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ABSTRACT

With the remarkable advancements in machine vision research and its ever-expanding applications, scholars have
increasingly focused on harnessing various vision methodologies within the industrial realm. Specifically, detecting
vehicle floor welding points poses unique challenges, including high operational costs and limited portability
in practical settings. To address these challenges, this paper innovatively integrates template matching and the
Faster RCNN algorithm, presenting an industrial fusion cascaded solder joint detection algorithm that seamlessly
blends template matching with deep learning techniques. This algorithm meticulously weights and fuses the
optimized features of both methodologies, enhancing the overall detection capabilities. Furthermore, it introduces
an optimized multi-scale and multi-template matching approach, leveraging a diverse array of templates and
image pyramid algorithms to bolster the accuracy and resilience of object detection. By integrating deep learning
algorithms with this multi-scale and multi-template matching strategy, the cascaded target matching algorithm
effectively accurately identifies solder joint types and positions. A comprehensive welding point dataset, labeled by
experts specifically for vehicle detection, was constructed based on images from authentic industrial environments
to validate the algorithm’s performance. Experiments demonstrate the algorithm’s compelling performance in
industrial scenarios, outperforming the single-template matching algorithm by 21.3%, the multi-scale and multi-
template matching algorithm by 3.4%, the Faster RCNN algorithm by 19.7%, and the YOLOv9 algorithm by
17.3% in terms of solder joint detection accuracy. This optimized algorithm exhibits remarkable robustness and
portability, ideally suited for detecting solder joints across diverse vehicle workpieces. Notably, this study’s dataset
and feature fusion approach can be a valuable resource for other algorithms seeking to enhance their solder joint
detection capabilities. This work thus not only presents a novel and effective solution for industrial solder joint
detection but lays the groundwork for future advancements in this critical area.
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1 Introduction

With the advancement of computer vision and artificial intelligence (AI) technology, computer
vision systems can rapidly acquire, process, and analyze large volumes of image data. They easily
integrate with design, process, and control systems. These systems have been widely adopted in
commercial and industrial sectors [1]. In particular, computer vision detection technology has been
extensively studied and applied to identify various defects and workpiece types on industrial assembly
lines [2,3].

The industrial production environment of vehicle floor parts is complex and noisy, often relying
on manual detection and with less data storage. This results in insufficient data samples and uneven
distribution of samples, which seriously hinders the detection process. Different from standard
database images, industrial images are plagued by noise, crowding, blur, low quality, and unstable pixel
values, making it challenging to meet the detection requirements. Template matching algorithms are
simple to implement and effective for small target detection with high real-time performance. They are
sensitive to image interference and lack robust feature extraction, which limits their detection accuracy.

On the other hand, Faster Region-based Convolutional Neural Networks (Faster RCNN) can
achieve high accuracy and end-to-end detection and are suitable for complex scenes [4,5]. However, it
requires a large amount of data for training data and needs help with detection accuracy when dealing
with small samples or small targets. In some resource-constrained application scenarios, deep learning-
based object detection systems may require more effort to deploy. Therefore, a new target detection
method is needed in industrial production to solve these problems.

This paper focuses on optimizing the solder joint features and the detection algorithm framework
based on specific scenarios and practical requirements. An industrial fusion cascade detection algo-
rithm for solder joints has been proposed. Fig. 1 illustrates the principle block diagram of the solder
joint algorithm, which is based on industrial fusion cascade detection. It comprises five parts: image
input, dataset creation, fusion feature module, fusion cascade detection module, and results output.
The dashed box on the left represents the feature-weighted fusion module. The dashed box on the right
represents the fusion cascade detection module. The proposed algorithm integrates features from both
algorithms and addresses their shortcomings through a fused detection process. Template matching
serves as the basis for detecting qualified solder joints. Faster RCNN supplements the detection of
other solder joint types, making the approach more suitable for solder joint detection in various
workpieces. The fused cascade object detection algorithm is also more adaptable in different object
detection scenarios.

Figure 1: Principle block diagram of the solder joint algorithm based on industrial fusion cascade
detection
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The main contributions of this work are as follows:

(1) Collected industrial site images and created a dataset labeled by experts for vehicle solder joints.

(2) Improved the fusion method for solder joint features and proposed a cascaded detection
algorithm based on multi-scale and multi-template matching combined with optimized Faster RCNN.

