
Copyright © 2024 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

echT PressScience

DOI: 10.32604/cmc.2024.055809

ARTICLE

Continual Reinforcement Learning for Intelligent Agricultural Management
under Climate Changes

Zhaoan Wang1, Kishlay Jha2 and Shaoping Xiao1,*

1Department of Mechanical Engineering, Iowa Technology Institute, University of Iowa, Iowa City, IA 52242, USA
2Department of Electrical and Computer Engineering, University of Iowa, Iowa City, IA 52242, USA

*Corresponding Author: Shaoping Xiao. Email: shaoping-xiao@uiowa.edu

Received: 07 July 2024 Accepted: 18 September 2024 Published: 15 October 2024

ABSTRACT

Climate change poses significant challenges to agricultural management, particularly in adapting to extreme
weather conditions that impact agricultural production. Existing works with traditional Reinforcement Learning
(RL) methods often falter under such extreme conditions. To address this challenge, our study introduces a
novel approach by integrating Continual Learning (CL) with RL to form Continual Reinforcement Learning
(CRL), enhancing the adaptability of agricultural management strategies. Leveraging the Gym-DSSAT simulation
environment, our research enables RL agents to learn optimal fertilization strategies based on variable weather
conditions. By incorporating CL algorithms, such as Elastic Weight Consolidation (EWC), with established RL
techniques like Deep Q-Networks (DQN), we developed a framework in which agents can learn and retain
knowledge across diverse weather scenarios. The CRL approach was tested under climate variability to assess the
robustness and adaptability of the induced policies, particularly under extreme weather events like severe droughts.
Our results showed that continually learned policies exhibited superior adaptability and performance compared to
optimal policies learned through the conventional RL methods, especially in challenging conditions of reduced
rainfall and increased temperatures. This pioneering work, which combines CL with RL to generate adaptive
policies for agricultural management, is expected to make significant advancements in precision agriculture in
the era of climate change.
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1 Introduction

As climate change exacerbates, farmers find it increasingly challenging to conduct various field
operations necessary to meet specific production targets during growing seasons affected by extreme
weather conditions like heatwaves and droughts. Simultaneously, according to data from the Food and
Agriculture Organization (FAO), approximately 828 million people still faced hunger in 2022. In light
of this urgent issue, adopting new technologies to enhance agricultural output is crucial. One such
technology is Precision Agriculture (PA) [1]. Precision agriculture, also known as “precision farming”
or “prescription farming,” is an increasingly significant field focused on enhancing the efficiency

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2024.055809
https://www.techscience.com/doi/10.32604/cmc.2024.055809
mailto:shaoping-xiao@uiowa.edu


1320 CMC, 2024, vol.81, no.1

and sustainability of agricultural practices. This discipline leverages cutting-edge technologies such
as remote sensing, robotics, Machine Learning (ML), and Artificial Intelligence (AI) to improve
crop management. Precision agriculture involves monitoring plant health parameters like water levels,
temperature, etc. It enables farmers to accurately determine the necessary conditions for optimal crop
health, including the specific needs for water and nutrients and the precise timing and location for their
application. This approach requires collecting extensive data from various sources across different
parts of the field, such as soil nutrients, pest and weed presence, chlorophyll content in plants, and
certain weather conditions. In today’s increasingly complex climate scenarios, reinforcement learning
(RL) [2] can effectively address such challenges, enabling an agent to maximize the expected return
through a well-designed model in a dynamic and variable environment.

As one subset of ML, RL empowers computer programs, acting as agents, to control unknown
and uncertain dynamical systems while pursuing specific tasks [3,4]. This approach has garnered
increasing attention from researchers interested in determining optimal strategies for agricultural
management. Gautron et al. [5] extended the DSSAT [6], a widely recognized agricultural simulation
tool that can model crop outcomes under different environmental scenarios, to a realistic simulation
environment known as Gym-DSSAT. In this simulation environment, RL agents can learn effective
fertilization and irrigation strategies by utilizing soil properties and historical or forecasted weather
data. Wu et al. [7] have shown that RL-trained policies can surpass traditional methods, achieving
comparable or higher crop yields with less fertilizer use, marking a significant step toward sustainable
agriculture. Additionally, Sun et al. [8] have demonstrated the potential of RL in irrigation control
by optimizing water usage without compromising crop health, further highlighting Gym-DSSAT’s
capability in efficient resource management. Moreover, Wang et al. [9] have confirmed the robustness
of learning-based fertilization management, even under difficult conditions. Despite extreme weather
scenarios, the RL agents proved capable of learning optimal policies, leading to very satisfactory
outcomes. They also improved the quantification of uncertainty in the performance of these optimal
policies. The agents could develop adaptive fertilization and irrigation strategies, particularly in
response to climate changes such as increasing temperatures and decreasing rainfall [10].

