverse and original perturbations is
challenging; adversarial samples, however, contain not only the information of the original samples
but also perturbation information, providing the discriminator with more comprehensive insights.
Therefore, discriminating the authenticity of adversarial samples is more appropriate. We design the
discriminator as a fully convolutional network, utilizing channel and pixel-level attention, as shown
in Fig. 5, to discern pixel differences, ultimately resulting in the production of a scoring map for the
adversarial samples. Each pixel’s confidence score ranges between 0 and 1, with scores closer to 1
indicating authenticity and vice versa. The advantage of this design lies in the pixel-level detection
required for small infrared targets; the smaller the pixel difference in restored samples, the higher the
defense efficiency.

Figure 5: The channel pixel attention mechanism (CPAM)

3.3.3 Loss Function

The loss function serves as a crucial guide for the generator to produce correct inverse pertur-
bations and for the discriminator to accurately judge adversarial samples. Its design significantly
determines the quality of the generated samples, and a well-designed loss function can guide the
generator and discriminator towards effective adversarial training. Therefore, we provide a detailed
introduction to the loss functions we employed.

Generator loss function (LG): The loss function of the generator is as follows, comprising four
components:

LG = Lxreal + Lxadv + LGD + LF (2)

Lxreal = 1
n

n∑
i=1

{∥∥xreali − xreal′i
∥∥2

2
xreali > k∥∥xreali − xreal′i

∥∥
1

xreali < k
(3)

Lxadv = 1
n

n∑
i=1

{∥∥xadvi − xadv′
i

∥∥2

2
xadvi > k∥∥xadvi − xadv′

i
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xadvi < k
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LGD = ∥∥D
(
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(5)

LF = 1 − 1
N

∑
N

∑
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(
xreal′

)
mask∑

pixels F
(
xreal′

) + mask − F
(
xreal′

)
mask

(6)

The loss function Lxreal calculates the difference between xreal and x′real by dividing xreal and
x’real into n regions. If the pixels in the first region exhibit significant differences, we will impose
a heavier penalty. Lxadv is implemented in a similar manner. The advantages of this approach are
as follows: compared to the direct application of MSE or MAE losses, our loss function can more
accurately guide the generator towards the correct update direction and expedite the training process.
For instance, in the case of local outliers, using MSE alone would amplify the overall loss, leading
to substantial changes in model weight updates; relying solely on MAE could result in the loss
overlooking local outliers, and the model weights might continue updating in the direction of the last
update. By employing LGD as the loss function for the discriminator’s feedback, we aim for x′adv to
deceive the discriminator, such that the closer the output scoring matrix is to the identity matrix, the
better. LF calculates the average intersection ratio between the output of the recognition network F
and the labeled image to guide the generator training.

Discriminant loss function (LD): Because we want the discriminant to distinguish between x′adv
and x′adv, that is, D(xadv) is true and D(x’adv) is false. The formula is shown below:

LD = LD1 + LD2 (7)

LD1 = ‖D (xadv) − 1‖1 (8)

LD2 = ∥∥D
(
xadv′) − 0

∥∥
1

(9)

4 Experiments

In this section, we will validate the proposed strategy. Considering that in the infrared small target
samples, the adversarial samples generated by small disturbances have no significant attack effect on
the recognition model. The differences in visual perception of the adversarial samples generated by
too large disturbances will be particularly obvious, which does not have much research value.In this,
we choose 8/255 as the perturbation budget in the experiment, such a perturbation budget not only
has a good attack effect, but also has only a slight deviation in visual perception.

4.1 Dataset

We used the dataset from literature [29]. There were 1367 images, single target images accounted
for 65.97%, dual target images for 30.71%, and multi-target images for 3.32%, and all the targets met
the definition of small targets. We divided the data set into training set, validation set, and test set with
a ratio of 6:2:2. When training the model, the samples in the training set are randomly flipped and the
brightness enhancement with 50% probability to achieve the purpose of data enhancement.

4.2 Training Environment

We verified the proposed algorithm based on the PyTorch1.13.1 platform, with a GPU of NVIDIA
GeForce RTX 3070 and an OS system as Windows 11, 8 GB RAM.
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4.3 MFDP Experiment

To validate the efficacy of transferable perturbations generated through multidimensional feature
distortion, we utilized ResNet18 as the source network to guide the generation of perturbations at
various depths. These perturbations were then applied to prevalent deep learning recognition models
(including ALC-Net [30], UIU-Net [31], DNA-Net [32], CNU-Net). Under the same perturbation
budget conditions, using the mean Intersection over Union (mIOU) as the metric, it can be deduced
from Table 1 that the impact of feature distortion at different depths on the perturbation is substantial.