(3) Conducted experimental tests on real-world datasets.

The second section reviews the latest work on object detection and detection algorithms for vehicle
solder joints. The third section presents the industrial cascade solder joint fusion detection algorithm
model. The fourth section conducts experimental analysis, and the fifth section concludes with a
summary of the findings.

2 Related Work

Object detection algorithms are widely studied, and models are rapidly evolving. Cai et al. [6]
proposed a multi-stage object detection architecture called Cascade Region-based Convolutional
Neural Network (Cascade R-CNN), which addresses issues such as overfitting during training and
quality mismatch during inference. Ge et al. [7] cleverly integrated and advanced in the fields of
object detection—such as decoupling heads, data augmentation, anchor-free methods, and label
classification—with You Only Look Once (YOLO) to create a new object detection algorithm You
Only Look Once, extreme (YOLOX). Wang et al. [8] tracked the problem of information loss
during data transmission, proposed the PGI and GELAN architectures, and developed the YOLOv9
detection model, which is suitable for both lightweight and large models. Zuo et al. [9] constructed a
large dataset of 5000 images guided by experts and used the latest YOLOv3 to detect solder joint
defect types in greater detail. Instead of using original images, Cardellicchio et al. [10] employed
Lidar scanning to reconstruct the three-dimensional (3D) artifacts, extracting feature classification
output from the point cloud. They then used deep learning networks for detection, achieving an
accuracy of over 99.7%. Recently, attention mechanisms have been introduced into object detection,
with additional attention modules generating features that enhance detection accuracy [11,12]. Ge et
al. formulated attention response maps as extra objective functions, combining them with the original
detection loss to train detectors in an end-to-end manner [13]. While these studies provide valuable
insights into detection accuracy and effectiveness, they have yet to achieve optimal results in detecting
small targets.

Specifically, it is crucial to detect the shape and presence of components on the vehicle manufac-
turing assembly lines and accurately identify the various types of solder joints. While some researchers
focus on improving detection speed and accuracy, others explore new techniques and application
scenarios. Han et al. [14] conducted the weld inspection using an improved Hough transform detection
algorithm. Borovkov et al. [15] demonstrated the applicability of the ultrasonic echo method for
quality control of welded joints produced by spot friction stir welding. Lin et al. [16] utilized Support
Vector Machines (SVM), Backpropagation Neural Networks (BPNN), and AdaBoost classifiers for
solder joint quality inspection. Xie et al. [17] established a white body solder joints database and
proposed a detection method based on the lightweight YOLOv7.

Currently, various target detection algorithms focus on enhancing detection speed and accuracy,
each with its strengths and weaknesses in terms of precision and efficiency. However, differences in
sample databases, detection standards, heavy workload, and interference factors such as workpiece
deformation and occlusion result in poor detection accuracy. Therefore, there is a need for a solder
joint detection method that can adapt to different types of solder joints while minimizing the impact of
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image interference. Template matching algorithm, Faster RCNN algorithm, and YOLOv9 [5,8,18] have
been applied to detect vehicle floor solder joints. However, the detection results need to be sufficiently
accurate for practical application, and the detection accuracy for various types of solder joints still
needs to be improved, as shown in the fourth section.

Analyzing the results and detection models reveals that feature description and algorithm con-
struction are the main challenges. The use of general detection algorithms for vehicle solder joint
detection has resulted in insufficient solder joint data and a lack of understanding of the particular
detection objects, leading to incomplete feature representation. The limited feature extraction ability
of simple detection network structures further contributes to poor detection performance. These
shortcomings prevent the algorithms from meeting the requirements for detecting various types of
solder joints [5,19]. Therefore, this paper aims to optimize and enhance solder joint features and the
detection network by combining original image features with deep learning features and integrating
template matching and Faster RCNN detection processes.

3 Measurement

Template matching is good at identifying and locating specific small targets in images, while Faster
R-CNN is particular for handling multi-scale and multi-target detection tasks. Integrating features
across different scales is crucial in enhancing performance [20].

