
Copyright © 2024 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

echT PressScience

DOI: 10.32604/cmc.2024.055802

ARTICLE

Graph Attention Residual Network Based Routing and Fault-Tolerant
Scheduling Mechanism for Data Flow in Power Communication Network

Zhihong Lin1, Zeng Zeng2, Yituan Yu2, Yinlin Ren1, Xuesong Qiu1,* and Jinqian Chen1

1State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications,
Beijing, 100876, China
2State Grid Jiangsu Electric Power Co., Ltd., Nanjing, 210008, China

*Corresponding Author: Xuesong Qiu. Email: xsqiu@bupt.edu.cn

Received: 07 July 2024 Accepted: 28 August 2024 Published: 15 October 2024

ABSTRACT

For permanent faults (PF) in the power communication network (PCN), such as link interruptions, the time-
sensitive networking (TSN) relied on by PCN, typically employs spatial redundancy fault-tolerance methods to
keep service stability and reliability, which often limits TSN scheduling performance in fault-free ideal states. So
this paper proposes a graph attention residual network-based routing and fault-tolerant scheduling mechanism
(GRFS) for data flow in PCN, which specifically includes a communication system architecture for integrated
terminals based on a cyclic queuing and forwarding (CQF) model and fault recovery method, which reduces the
impact of faults by simplified scheduling configurations of CQF and fault-tolerance of prioritizing the rerouting of
faulty time-sensitive (TS) flows; considering that PF leading to changes in network topology is more appropriately
solved by doing routing and time slot injection decisions hop-by-hop, and that reasonable network load can reduce
the damage caused by PF and reserve resources for the rerouting of faulty TS flows, an optimization model for
joint routing and scheduling is constructed with scheduling success rate as the objective, and with traffic latency
and network load as constraints; to catch changes in TSN topology and traffic load, a D3QN algorithm based on a
multi-head graph attention residual network (MGAR) is designed to solve the problem model, where the MGAR
based encoder reconstructs the TSN status into feature embedding vectors, and a dueling network decoder performs
decoding tasks on the reconstructed feature embedding vectors. Simulation results show that GRFS outperforms
heuristic fault-tolerance algorithms and other benchmark schemes by approximately 10% in routing and scheduling
success rate in ideal states and 5% in rerouting and rescheduling success rate in fault states.

KEYWORDS
Time-sensitive network; deep reinforcement learning; graph attention network; fault tolerance

1 Introduction

With the continuous development of smart grid technology, the role of the power communication
network in the power system is becoming increasingly prominent. In this context, the distribution
areas of the power communication network collect data, monitor, and control operations through
intelligent integrated terminals, achieving communication and data exchange with the master station

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2024.055802
https://www.techscience.com/doi/10.32604/cmc.2024.055802
mailto:xsqiu@bupt.edu.cn

1642 CMC, 2024, vol.81, no.1

system. Intelligent integrated terminals, installed in low-voltage distribution areas, are responsible
for high real-time and high-reliability functions such as data collection, equipment monitoring, and
control operations, providing strong support for the stable operation of the power system. As the
volume of data transmission in the power system continues to increase, the real-time and reliable
communication between integrated terminals increasingly relies on the low latency and high jitter
resistance communication services provided by the Time-Sensitive Networking (TSN) based on global
clock synchronization, Time-Aware Shaper (TAS), and Cyclic Queuing and Forwarding (CQF) [1].
However, in practical situations, TSN may not be able to ensure the sustainability of communication
services due to equipment failures, link interruptions, etc., leading to serious negative impacts on
the power data communication network due to prolonged data loss for time-sensitive integrated
terminal communication. Therefore, to ensure the stability and reliability of the communication
services provided by TSN for integrated terminals, the routing scheduling mechanism needs to have
fault-tolerance ability (The main abbreviations of terminology are detailed in Table 1).

Table 1: Main abbreviations

Abbreviation Terminology Abbreviation Terminology

CQF Cyclic Queuing and Forwarding HDSR Heuristic-based Dynamic
Scheduling and Routing
Algorithm

D3QN Dueling Double Deep
Q-Network

MGAR Multi-head Graph Attention
Residual Networks

DRL Deep Reinforcement Learning MGB Multi-head Graph Attention
Networks-Based Block

DNN Deep Neural Networks PF Permanent Faults
DRLS Deep Reinforcement Learning

Aided No-Wait Scheduler
PCN Power Communication Network

DIGS Scheduler Based on DRL with
Integrated GCN

PER-MD3QN MGAR based D3QN with
prioritized Experience Replay
Algorithm

GCL Gate Control List TSN Time-sensitive Networking
GCN Graph Convolutional Networks TAS Time-Aware Shaper
GAT Graph Attention Networks TS Time-sensitive
GRFS Graph Attention Residual