Many existing studies have primarily considered agricultural environments to be fully observable
and, as a result, have framed the corresponding RL challenges within the context of Markov Decision
Processes (MDPs). Within MDPs, it is presumed that each environmental state provides all the essen-
tial information an agent needs to select the best action to meet the objective function. Nonetheless,
this approach encounters considerable difficulties when applied to real-world situations, where agents
frequently do not have full knowledge to precisely assess the environment’s state, often due to their
observations’ uncertain or incomplete nature. In particular, some state variables in Gym-DSSAT,
like the plant water stress index, daily nitrogen denitrification, and daily nitrogen uptake by the
plant population, can present difficulties regarding measurement and accessibility. Our previous study
[9] explored this issue and found that Partially Observable Markov Decision Processes (POMDPs)
can effectively tackle it. We utilized Recurrent Neural Networks (RNNs) to manage the history of
observations for decision-making in fertilization management. Our results showed that treating the
agricultural environment as a POMDP led to more effective policies than those derived from the
traditional assumption of a fully observable MDP [9].

Our prior research [10] also indicated that the pre-learned policies were somewhat adaptable under
climate variability. However, they were only effective under minor climate changes, such as temperature
variations of around 2 degrees Celsius and precipitation reduction of up to 20%. When faced with more
drastic changes, such as significant temperature rises or major decreases in precipitation, these agents
would require retraining for new agricultural management strategies to optimize their performance [9].
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This limitation underscores the challenges in the model’s generality and adaptability. Simulation results
from our earlier studies revealed that the agents’ limited adaptability to extreme weather stemmed from
a lack of training under such conditions. We tried to train our model under normal conditions before
fine-tuning it under extreme conditions. However, when we applied that model back to normal weather,
it resulted in significantly poorer performance. We attribute this issue to catastrophic forgetting, a
significant challenge in deep learning today where the agent forgets previously learned information
when exposed to new data [11,12]. These challenges motivate our study to seek adaptive policies for
agricultural management by employing continual learning (CL), which was proposed by people to
overcome catastrophic forgetting and has been actively studied in recent years [13].

Continual learning seeks to emulate the human process and capability of learning. Unlike
isolated learning sessions, humans continually integrate and apply past knowledge to new situations
[14]. Continual learning embodies this principle through various methodologies, primarily divided
into three strategy categories: regularization, distillation, and replay [15]. Regularization restricts
updates to the model’s parameters, helping to preserve existing knowledge across different tasks
[16]. Examples of regularization techniques include Elastic Weight Consolidation (EWC) [11] and
Synaptic Intelligence (SI) [17]. Distillation focuses on transferring knowledge from an older model
to a newer one; the older model, which holds previous learning, guides the new model in retaining this
information while it learns new content, techniques such as Incremental Moment Matching (IMM)
[18] and Learning without Forgetting (LwF) [19] exemplify this strategy. Additionally, replay involves
either reusing a subset of original data or generating new samples that mimic the old data’s distribution,
aiming to prevent forgetting previously acquired knowledge [20]. Notable replay techniques include
Experience Replay (also called Rehearsal) [21] and Gradient Episodic Memory (GEM) [22]. Many
researchers have applied CL algorithms to various fields in the past few years and achieved significant
success. Maschler et al. [23] applied EWC to help predict the remaining useful life of industrial
machinery. They achieved similar performance but reduced the optimization time by a factor of 15
to 30. Shieh et al. [24] applied the experience replay strategy in a one-stage object detection framework
for autonomous vehicles and achieved better performance than the state-of-the-art method.

Only a few studies have been reported on various concepts and frameworks of continual reinforce-
ment learning (CRL) methods. Wang et al. [25] introduced a CRL method by merging a policy-based
RL method (Deep Deterministic Policy Gradient or DDPG) with the EWC algorithm. Abel et al. [26]
did not utilize a specific CL technique in another study. Instead, their agents dynamically updated
and refined the policies through ongoing interactions with the environment. In summary, despite the
diversity in approaches, all researchers shared the common objective of enhancing the adaptability of
RL-induced policies and addressing the issue of catastrophic forgetting in diverse settings.

The main contribution of this study is integrating CL techniques with a DRL method to develop a
framework of CRL, which involves continually updating the policy with diverse experiences to adapt to
various environments. Our approach is different from transfer learning (TL), which can be applied to
RL, and multi-task reinforcement learning (MTRL). Unlike TL that uses knowledge from a previous
task to facilitate learning in a new task, our CRL method accumulates knowledge from all previous
tasks, allowing it to adapt to a wide range of situations. On the other hand, while MTRL [14] focuses
on joint optimization across multiple similar tasks to enable knowledge sharing for improved overall
outcomes, it does not accumulate knowledge over time. Our CRL model is designed to optimize a
single policy capable of effectively handling various tasks. Furthermore, differing from Wang et al. [25],
who employed the EWC technique in a policy-based DRL method, our study tests two CL techniques
(EWC and Rehearsal) in a value-based DRL method and evaluates a better combination. Additionally,
their CRL method was only applied in fully observable environments [25], while our study marks the
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first application of CRL methods in the agricultural sector, which involves extreme weather conditions
and partially observable environments.

The organization of this paper is as follows: Section 2 introduces the concepts of Partially
Observable Markov Decision Processes (POMDPs) and our agricultural simulation environment. It
also explores methodologies like Deep Q-learning (DQN) and Proximal Policy Optimization (PPO),
discusses continual learning, and outlines the simulation model settings. Additionally, this section
defines the specific problems addressed in this paper and develops the CRL framework. Section 3
evaluates and compares various CRL methods, considering normal and extreme weather conditions.
This section also considers the impact of climate variability, including higher temperatures and less
precipitation, and examines the implications of weather uncertainties. The paper concludes with
Section 4, where we summarize our findings, discuss their broader implications, and propose avenues
for future research.