3.1 Template Matching

In the actual welding process, the shape and color of solder joints are affected by various factors.
They limit the detection accuracy of traditional single template matching, resulting in suboptimal
defect detection. Image features—color, texture, shape, and others—are crucial elements extracted
from an image that describes its content. Familiar image features include RGB color values, grayscale
values, morphology, closure, texture features, and spatial relationships. Unlike traditional template
matching, which utilizes a single feature, this paper employed ablation experimental results and
statistical analysis to compare several types of features. The selected features included representative
attributes such as color and morphological and geometric characteristics to identify qualified solder
joints. Based on the analysis of the experimental results and using a weighted averages method, the
image features are defined as follows:

Tt(x, y) = r1 × r + r2 × G(x, y) + r3 × E(m, n), (1)

Referencing the above equation, the features of the solder joint are described as follows:

r = √
(x − a)2 + (y − b)2, (2)

G(x, y) = √
gx(x, y)2 + gy(x, y)2, (3){

gx(x, y) = I(x, y + 1) − I(x, y − 1)

gy(x, y) = I(x − 1, y) − I(x + 1, y)
, (4)

E(M, N) =
[∑M

m=1

∑N

n=1
t(i + m, j + n) · f (i, j)

]
, (5)

where Tt(x, y) represents the qualified solder joint features obtained from the template matching algo-
rithm at coordinates (x,y), r1, r2, and r3 represent weighted average parameters, with r1 + r2 + r3 = 1.
x,y are the horizontal and vertical coordinates of a point, (a,b) represents the circle’s center with radius
r, which is the ideal radius value of the solder joint. G(x,y) represents the gradient strength at point
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(x,y), gx and gy represent the horizontal and the vertical gradient intensity, respectively, I represents
the pixel value of the image, E(M,N) represents the output values for an image of the length M and
width N, t(i + m,j + n) represents the pixel value relative to the upper-right corner (i,j) of the image
with length M and width N. f (i,j) denotes the selected image processing filter.

It is recognized that the characteristics such as shape, grayscale value, and occlusion of solder joints
at different positions on the vehicle floor may vary, and the effectiveness of different welding guns can
also differ. To address this problem, multi-template matching detection for the same solder joints was
implemented using multiple templates. During the image enhancement process, the template image
may undergo changes in scale, leading to challenges in detection accuracy with traditional template
matching, especially regarding scale and rotation transformations. To overcome this, the multi-scale
template detection was achieved using the image pyramid method. Fig. 2 shows the flowchart of the
multi-scale and multi-template matching algorithm.

Figure 2: Flowchart of multi-scale and multi-template matching

The Laplace pyramid is employed to transform the image scale, and a hierarchical search
strategy is used to enhance the information available in the detection target. Experiments have
demonstrated that this method effectively matches solder joints of varying sizes [21]. The multi-
template matching algorithm allows for selecting various features from multiple templates, which are
then extracted, concatenated, and fused to form a single template vector [22]. Combining coarse and
fine matching algorithms allows the method to quickly identify the approximate region of matching
points, significantly reducing the overall matching frequency. For multiple template detection, selecting
the appropriate confidence level for each template is necessary, and then removing the redundancy.
These rates are then used as thresholds to determine and filter matching results [23].

Template matching was used to detect qualified solder joints on the vehicle floor by adjusting
the matching threshold, utilizing the standard correlation matching method template matching
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Correlation Coefficient normed (TM-CCOEFF-NORMED) with a similarity of

R (x, y) =
∑

x′ ,y′ (T (x′, y′) · I(x + x′, y + y′))√∑
x′ ,y′T ′(x′, y′)2 · ∑

x
′ ,y′ I ′(x + x′, y + y′)2

, (6)

where T (x′, y′) represents the feature value (pixel value) of the template image at (x′, y′). I(x+x′, y+y′)
represents the feature value (pixel value) of the image to be detected at (x + x′, y + y′). (x′, y′) denotes
the coordinate of the upper-left corner of the template, (x,y) denotes the coordinate of the upper-left
corner of the image to be detected, (x + x′, y + y′) represents the position of the template within the
image to be detected.

3.2 Optimizing Based on Faster RCNN

Faster R-CNN offers powerful feature extraction capabilities, enabling the extraction of deep
image features through its network [5,18]. The positions are manually judged and labeled based on the
characteristics of qualified, unqualified, and unwelded solder joints. A solder joint database is then
constructed, and the samples are trained using the Faster RCNN network to obtain various solder
joint features. The training and testing of the Faster RCNN network were conducted to extract these
features. The feature value of the sliding window centered on the image coordinates(x, y), as output
by the Faster RCNN network, is denoted as Td(x, y).