Table 1: Attack effectiveness of perturbations generated by feature distortion at different depths

Loss ALC-Net UIU-Net DNA-Net CNU-Net

Origin 0.7469 0.5109 0.6450 0.7861
LB1 0.2911 0.0718 0.1966 0.1558
LB2 0.5171 0.0834 0.1876 0.2428
LB3 0.4515 0.1144 0.2306 0.2618
LB4 0.6505 0.2473 0.4546 0.4589
Ours 0.4881 0.0847 0.2050 0.2447

We can analyze through Fig. 6 combined with the data in Table 1 to get that the attack effect of
LB1 and LB3 is relatively excellent, but the cost is that they will be relatively obvious from the visual
perception; while LB2 can reduce the visual difference caused by the noise on the basis of guaranteeing
the attack effect, so we assigned more weights to LB2; although LB4 is the least obvious from the visual
perception, but similarly it is also the least effective in attacking, so we do not expect LB4 to play a
positive role in the generation of perturbations, instead we expect the perturbations to have a reduced
feature difference on B4. Our method generates adversarial samples in graphs with only a smaller
visual difference than LB4 and guarantees a certain attack strength.

Figure 6: Comparative images of adversarial samples

4.4 Denfense Experiments

In this section, we will validate the effectiveness of our defense strategy. MIOU, precision, and
recall will serve as the evaluation metrics. These three indicators are instrumental in assessing the
detection quality of adversarial samples post-defense when fed into the recognition model. To verify
the generalizability of our defense strategy, we not only utilized adversarial samples generated by the
MFDP method but also selected adversarial samples produced by mainstream white-box and black-
box attack methods: PGD [11], FGSM [9], BIM [12], ZOO [33], Boundary [34] and CW [16]. Both PGD
and BIM are both done in 10 iterations. Both ZOO and Boundary are both done in 60 iterations. The
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maximum number of iterations for CW is 100. The process of generating adversarial samples does not
take the means associated with data augmentation to ensure the rigor of the experiment.

Initially, we validate the modules designed for small infrared targets within the GAN to ensure all
designs are effective. We conducted ablation experiments by removing HFIM and CPAM. Scheme A
and Scheme B represent the scenarios without HFIM and without CPAM, respectively, while Scheme
C represents the scenario where both HFIM and CPAM are removed. “P” represents Precision, and
“R” represents Recall. The results are shown in Table 2. It is observed that our defense strategy
maintains a relatively high level of effectiveness against various types of attacks. Without HFIM,
a decrease in precision is not significantly noticeable, with occasional increases observed; however,
a more pronounced decrease in recall is evident. This outcome is attributed to HFIM making the
generator more sensitive to high-frequency feature points, thereby restoring target features more
clearly and naturally resulting in a higher recall rate. If CPAM is excluded, there is a noticeable decline
in discriminator performance, which consequently degrades the generator’s performance and slightly
diminishes the defense effectiveness.

Table 2: Results of ablation experiments

Attack Metrics A (without HFIM) B (without CPAM) C (without HFIM
and CPAM)

Ours

MFDP P 85.81 86.07 83.15 86.09
R 70.21 71.21 70.65 72.07
mIOU 63.68 64.71 62.49 65.35

PGD P 85.95 87.23 87.04 86.36
R 72.82 72.89 72.35 74.43
mIOU 67.07 67.78 67.53 68.78

FGSM P 87.42 87.65 87.43 86.54
R 72.03 73.38 72.25 72.74
mIOU 66.91 67.98 67.10 67.28

BIM P 86.64 87.22 86.93 87.23
R 70.19 71.2 70.98 72.05
mIOU 64.21 65.25 64.85 66.12

CW P 80.02 81.06 78.87 81.12
R 55.53 54.32 51.62 58.04
mIOU 49.63 47.66 44.39 52.03

ZOO P 82.56 82.98 84.23 83.48
R 69.25 69.01 70.08 70.84
mIOU 62.19 62.18 62.89 63.07

Boundary P 82.77 82.60 82.73 82.78
R 68.32 67.91 67.66 68.44
mIOU 60.88 60.15 59.97 61.38

We compare our method with several mainstream defense strategies (The methods used for
comparison were all modified based on the original network architecture, tailored to our dataset
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and model structure), and verify the detection accuracy of the identification model under different
attack algorithms. In Table 3, we can observe that the methods listed are capable of defending against
various types of attacks to a certain extent. This is because both Defense-GAN and Collaborative
Defense-GAN are trained with adversarial samples generated by MFDP, which corroborates our
proposed method for generating transferable perturbations can train cross-task defense algorithms.
Although Learn2Perturb is trained using original samples, it essentially applies perturbations to
different modules of the model, achieving high-quality adversarial defense. Comparative experiments
reveal that although our method may slightly underperform on certain metrics, it overall surpasses
other algorithms in defense performance against various attack algorithms. Especially in the face
of black-box attacks, our method has more advantages and is superior to other methods in various
indicators. And in terms of mIOU, our method is always optimal, which shows that compared with
other methods, our method maximally restores the feature information of the sample.