2 Methodology

This section starts by introducing the POMPD framework, which was employed to model the
agricultural environment and its interaction with intelligent agents in this study. Subsequently, both
value-based and policy-based RL approaches and two different CL methods are described. Finally,
the problem is defined using the proposed CRL method as the solution approach.

2.1 POMDP and Agriculture Environment

A POMDP is usually represented by P = {S, A, T , s0, R, O, Ω} ,which includes a finite set of
states S = {s1, . . . , sn}, a finite set of actions A = {a1, . . . , am}, a finite set of observations O =
{o1, . . . , ok}, and the initial state s0 ∈ S. T defines a transition probability T (s, a, s′) = P(st|st−1, at−1).
When the agent takes an action a ∈ A (s) where A(s) is a set of available actions at state s for the agent
to take, a transition occurs from the current state s to the next state s′ with a probability T(s, a, s′).
Subsequently, the agent receives an observation o ∈ O with a probability described by Ω(s′, a, o). The
main goal of an intelligent agent is to develop an optimal policy that maximizes the expected return, as
outlined below. This expected return is the sum of collected rewards beginning from the current state.

U (s) = E
∑∞

t=0
γ tR (st, at, st+1) |st=0 = s (1)

where st denotes the state of the environment at time t, at is the action to be taken, and R (s, a, s′) is
the reward agents can collect after transitioning from state s to s′ by taking action a. It shall be noted
that the reward functions are also often written as R(s, a) or R(s). γ ∈ [0, 1] is the discount factor to
quantify the importance of rewards collected immediately or in the future.

In this study, we utilized Gym-DSSAT [5] as the virtual agricultural environment to simulate crop
growth and harvest, as well as nitrate leaching, given weather conditions and the initial soil state. Gym-
DSSAT incorporates 28 internal variables representing various environmental states. As noted in our
prior work [9], the agricultural environment should be considered partially observable, and ten state
variables, as detailed in Table 1, were chosen as the observations. Consequently, agents make decisions
based on historical observations, and this approach [9] has been approved to be a more accurate
depiction of the decision-making context for the agents, mirroring the complexity encountered in
actual agricultural scenarios.
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Table 1: State variables of the agricultural environment used in this study as observations

Variable Description

Cumsumfert Cumulative nitrogen fertilizer applications (kg/ha)
Dap Days after planting
Istage DSSAT maize growing stage
Pltpop Plant population density (plant/m2)
Rain Rainfall for the current day (mm/d)
Sw Volumetric soil water content in soil layers (cm3 [water]/cm3 [soil])
Tmax Maximum temperature for the current day (°C)
Tmin Minimum temperature for the current day(°C)
Vstage Vegetative growth stage (number of leaves)
Xlai Plant population leaf area index

Given that maize crops in Iowa usually rely on rainfall for irrigation [7], this study does not
consider daily irrigation but focuses instead on nitrogen fertilization. Thus, the range of possible
actions includes different amounts of nitrogen that can be applied in a single day. In terms of
mathematics, the action space is discretized into increments of 10 k (kg/ha) nitrogen input, with k
varying from 0 to 20.

On a specific day dt, after an action is taken that involves applying a quantity of nitrogen Nt, the
agent earns a reward defined in Eq. (2).

R (dt, Nt) =
{

w1Y − w2Nt − w3Lt, at harvest
−w2Nt − w3Lt, otherwise

(2)

where Y symbolizes the corn yield at harvest, and Lt represents the nitrate leaching on day dt. The
weight coefficients, w1 = 0.07087 and w2 = 0.39, were set according to the market prices of corn and
nitrogen fertilizer in 1999, sourced from the USDA. The coefficient w3 which is assigned to nitrate
leaching, was calculated as five times w2, amounting to 1.95.

2.2 Reinforcement Learning

Q-learning [27] is a popular value-based RL method that uses Q values to guide the decision-
making process during training. The Q value is a function of action and state, representing the expected
return an agent can achieve starting from this specific state when taking this certain action. Typically,
the naïve Q-learning relies on a Q-table to store and retrieve these Q values, enabling the identification
and selection of the most rewarding action with the highest Q value for the agent to take. In this
process, the Q values in the Q-table are updated through bootstrapping as the agent interacts with
its environment. However, this tabular approach is often impractical for environments with large or
infinite state spaces, such as those in agriculture. To overcome this limitation, deep neural networks
(DNNs), specifically called Q-networks, can be utilized instead of a Q-table to approximate Q values.
Such an approach belongs to the family of DRL. In this research, we utilized gated recurrent units
(GRU) [28] as Q-networks in DQN [29] to enhance the traditional Q-learning framework to handle
partially observable environments. Fig. 1 depicts the architecture of a GRU-based Q-network.
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Figure 1: GRU-based DQN architecture

In POMDPs, decision-making relies on the history of observations instead of the current one [10].
We set the Q-networks to take the observation sequence as input and approximate Q values as Q (ot, at)

where ot is the history of observations up to time t. Consequently, DQN used in this study consisted of
two Q-networks: an evaluation Q-network Qe(ot, at, θe) and a target Q-network QT(ot, at, θT). θe and
θT represent the network weights that were updated through the experience replay memory [30]. The
evaluation Q-network is directly updated during the training process. It is responsible for predicting
Q values, which assist in taking the action given a particular observation sequence. The target Q-
network shares the same architecture as the evaluation network but operates with distinct parameters.
These parameters are periodically updated by copying them from the evaluation network and remain
fixed at all other times. The role of the target network is to stabilize the learning process in RL. This
stabilization is crucial because Q value updates can be highly unstable, stemming from correlations
between the Q value estimates and the learning targets. The target network provides stable target
values for the loss function, which are used to train the evaluation network, employing an older set of
parameters to compute these target Q values.