Compared with the original Faster RCNN algorithm, the optimized version replaces Visual
Geometry Group16 (VGG16) with the Residual Network50 (ResNet50) [24] and feature pyramid
network (FPN), which has more vital feature extraction abilities. By incorporating multi-scale dilated
convolution modules, the algorithm enhances the contextual features of the feature pyramid, expands
small target information, and facilitates the fusion of high-level and low-level image information,
thereby improving detection accuracy. ResNet50 is the backbone network for feature extraction in
this optimized algorithm, providing deep feature representations. The FPN structure extracts multi-
scale features from the deep-learning feature maps generated by ResNet50 [24,25]. These features are
then fused with the original image feature information. These fused feature maps are subsequently
used for object detection, and candidate target regions are quickly generated based on the multi-scale
feature maps. Subsequently, the region of interest (RoI) Align layer is used to unify the sizes of different
regions, followed by processing with a classifier and bounding box regressor. Finally, the algorithm
outputs the positions and categories of the detected solder joints. RoI Align is specifically used to
optimize the region mismatch problem caused by double quantizations during the RoI Pooling.

The loss function serves as the guiding mechanism for adjusting the weights in the classifier,
thereby improving the performance of the detector model. The loss function of Faster RCNN includes
classification and regression loss [5,26], and it’s defined as

L ({pi} , {ti}) = 1
Ncls

∑
i
Lcls(pi, p∗

i ) + λ
1

Nreg

∑
i
p∗

i Lreg(ti, t∗
i ), (7)

where i represents the number of indices for the anchor point. pi represents the probability that anchor
i is the target result. p∗

i represents the true value of pi, when detected as the target, the true value is 1,
on the contrary, it is 0. ti = (

tx, ty, tw, th

)
represents the positional parameter of the candidate box. t∗

i

represents the positional parameter of the candidate box. Lcls represents the logarithmic loss function
for whether it is the target. Lreg represents the Intersection over Union (IoU) regression loss function.
λ represents the balanced weight that balances Lreg and Lcls. Ncls and Nreg represent normalization
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parameters. In detection, utilize Lreg and Lcls complementarity to optimize the detector. Where

Lcls(pi, p∗
i ) = −log

[
pip∗

i + (1 − pi)(1 − p∗
i )

]
, (8)

Lreg(ti, t∗
i ) = R(ti − t∗

i ), (9)

R = smoothL1(x) =
{

0.5x2 if |x| < 1
|x| − 0.5 otherwise

, (10)

3.3 Industrial Fusion Cascade Detection

Combining the original image features (obtained through template matching) with deep learning
features (extracted from Faster R-CNN) enhances the model’s expressive ability. The fusion of features
improves the accuracy of detecting small and deformed targets. The final fused features are obtained
by assigning different weights to various features and performing a weighted summation in a specific
proportion [27,28]. The structure of the feature fusion process is shown in Fig. 3.

Figure 3: Principle diagram of weighted features fusion

The fused feature values of the image at the coordinate points (x, y) is

T(x, y) = ϕTt(x, y) + (1 − ϕ)Td(x, y), (11)

where T (x, y) represents the qualified solder joint features on (x, y) after fusion. ϕ represents the one-
dimensional parameter of the template matching algorithm during fusion and ϕ ∈ [0, 1]. The process
is shown in the feature fusion module in Fig. 1. After adaptive weighted feature processing fusion, the
image and deep learning feature values are fused into one feature value.

The total mean square error is

σ 2 = ϕ2σ 2
t + (1 − ϕ)2σ 2

d , (12)

where σ 2 is the multivariate quadratic function of each weight factor.
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The FPN [23,29] was employed to refine and modify the network structure for object detection.
The process included rejecting the original solder joint features and the fusion of the feature maps
obtained from deep learning through horizontal connections and upsampling operations. The result
was a more diverse feature pyramid structure encompassing feature information at varying scales. This
structure proved highly effective for multi-scale object detection [30,31]. The feature fusion of the two
algorithms improves the detection accuracy of specific targets. It enhances the system’s robustness, as
shown in the fusion feature module in Fig. 1. Additionally, the structure of the fusion cascade detector,
which employs different algorithms and confidence levels for detection, is shown in Fig. 1 within the
intermediate detection module.