Table 3: Comparison of experimental results

Attack Metrics No-Defense D-GAN [5] L2P [35] CD-GAN [6] Ours

MFDP P 80.26 80.93 85.58 82.02 86.09
R 28.74 61.50 71.89 67.95 72.07
mIOU 24.47 53.62 65.14 59.83 65.35

PGD P 78.16 87.12 83.32 85.49 86.36
R 9.31 72.28 68.71 70.89 74.43
mIOU 9.35 67.54 61.95 63.86 68.78

FGSM P 81.67 86.07 83.33 85.65 86.54
R 26.01 72. 76 69.06 70.77 72.74
mIOU 25.28 67.02 62.41 63.76 67.28

BIM P 74.39 86.64 84.18 82.80 87.23
R 30.53 71.66 70.73 67.84 72.05
mIOU 28.08 65.48 63.27 60.08 66.12

CW P 7.51 44.02 81.27 54.55 81.12
R 2.51 58.05 57.34 50.65 58.04
mIOU 1.98 33.33 51.12 35.83 52.03

ZOO P 68.31 80.36 83.26 81.21 83.48
R 33.26 64.66 70.69 64.92 70.84
mIOU 26.68 54.37 62.58 56.87 63.07

Boundary P 74.35 80.03 81.89 81.34 82.78
R 26.99 65.06 66.18 65.12 68.44
mIOU 21.04 54.72 58.77 57.64 61.38

The aforementioned experiments were conducted based on the same recognition model. Next,
we integrate our generator into the recognition model used in the MFDP experiment, and again
add a recognition model MDvsFA [36] under a different framework to evaluate the generalization
of our defense strategy. The generator acts during the data loading process, so it is guaranteed to
remain constant under the condition of combining arbitrary recognition models. Keeping the attack
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methods consistent, we compare the recognition accuracy under attack, with and without defense,
across various recognition models. In Table 4, we observe that, regardless of the recognition model,
our defense strategy achieves a success rate of over 75% (we define the defense success rate simply
as the ratio of post-defense recognition accuracy to the original recognition accuracy). Furthermore,
we also consider whether embedding an additional denoising module into the model would affect the
detection of clean samples. From the table, it is evident that the worst-case scenario shows only a 7%
decrease in recognition accuracy, while the rest are controlled within a 5% decrease. Therefore, it can be
concluded that our defense strategy exhibits excellent generalizability. MIOU will be used as a measure
for the experiment.

Table 4: Results of generalization validation

Attack Whether to defend ALC-Net UIU-Net DNA-Net MDvsFA CNU-Net

No Attack No defense 74.69 51.09 64.50 63.83 78.61
Defense 73.20 48.87 57.39 61.29 73.94

MFDP No defense 48.81 8.470 20.50 16.38 24.47
Defense 66.97 43.39 49.04 56.14 65.35

PGD No defense 13.37 22.51 14.79 9.09 9.350
Defense 69.70 43.01 51.51 49.66 68.78

FGSM No defense 28.47 23.12 21.74 19.23 25.28
Defense 63.60 40.96 59.04 56.81 67.28

BIM No defense 26.68 9.360 21.65 13.29 28.08
Defense 69.61 43.97 49.10 55.37 66.12

CW No defense 21.08 6.510 15.04 7.53 1.980
Defense 51.05 38.82 54.68 46.87 52.03

ZOO No defense 30.71 25.01 25.67 20.79 26.68
Defense 68.25 47.36 52.99 59.46 63.07

Boundary No defense 21.09 35.14 25.06 24.72 21.04
Defense 62.17 45.91 53.46 53.24 61.38

In Fig. 7, we have selected a set of examples showing a clean sample, an adversarial sample
generated after MFDP, and a sample after denoising with a trained generator. Not only that, the figure
also shows the feature images of each of the three in the recognition process and the corresponding
recognition results. From the comparison of the feature images, it can be seen that the target features
of the adversarial sample have been almost obscured and new approximate target features have been
generated; while the denoised sample and the clean sample have similar feature images, and the target
features can be distinguished more clearly. The recognition results are also similarly consistent with
the judgment of the feature image.

To further visualize the results, we calculate the difference between adversarial samples, denoised
samples and clean samples, using MSE as the metric; The IOU values between the recognition results
of the three samples and the label images are also calculated. In Table 5, it can be found that there are
some differences between adversarial samples and clean samples. However, the denoised sample has
little difference with the clean sample, and it may also be obvious from the recognition results that the
noisy sample has been able to be recognized more accurately.
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Figure 7: Schematic diagram of the defense effect

Table 5: Example sample comparison results

Sample MSE (other sample, clean sample) IOU (result, mask)

Clean sample 0 69.56
Adversarial sample 19.82 9.48
Denoised sample 3.71 58.43

5 Conclusion

In this study, we propose an adversarial defense strategy for small infrared targets. It generates
migration perturbations using common features of multiple attacks, so our training process does not
require a large number of adversarial samples; we also use GAN to train generator structures with
excellent performance, which can be embedded into different target detection models, and ultimately,
we can achieve good defense against multiple attacks with excellent generality.
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