In each step of the learning process, the agent selected an action at based on the Q values predicted
from the evaluation Q-network, which took the current sequence of observations ot as the input. After
the agent reached the next state, it observed the environment, formed a sequence of observations ot+1,
and received a reward Rt as the feedback. The experience replay, first introduced by Lin in 1992 [21],
is also utilized in this study. The fundamental concept behind experience replay is to train an agent
using data sampled from a buffer containing previously experienced transitions. For each transition,
an experience was generated in the form of (ot, at, Rt, ot+1) and stored in a replay buffer, which is also
known as a memory pool. In the meantime, a set of these experiences is selected from the memory
pool to update the Q values as below and retrain the evaluation Q-network.

Qnew (ot, at) = Qe (ot, at, θe) + α[Rt + γ max
at+1

QT (ot+1, at+1, θt) − Qe (ot, at, θe)] (3)

where α is the learning rate. At each time step, the current transition is added to the replay buffer. The
agent is then trained on a subset of transitions randomly sampled from this buffer. When the capacity
of the replay buffer is reached, the oldest data is discarded to make room for the newest entries.

Differing from the value-based RL methods that solve optimal value functions, policy-based
RL methods can directly find optimal policies. Proximal policy optimization (PPO) [30] is a typical
policy-based method. The core concept involves parameterizing the policy itself and optimizing it
directly. This category is often referred to as policy-gradient methods because they focus on adjusting
policies directly through gradient descent. Conventional policy gradient methods, including advantage
actor critic (A2C) [31], have demonstrated effectiveness in various decision-making scenarios. Despite
facing numerous challenges in choosing the right iteration step size and optimizing data use, the PPO
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algorithm addresses these issues effectively. Structured under the actor-critic framework, PPO utilizes
an actor network to determine actions based on specific states and a critic network to evaluate the
value function that influences the performance of the actor network.

2.3 Continual Learning

This section will introduce two different continual learning algorithms: EWC [11] and Experience
Replay (or Rehearsal). We chose these two algorithms because they represent two mainstream CL
algorithms: regularization-based and rehearsal-based. EWC is an algorithm that mimics synaptic
consolidation in artificial neural networks. It applies a quadratic penalty on the differences between
parameter settings from previous tasks and new ones. This penalty slows down updates on weights
that are crucial for previously acquired knowledge. When dealing with two independent tasks—an
old task A with dataset DA and a new task B with dataset DB-and viewing neural network training
from a probabilistic standpoint, optimizing the parameters essentially means identifying their most
probable values for the entire data D = DA ∪ DB. This conditional probability, p (θ |D), is calculated
using the prior probability of the parameters p (θ |DA) and the likelihood of the new data given the
model p (DB|θ). The posterior probability can be determined by Bayes’ rule [11].

Although the true posterior probability is too complex to compute directly, EWC approximates
it using a Gaussian distribution. This approximation uses the parameters θ ∗

A as the mean and the
diagonal of the Fisher information matrix F to represent the precision, which is assumed to be
diagonal. The Fisher information matrix F [32] quantifies a model’s expected sensitivity to a change
in its parameters. Close to the local minimum of the loss function used in training, the matrix can
be evaluated through the second-order derivatives with respect to model parameters, denoted as
F = E(x, y)∼Doriginal

[∇2logp (y|x; θ)]. When fine-tuning with EWC, the Fisher information is utilized
to adjust the cost of updating parameters θi from the original value θ ∗

A, i, moderated by the hyper-
parameter λ. The equation is given by:

L (θ) = LB (θ) +
∑

i

λ

2
Fi(θi − θ ∗

A, i)
2 (4)

where LB (θ) represents the loss associated with task B, λ determines the relative importance of the
old task compared to the new one, and i indicates the indices of the parameters. Thus, this method
involves applying a diagonal weighting to the parameters of the learned tasks, proportional to the
diagonal elements of the Fisher information matrix. The synaptic importance is calculated offline,
which restricts its computational use to output spaces with lower dimensions [13].

The Rehearsal method [21] offers a distinct strategy to mitigate forgetting in models tasked
with sequential learning. This approach involves retaining some previously encountered data and
integrating it with new data during the training of subsequent tasks. By “rehearsing” information from
earlier tasks, the model maintains familiarity with them while simultaneously learning new tasks. In
our studies, we didn’t generate pseudo-data for the Rehearsal method. Specifically, the method stores
a subset of data from previous tasks in a fixed-size memory (memory pool) and revisits the memorized
samples during the training process for a new task. This mixed training helps the model to maintain
its performance on the old tasks while adapting to new ones. To update the model, a batch sampled
from the memory is combined with the incoming batch from the stream to compute the gradient.