Firstly, the multi-scale and multi-template matching algorithm was used to detect qualified solder
joints on vehicle floor images [32]. Their similarity scores and corresponding positions were retained
for results that did not meet the reliability criteria of the template-matching configuration. For solder
joint areas that were undetected template matching, the deep learning-based Faster RCNN wf was
used for further supplementary detection, identifying qualified, unqualified, and unwelded solder
joints. The similarity scores and positions of qualified solder joints that did not satisfy the Faster
RCNN criteria were also retained. To address cases where neither the template matching confidence
nor the Faster RCNN confidence threshold was met, cross-fusion verification w′

f was performed on
their similarity scores to supplement the detection results. The detector used different anchors and
confidence levels, which helped avoid potential overfitting and underfitting issues. Fig. 4 shows the
neural network architecture diagram. This cascaded object detection module combined the multi-scale
and multi-template matching detector with an optimized Faster RCNN detector, which conducted two
stages of detection at different confidence levels. Each detector received the results from the previous
stage and used them as input for the next subsequent detection.

fd = R (x, y) ◦ wf ◦ w′
f , (13)

Detection redundancy can occur due to using different template-matching techniques and varying
confidence levels in Faster RCNN. Non-Maximum Suppression(NMS) was employed to address this.
The NMS algorithm eliminates redundancy by searching for the targets with local maximum values,
achieving the optimal result [26,27]. After removing applying NMS, the actual coordinate information
and the corresponding positions for each detected template were obtained.

W (i, j) =
∑i+1, j+1

k=i, l=j−1
f (k, l), (14)

where W (i,j) represents the weight corresponding to the sample template at point (i,j).

Assuming the comparison result D(k) of template matching on (i,j). W T
k (i, j) represents the

standard template on (i,j), and T represents the matching threshold. Then, the matching comparison
result on (i,j) is

D (k) =
{

0 abs(W (i, j) − W T
k (i, j)) ≤ T

1 abs(W (i, j) − W T
k (i, j)) > T

, (15)

In order to solve the possibility of missing detection results, the confidence scores of the two
detection algorithms were weighted and fused to form the complementary detection confidence. This
process enabled the supplementary detection of potentially qualified solder joints. By using self-
learning adaptation methods to adjust the confidence levels of the optimized new object detection, a



CMC, 2024, vol.81, no.1 1205

fusion of the two algorithms was achieved, enhancing detection accuracy [33]. The new supplementary
testing confidence level is

Tn = μTt + (1 − μ)Td Tn < Tt and Tn < Td, (16)

where Tn represents the supplementary detection confidence, Tt represents the average confidence
level of each template in the multi-scale and multi-template template matching, and Td represents the
confidence level of qualified solder joints in the optimized Faster RCNN. The weighted confidence
parameter is μ, and 0 < μ < 1.

Figure 4: Flowchart of cascade object detection

4 Experiments and Analysis
4.1 Dataset Construction and Experimental Environment

In order to verify the performance of the algorithm proposed in this paper, a vehicle solder joint
dataset was developed. The performance of several algorithms mentioned in this paper was compared
and analyzed. Photos of the vehicle floor on the workpiece assembly line were captured using cameras,
transferred to a computer via an image acquisition card, and processed using Python in combination
with the OpenCV image processing library. Visual Studio software was utilized to achieve solder joint
detection. The dataset consists of professional labels provided by automotive manufacturing experts,
with fewer than one thousand annotations. The dataset includes manually judged and annotated
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positions of qualified solder joints and various types of unqualified and unwelded solder joints. Data
augmentation techniques, such as rotation, flipping, scaling, blurring, stitching, and others, were
applied to enhance the robustness of the training model and increase the number of images. The
processed images created a comprehensive image set of vehicle floor solder joints. For specific types of
false positives, improvement was achieved by adding negative samples to the training dataset, resulting
in a dataset of 1000 images. The image dataset was divided into training and testing sets with 8:2.

4.2 Experimental Results

The images were preprocessed for the twenty sets of vehicle floor photos taken. This paper
then employed single-template matching, multi-scale and multi-template matching, Faster RCNN
detection, YOLOv9, and an optimized cascading object detection algorithm to detect solder joints.
The average results from each method were analyzed and compared. Figs. 5–9 show these detection
results with fused features on three types of solder joints from images of the same vehicle floor. The
red box represents the qualified solder joint detection result, the blue box represents the unqualified
solder joint detection result, and the purple box represents the unwelded solder joint detection results.

Figure 5: Result of single-template matching detection
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Figure 6: Result of multi-scale and multi-template matching detection

Fig. 5 shows the detection results of qualified solder joints using original single-template matching
algorithms. While many qualified solder joints are detected, there are cases of repeated, false, and
missed detections.

Fig. 6 shows the detection results of qualified solder joints using the multi-scale and multi-
template matching algorithms. Compared to the single template matching algorithms, it detects more
qualified solder joints and eliminates many duplicate detections. However, it has poor detection
performance for other types of solder joints, with instances of both missed and false detections.

Fig. 7 shows the detection results for qualified, unqualified, and unwelded solder joints using
the optimized Faster RCNN algorithm. While deep learning algorithms can successfully detect
unqualified and unwelded solder joints, the small sample size leads to unsatisfactory detection results
for qualified solder joints, with instances of redundant detection still present.
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Figure 7: Result of optimized Faster RCNN detection

Fig. 8 shows the detection results for qualified, unqualified, and unwelded solder joints using
the YOLOv9 algorithm [8]. Compared to Faster RCNN, YOLOv9 demonstrates better accuracy and
precision in detecting qualified solder joints. However, the detection results for other types of solder
joints need to be improved. Due to the small dataset, the detection accuracy threshold must be lowered
to achieve the results above. However, experiments showed that this adjustment led to an increase in
false detections.

Fig. 9 shows the detection results for qualified, unqualified, and unwelded solder joints using the
cascade object detection algorithm. This method can detect various solder joints with high accuracy
and low false detection rates. However, there are still instances of missed detections and false positives.

4.3 Experimental Analysis

In practical industrial scenarios where accuracy and precision were prioritized over efficiency, the
performance of various algorithms was compared and analyzed. Table 1 shows the average accuracy,
precision, recall, and F1-measure (F1) of twenty sets of flooring results. Each row represents different
algorithm results, and each column represents algorithm performance categories. For the optimized
cascaded object detection algorithm, the average precision, accuracy, and recall all exceed 91%.
Compared to several other algorithms, the precision improved by 16.7%, 5.8%, 23.8%, and 17.7%,
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respectively. The accuracy increased by 21.3%, 3.4%, 19.7%, and 17.3%, respectively. The recall rate
improved by 21.5%, 6.8%, 20.5%, and 21.2%, respectively.

Figure 8: Result of YOLOv9 detection

Table 2 shows the actual testing results of a particular floor. Each row represents different
algorithm results, and each column represents the detection results. Although the cascaded object
detection algorithm takes longer, it offers higher detection accuracy. For industrial detection scenarios
where efficiency is not the primary concern, the proposed algorithm proves more effective and has
more excellent practical value. By segmenting the entire vehicle floor image, the detection results of
the segmented image are optimized compared to non-segmented images.

When comparing the results of several algorithms, it was found that due to the small sample size of
the database, the Faster RCNN and the YOLOv9 performed poorly in detection with high rates of false
positives and re-detections. Qualified solder joints often needed to be more qualified. However, these
algorithms detected some actual unqualified and unwelded solder joints. The original single template
matching algorithm was better detected at qualified solder joints. It effectively eliminated redundant
re-detections but produced many false positives and had poor detection accuracy for unqualified and
unwelded solder joints. The multi-scale and multi-template matching algorithm was more effective at
removing re-detection and false positives. It improved the detection accuracy of qualified solder joints,
but its detection effect on other types of solder joints could have been better.
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Figure 9: Result of cascade object detection

Table 1: Comparison of average evaluation indicators of various algorithms

Algorithms AP1 AA1 AR1 F1

TM1 74.6% 71.2% 72.6% 72.9%
MMM1 85.5% 89.1% 87.3% 87.3%
Faster RCNN1 67.5% 72.8% 73.6% 70.4%
YOLOv9 73.6% 75.2% 72.9% 73.2%
COD1 91.3% 92.5% 94.1% 92.7%
Note: 1AP stands for average precision, AA stands for average accuracy, and AR stands for
average recall. TM stands for template matching, MMM stands for multi-scale and multi-template
matching, Faster RCNN stands for Faster Region-based Convolutional Neural Networks and
COD stands for Cascade object detection.