2.4 Problem Definition and Proposed Method

This research addresses the challenge of training agricultural management RL agents that can
perform effectively across various environments. We trained intelligent agents under different weather
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conditions, such as rising temperatures, decreasing precipitation, and historical events like the 1983
Iowa heat wave. We only employed single-agent RL in this study. Throughout the agent’s learning, we
assumed that the reward function was consistent across different training environments (i.e., weather
conditions), and the action space remained unchanged.

In this study, we introduced a framework that combines CL techniques with Deep Reinforcement
Learning (DRL) algorithms, which we have named CRL. The core concept of this approach involves
training neural networks within DRL systems using CL techniques. We examined three different CRL
methods, as listed in Table 2. In the EWC-based CRL approach, we gathered the Fisher information
matrix from the neural network used in DRL for the prior task. This matrix represented the importance
of the weights in the neural network. Using L2 regularization, we constrained the important weights
for old tasks while updating the neural network in DRL for the new task. In contrast, the Rehearsal-
based CRL methods utilized data from both old and new tasks to train the agent, sourcing training
data equally from all memory pools.

Table 2: CRL models applied in this study

RL model CL algorithm

CRL-EQ DQN EWC
CRL-RQ DQN Rehearsal
CRL-EP PPO EWC

3 Simulation Results and Discussions

In the partially observable agricultural environment, we employed a time series of observations
as inputs to neural networks in various CRL methods, as detailed in Table 1. Based on prior
experimentation [9], a sequence of five timesteps was found to be optimal. For the DQN, CRL-EQ,
and CRL-RQ methods, we designed Q-networks featuring a GRU layer with a single hidden layer of
64 neurons. The output from this layer was fed into a fully connected network that uses rectified linear
activation functions (ReLU). The architecture of this fully connected network consists of an input layer
receiving the output from the GRU, followed by one hidden layer with ReLU activation functions,
and an output layer providing the Q values for action selection. The training process spanned 6000
episodes for the initial task and 3000 episodes for subsequent tasks. We utilized PyTorch and the Adam
optimizer to fit our neural networks, setting an initial learning rate of 1e-5 and a batch size of 640.
In the CRL-EP method, a similar GRU configuration with one hidden layer of 64 neurons was used
for both actor and critic networks. The model training and testing were conducted using Python on
a system equipped with an Intel Core i7-12700K processor, NVIDIA GeForce RTX 3070 Ti graphics
card, and 64 GB of RAM.

3.1 Methodology Evaluations and Selections

To assess the effectiveness of the models presented in Table 2, we conducted an empirical study
focusing on a historical extreme weather event—the 1983 heat wave in Iowa—which led to a 32%
reduction in corn yields from the previous year [9]. This study aimed to develop an optimal agricultural
management strategy (i.e., policy) that would be effective in both 1982 and 1983 despite their differing
weather conditions. We employed actual weather data from these years while keeping soil data
consistent with conditions from 1999. Utilizing CRL methods, we initially trained the agent using
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1982 weather data until an optimal policy was established. The agent was then continually trained
under 1983 weather conditions to update the optimal policy. Additionally, we trained agents separately
under each year’s weather conditions to derive year-specific optimal policies. The reward functions and
available actions remained identical in both scenarios, representing 1982 and 1983. Our goal was to
identify the most effective CRL method from Table 2 for further applications in our study.

Initially, we evaluated the performance differences between the EWC and Rehearsal strategies,
each integrated with the DQN approach in this study. These methods were labeled CRL-EQ and
CRL-RQ, as outlined in Table 2. The CRL-EQ method involved first training the agent to master
an optimal policy for the old task, addressing only the weather conditions of 1982. This method
computed the Fisher information matrix to pinpoint critical weights within the Q-networks and then
applied L2 regularization to preserve these weights. At the same time, the agent learned the new task
under the 1983 weather conditions. The resulting optimal policy was denoted as 8283EQ, reflecting
the integration of learnings from 1982 and 1983 using the CRL-EQ method.

Additionally, with the CRL-RQ method, once the agent was proficient with the 1982 weather
conditions, we gathered the last 75,000 data samples from this task, creating Memory Pool 1. As
the agent continued to learn under the 1983 weather conditions, it accumulated new data through
interactions with the agricultural environment, forming Memory Pool 2. Through a first-in-first-
out strategy, we maintained Memory Pool 2 to have the same amount of data as Memory Pool
1. During continual learning, the Q-networks were frequently updated by a batch of data equally
selected from Memory Pools 1 and 2. The policy developed through this method was labeled
8283RQ, signifying the policy derived from learning across both 1982 and 1983 using the Rehearsal
algorithm. For comparative purposes, the optimal policies developed independently under the 1982
and 1983 conditions using the DQN were designated as 1982DQN and 1983DQN, respectively. The
performances of all these policies within the years 1982 and 1983 are compared separately in Fig. 2.