Both template matching algorithms achieved higher precision, accuracy, and recall rate than
the Faster RCNN algorithm and higher precision than YOLOv9. However, their effectiveness in
detecting unqualified and unwelded solder joints could have been better than that of the Faster RCNN
and YOLOv9. Their detection accuracy for qualified solder joints at edges, in depressions, or with
deformations was also lower.
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Table 2: Comparison of detection results of various algorithms

Algorithms Total number Number of qualified Number of unqualified Number of unwelded

TM1 118 88 0 0
MMM1 124 104 0 0
Faster RCNN1 110 74 2 1
YOLOv9 146 113 0 0
COD1 120 108 1 2
Note: 1TM stands for template matching, MMM stands for multi-scale and multi-template matching, Faster RCNN stands for Faster
Region-based Convolutional Neural Networks and COD stands for Cascade object detection.

Applying the cascaded object detection algorithm is convenient, easy to use, and highly precise.
Fusing the features obtained from two algorithms can more accurately represent solder joint informa-
tion. Therefore, it outperforms single-feature approaches in detecting non-compliant and unwelded
solder joints. Moreover, the algorithm demonstrates strong detection performance for solder joints in
unique positions and shapes on workpieces and for solder joints deformed by industrial manufacturing
processes.

However, current detection algorithms still experience issues with false positives and missed
detections. After analysis and comparison, these problems are mainly caused by floor deformation
during manufacturing, light spots of shadows, and other environmental influences. Some solder joints
are located close to or near the edges of the workpiece and contain less information, which can lead
to specific false positives and missed results.

Moreover, despite optimizations to the detection network structure to maximize the detection
efficiency, the neural network remains relatively simple, and the amount of collected solder joint
samples is limited. In particular, the number of unqualified and unwelded solder joints is even smaller.
The imbalance in sample distribution leads to overfitting during the learning process, resulting in
inaccurate detection results. Additionally, the current training strategy leaves room for improvement in
detection accuracy. Further exploration of the sample sets, detection networks, and image-processing
techniques is expected to enhance detection accuracy and enable practical engineering applications.

5 Conclusion

A comprehensive exploration of a feature fusion algorithm that integrates template matching
with Faster RCNN is undertaken. This innovative approach harnesses the fused features to detect
solder joints on vehicle floors with remarkable precision. The cascaded object detection algorithm
seamlessly blends multi-scale and multi-template matching with Faster RCNN, effectively augmenting
the detection of residual and diverse solder joint types. By aggregating the confidence scores from
both methodologies, this paper forges a new detection confidence metric, significantly enhancing the
accuracy of identifying qualified solder joints.

Employing the image pyramid technique, this paper fuses both algorithms’ salient features,
enabling comprehensive detection of qualified solder joints across the entire area. Subsequently, Faster
RCNN, armed with dual confidence scores, supplements the detection within the remaining regions.
Experimental evaluations underscore the superiority of this algorithm, boasting higher accuracy and
resilience against occlusion, deformation, illumination variations, and scale changes compared to
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existing methods. It outperforms three other detection algorithms in accuracy and precision, satisfying
the rigorous demands of natural scene workpiece solder joint detection and demonstrating both
feasibility and portability.

While this algorithm exhibits promising results, its accuracy, precision, and recall are inevitably
influenced by external factors such as the detection environment, image quality, and inherent algo-
rithm limitations. Minor deviations in manufacturing processes and the intricacies of small targets
within solder joints can adversely affect test outcomes. Furthermore, challenges posed by 3D work-
piece image conversion, including information loss, distortion, and occlusion, compound the detection
task. Standardizing the features of unqualified and unwelded solder joints remains intricate, limiting
feature expression and ultimately impacting detection accuracy. The imbalance in database samples
and the algorithm’s limitations in identifying small-scale solder joints hinder its ability to discern them
amidst other targets.

A holistic approach to image and data processing is imperative to overcome these hurdles. Deeper
analysis and processing of captured images, coupled with comprehensive training and optimization of
the detection system, will enhance its adaptability to dynamic industrial production environments and
varying targets. Refining the neural network architecture, augmenting the sample dataset, optimizing
the detection network, and adopting optimal model parameters and training strategies will propel
the algorithm’s accuracy, precision, and efficiency even further. This evolution will facilitate real-
time target detection and result output, positioning this algorithm as a viable solution for industrial
production inspection.
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