Figure 2: Performance comparison between optimal policies learned from DQN, CRL-EQ, and CRL-
RQ methods

Fig. 2 displays the rewards obtained when various policies were applied to agricultural manage-
ment in 1982 and 1983. The results for each year were normalized against the total rewards from the
respective single-year policies, as shown in Fig. 2a,b. These single-year policies, such as 1982DQN and
1983DQN, were developed specifically for each year and served as ideal benchmarks for evaluating the
effectiveness of the optimal policies derived from the CRL methods. Evidently, using a policy tailored
for one year in a different year significantly diminishes performance. For instance, as depicted in
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Fig. 2b, using the policy developed for 1982 yielded only 66% of the rewards in 1983, compared to using
the policy specifically learned for 1983. Correspondingly, the corn yield dropped by 35%, aligning with
the reported percentage decrease due to the 1983 heat wave. This underscores the lack of adaptability
in policies developed under normal conditions (like in 1982) when applied to years experiencing
extreme weather conditions (such as the 1983 heatwave). A similar pattern is also noticeable in Fig. 2a,
highlighting the challenges in cross-year policy application.

On the other hand, Fig. 2 clearly demonstrates that both the 8283EQ and 8283RQ policies
garnered better rewards when considering both years, highlighting the robust adaptability of policies
derived from the CRL methods in this context. Furthermore, the 8283EQ policy overall outperformed
the 8283RQ policy, especially in 1982, although the agent collected slightly fewer rewards in 1983 by
following the 8283EQ policy than the 8283RQ policy. This underscores the superior performance of
the EWC algorithm in DQN compared to the Rehearsal algorithm. The discrepancy arises due to
limited computing and storage resources, which prevent us from providing a larger Memory Pool
for the CRL model utilizing the Rehearsal algorithm. Memory Pool 2 was frequently updated as the
agent learned new tasks using the CRL-RQ method, whereas Memory Pool 1 remained unchanged as
it contained only a limited amount of data from an older task.

As a result, the optimal policy achieved performed better in the new task of 1983 than in the old
task of 1982. In contrast, the EWC algorithm managed to learn new skills while retaining most of the
old knowledge by constraining some network weights through the Fisher information matrix. It shall
be noted that implementing the Rehearsal algorithm in the DQN method made the CRL-RQ method
converge faster than the CRL-EQ method, but it tended to forget previously learned information
more rapidly. Although Rehearsal can often achieve similar or even superior performance compared
to EWC, this study is conducted in a resource-constrained environment with limited computational
resources. As the number of tasks increases, Rehearsal requires managing and potentially retraining on
a larger volume of data, which escalates computational demands. Consequently, EWC delivers better
performance and is preferred in this study due to its lower computational and storage demands.

The discussion above suggested that EWC was a more effective continual learning algorithm
than Rehearsal when implemented in the value-based RL method, DQN. We then evaluated the
performance of the CRL-EP method (as listed in Table 2), which applied EWC within a policy-based
RL method, PPO. In the case of DQN, collecting the Fisher information matrix from a single Q-
network suffices after learning from the old task, as the target Q-network shares the same architecture
and weights as the evaluation Q-network. However, for the CRL-EP method, it is essential to gather
the Fisher information matrices for both the actor and critic networks after the old task is completed
and then apply these matrices to the respective networks for the new task. The policy developed
through this approach was labeled 8283EP and was compared against other policies in Fig. 3. Our
findings revealed that the 8283EQ policy consistently outperformed the 8283EP policy by 4%–5%.
Based on these results, we decided to continue with the CRL-EQ model for future research, as it has
demonstrated superior performance in our evaluations.

3.2 Climate Variabilities

In our subsequent study, we used 1999 weather data as a baseline, introducing variations in
temperature and precipitation to assess the performances of CRL policies under more than two
climate variability conditions. We conducted two scenarios: a temperature increase and a precipitation
decrease. In the first scenario, we incrementally raised the daily average temperature from the 1999
baseline by 1, 2, 3, 4, and 5 degrees Celsius throughout the year while maintaining the precipitation
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levels as in 1999. In the second scenario, we reduced daily rainfall by 20%, 35%, 50%, 65%, and 80%
over the course of the year, keeping temperature patterns consistent with those of 1999. It is important
to note that the soil data for all simulations remained consistent with 1999 conditions. Additionally,
this study did not address scenarios of increased precipitation potentially leading to flood-related crop
damage, as these conditions are beyond the predictive capabilities of the DSSAT.

Figure 3: Performance comparison between optimal policies learned from DQN, CRL-EQ, and CRL-
EP methods

This study examined three types of policies: fixed policy, optimal policies, and policies derived
through the CRL method. The fixed policy replicated the optimal policy learned using actual 1999
weather data and remained unchanged, even under hotter or drier conditions. In contrast, the agent
was trained to learn new optimal policies as weather conditions varied, adjusting the agent in response
to climatic changes such as increases in temperature or decreases in rainfall. Additionally, we employed
the CRL-EQ method to train the agent sequentially under various weather changes, ultimately deriving
the final policies. There were six tasks in the temperature rise scenario, spanning adjustments from +0
to +5 degrees Celsius. After training the agent under each task, the EWC algorithm calculated the
Fisher information matrix and applied regularization to the important weights of Q-networks while
adapting to another new task. A similar approach was used in the rainfall decrease scenario. The final
policies were named EQT for temperature scenarios and EQP for scenarios involving precipitation
reduction from 0% to 80%. Overall, EQT represents the CRL policy developed to manage rising
temperatures, trained specifically under scenarios of increasing temperature. On the other hand, EQP is
the CRL policy tailored to address changes in precipitation and is trained under varying precipitation
conditions. The role of EQT and EQP policies in studying climate variability is to demonstrate that
those policies from the CRL method exhibit more robust capabilities to adapt to climate changes,
particularly under conditions of significant variability.

Fig. 4 compares the performance of various policies under conditions of rising temperatures.
Each optimal policy, tailored to specific weather conditions, served as the most effective agricultural
management strategy for those conditions. The rewards collected by following each optimal policy
were normalized to a baseline of 1, with the performances of other policies scaled accordingly. Initially,
the fixed policy outperformed the EQT policy by a narrow margin of about 3%, showcasing the
adaptability of both policies to minor temperature increases. However, as the average temperature
increased by 2 degrees Celsius, the EQT policy began to show superior performance. The performance
gap widened to 26.5% when the temperature rise reached 5 degrees Celsius. This highlighted how
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the EQT policy significantly outperformed the fixed policy under more severe high-temperature
conditions, emphasizing its potential in adapting to future climate change scenarios.

Figure 4: Comparison of different policies when temperature rises

Fig. 5 presents the comparative performance of each policy under scenarios of decreasing precipi-
tation. The results demonstrate that the EQP policy consistently outperformed the fixed policy across
all levels of precipitation reduction, particularly under conditions of significant rainfall decrease.
For instance, when precipitation was reduced by 80%, the EQP maintained 92.6% of the baseline
performance, while the fixed policy achieved only 37%. This stark contrast highlights the EQP’s
superior performance under extreme rainfall reduction conditions. These findings reinforce our earlier
conclusions regarding the impact of climate variability on agriculture and agricultural management.
While the fixed policy, learned under normal weather conditions, shows some adaptability to minor
climatic variations, policies developed using the CRL method exhibited robust and stable performance
even in extreme weather conditions.

Figure 5: Comparison of different policies when precipitation reduces
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3.3 Weather Uncertainty

We further assessed the performance of continually learned policies (EQT and EQP) alongside
the fixed policy under conditions of weather uncertainty, expanding on previous discussions. For this
study, we utilized 1999 weather data as the base sample and employed WGEN [33], a stochastic weather
generator, to create random weather events. We ensured consistent conditions across simulations of
different policies by using the same “random seed.” This approach guaranteed that, when simulating
policies under identical weather events (e.g., average temperature +1°C), each policy was tested with
100 simulations, and the size and sequence of the 100 sets of weather data generated by WGEN
remained the same for each policy. After collecting simulation data from all policies, we calculated
the mean reward, corn yield, total nitrogen inputs, and nitrate leaching based on the 100 simulations
under specific weather events. We then established the performance of the fixed policy as the baseline
against which we compared the performances of various other policies.

Tables 3 and 4 compare the average agricultural outcomes, including total reward, corn yield,
nitrogen inputs, and nitrate leaching, between the continually learned and fixed policies under
temperature-rising and precipitation reduction scenarios. In the first scenario, the values in ‘Tem-
perature Rising’ indicate increases in monthly maximum and minimum temperatures. In the second
scenario, the percentages in ‘Precipitation Changes’ reflect reductions in monthly average rainfall
rather than daily variations. The metric we used was the relative differences in the outcomes between
the continually learned and fixed policies, while the outcomes from the fixed policy were the baselines.

Table 3: Differences in average agricultural outcomes from the fixed policy and the EQT policy when
temperature rises

Temperature rising Reward Corn yield Nitrogen inputs Nitrate leaching

0 −3.94% −5.86% −19.71% −30.77%
+1 +0.24% −0.79% −7.73% −45.45%
+2 +2.81% −2.18% −37.37% −61.54%
+3 +7.95% +2.13% −37.29% −60.00%
+4 +6.39% +1.27% −29.52% −50.00%
+5 +8.77% +2.50% −21.28% −50.00%

In the first scenario, monthly maximum and minimum temperatures were increased by up to 5
degrees Celsius, and daily temperatures were randomly generated with varying patterns. This approach
differed from our earlier study in Section 3.2, where the temperature patterns were fixed to replicate
those from 1999. Importantly, while daily rainfall was also generated randomly using WGEN, the total
monthly precipitation levels remained consistent with those observed in 1999.

Table 3 compares the average agricultural outcomes between the continually learned policy (EQT)
and the fixed policy at various temperature rises. In this table, the fixed policy slightly outperformed the
EQT policy under normal temperature (+0°C) in terms of total reward and corn yield. However, the
EQT policy effectively reduced nitrogen fertilizer usage by 19.71%, subsequently decreasing nitrate
leaching by 30.77%. With temperature increases of 1°C and 2°C, corn yields from the EQT policy
were lower. However, due to lower nitrogen inputs and nitrate leaching, the EQT policy achieved
higher total rewards than the fixed policy. Furthermore, as temperatures continued to rise, the EQT
policy consistently outperformed the fixed policy. At temperature increases of 3°C and above, the
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EQT policy’s performance was superior to that of the fixed policy. The largest difference occurred
at a temperature increase of 5°C, where the EQT policy achieved an 8.77% higher total reward, a
2.5% higher corn yield, a 21.28% reduction in nitrogen input, and a 50% reduction in nitrate leaching
compared to the fixed policy.

Table 4: Differences in average agricultural outcomes from the fixed policy and the EQP policy when
precipitation reduces

Precipitation
changes

Reward Corn yield Nitrogen inputs Nitrate leaching

0% −5.24% −5.86% −10.10% +7.69%
20% +1.87% −1.97% −17.62% −33.33%
35% +7.26% −0.97% −17.98% −50.00%
50% +6.12% −1.01% −21.52% 0.00%
65% +11.67% +2.77% −24.00% −50.00%
80% +47.28% +17.69% −26.20% −66.67%

The second scenario involved reductions in monthly (rather than daily) average rainfall by 20%,
35%, 50%, 65%, and 80%. Similarly, daily temperatures were randomly generated, but the monthly
maximum, minimum, and average temperatures aligned with the 1999 weather data.

Table 4 provides a comparison of the average agricultural outcomes between the continually
learned policy (EQP) and the fixed policy under varying precipitation reduces. Initially, under the
same precipitation levels as in 1999, the EQP policy generally underperformed in corn yield compared
to the fixed policy but had better performance in reducing nitrogen inputs. This was because the
fixed policy was learned specifically under normal weather, and it was expected to perform the best.
However, as rainfall decreased, the EQP policy consistently outperformed the fixed policy. With
precipitation reductions up to 50%, the EQP policy achieved a higher total reward than the fixed policy
by maintaining similar corn yields while using less nitrogen fertilizer and reducing nitrate leaching.
When precipitation was reduced by 65%, the EQP policy produced higher yields, utilized less nitrogen,
and resulted in less nitrate leaching than the fixed policy. Notably, when precipitation reached 80% less
than normal, the EQP policy demonstrated a significant performance improvement of 47.3% over the
fixed policy. Echoing findings from Table 3, under dramatic climate changes, the continually learned
policy not only matched or exceeded corn yields from the fixed policy but also reduced nitrogen usage,
thereby minimizing environmental impacts such as nitrate leaching.

4 Conclusion and Future Works

Developing a management strategy (i.e., policy) that can adapt to a wide range of climate
conditions poses a significant challenge in agricultural management. Current RL approaches often
struggle to adjust to varying weather patterns, leading to suboptimal outcomes under extreme weather
conditions. This research addresses the challenge by integrating the strengths of RL and CL, allowing
agents to learn highly adaptable policies.

Specifically, we developed a framework incorporating CL algorithms and RL methods to create
CRL methods, demonstrating their implementation and evaluation utilizing Gym-DSSAT. Through-
out the exploration of various RL and CL combinations, we found that integrating EWC with DQN
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yielded superior results. We further assessed the model’s adaptability by considering climate variability,
including increased temperatures and reduced precipitation. Our findings showed that policies learned
through the CRL method exhibited enhanced adaptability compared to pre-established optimal poli-
cies, particularly in scenarios of decreased rainfall. Moreover, by incorporating WGEN, a stochastic
weather generator, into our crop simulation framework, we generated variable weather patterns based
on real data, thereby expanding our evaluation of the model’s robustness against weather uncertainty.

The results indicate that while previously established policies could manage mild variations in
temperature and precipitation effectively, they struggled under severe conditions, such as drastic
reductions in rainfall or droughts. In contrast, CRL-based policies, learned across multiple tasks cor-
responding to different weather conditions in this study, demonstrate greater adaptability, especially in
response to extreme climatic events. Compared to models developed in prior research, our approach
enhances adaptability within a similar time frame and dataset. This advancement holds promise to
significantly improve the versatility of our model and inspire new strategies in future agricultural
management.

Moving forward, enriching datasets beyond those from 1999, particularly the soil properties data,
will be crucial to further testing and verifying the performance of policies learned from our proposed
CRL methods. Additionally, since this test is based on conditions in Iowa, which is a rain-fed state, the
effect of irrigation has been overlooked. Consequently, this study focuses on fertilization management.
Therefore, we plan to investigate agricultural management with fertilization and irrigation in future
studies. It would be ideal to implement the learned policies in the testing field under actual weather
conditions. We believe that with minor modifications, the framework developed in this study can
be effectively adapted for agricultural irrigation management, significantly enhancing the real-world
applicability of our research in agricultural settings.

This framework will also prove highly beneficial in other fields, such as robotics. Although one
study [25] has been reported employing EWC and DDPG in robotics, they only considered simple
go-to-goal motion planning tasks in fully observation environments. In our future work, we will apply
the developed CRL framework to robotics problems involving complex tasks and partially observable
environments [34,35], aiming to tackle more intricate challenges. This expansion will broaden our
framework’s scope and demonstrate its adaptability and effectiveness across different fields.

Although our CRL method produces highly adaptable policies, our implementation with EWC,
which is the primary focus of this paper, encounters certain limitations. In this study, we employed
the same reward function across different environments. To extend our framework for more general
applications in which the reward functions vary at different environments, the Fisher information
matrix needs to be carefully redesigned. Specifically, the naïve Fisher information matrix struggles
to accurately measure the model’s sensitivity to parameter changes from the previous task in new
environments where these parameters will respond differently to the new reward function. This makes
it challenging to train a model capable of simultaneously adapting to diverse tasks. Another limitation
arises when applying our approach to multi-agent RL, where individual agents would require distinct
Fisher information matrices, potentially complicating subsequent training. Alternatively, using the
Rehearsal method may simplify this issue. As we look to future research, particularly in multi-
agent CRL, our focus will shift towards integrating Rehearsal techniques with RL to address these
complexities.
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