Network-based Routing and
Fault-tolerant Scheduling
Mechanism

THRR TSN Subgraph-based Heuristic
Rerouting and Rescheduling
Algorithm

The fault-tolerant routing and scheduling mechanism of TSN, when facing permanent faults (PF)
such as node failures and link interruptions, mainly provides protection through two methods: (i)
Path Protection: Space redundancy is used to allocate two non-intersecting paths for each connection,
i.e., the primary path and the backup path. (ii) Link Protection: Finding alternative links during the
fault to take over the rerouted traffic [2], i.e., a rapid rerouting fault recovery fault-tolerance method.
Regarding path protection, the scheduling mechanism usually implements space-redundant multi-path
transmission of multiple data replicas using heuristic algorithms, Integer Linear Programming (ILP),

CMC, 2024, vol.81, no.1 1643

and Satisfiability Modulo Theories (SMT) [3–7]. And the methods may be applied in combination in
path protection to improve efficiency, such as heuristic algorithms and ILP [8]. Besides path protection
often needs to work together with the IEEE 802.1CB mechanism for frame replication and elimination
[9,10]. But path protection requires lots of time to pre-calculate candidate paths to build its redundant
path set and occupies multiple network resources, resulting in low effective utilization and affecting the
upper limit of normal scheduling performance [11]. Even by pre-calculating and storing to minimize
response time, the methods of path protection have to occupy network resources multiply and are
still essentially static, only fault-tolerant for small-scale closed networks with known, pre-calculated
redundant paths for expected permanent faults [12]. Moreover, in the complex and dynamic TSN, there
is a situation where link failures occur on all limited redundant transmission paths [2]. So in the online
scenario that requires incremental scheduling, TSN usually provides link protection for rerouting and
scheduling of traffic related to faulty node links as a trade-off between fault-tolerance and scheduling
performance [13–15]. However, using methods such as ILP and SMT to recover the transmission of
many TS flows still requires a long response time. To alleviate this issue, methods such as topology
pruning [16] and limiting the number of candidate paths [17] are commonly adopted for time cost
optimization, but they fail to fully utilize routing information to optimize fault-tolerance, neglecting
feasible solutions to flows in fault.

Therefore, the static redundant path fault tolerance method of path protection has problems such
as long computation time, low effective utilization of resources, and limited fault tolerance capability
for multi-point faults, while the link protection fault-tolerance method of rerouting scheduling has
the problem of long response time when the scale of TS traffic is large. Deep Reinforcement Learning
(DRL), which can interact and learn from complex environments without too much simplification,
provides a new approach for rapid response to the highly dynamic TSN and has achieved good
scheduling performance in fault-free ideal states [18]. So DRL could respond quickly to the feasible
fault recovery solution without reducing the scale of the problem.

But facing the network data with the graph structure, especially in the case of topology changes
caused by node-link failures, the scheduling mechanism implemented by Deep Neural Networks
(DNN) [19] or Graph Convolutional Networks (GCN) [20] still has certain shortcomings. GCN
has an over-smoothing issue where node features tend to homogenize with network depth, and
indiscriminately aggregate node features, which can lead to the influence of anomalous node link
features on the effectiveness of decision-making. But Graph Attention Networks (GAT) can adjust
inter-node data weights based on traffic transmission task requirements and selectively fuse weighted
data and GAT proximal policy optimization algorithm [21] achieves better scheduling performance
than GCN-DRL. Besides, GAT have been utilized as the centralized critic in the actor-critic algorithm,
assisting in addressing the distributed scheduling issues in the integration of 5G with TSN [22].

However, GAT face the over-smoothing issue also. And the DRLs with GAT used in TSN above
[21,22], do not consider improvement for fault-tolerance, such as the combination of routing and
scheduling that finds more feasible solutions in multipath, and load balancing that controls the loss
caused by link fault and reserves resources for rerouting and rescheduling.

In addition, most TS flow scheduling mechanisms with fault-tolerance capabilities consider TSN
based on TAS. TAS can achieve wait-free packet scheduling, but the bandwidth utilization rate is
low, and the allocation of time slots for each packet requires complex computation and configuration
of the Gate Control List (GCL) [23]. Therefore, the algorithm for rerouting and scheduling faulty TS
flows based on the TAS model obviously requires a longer response time, and there are fewer solutions
that can meet the requirements without changing the GCL of other TS flows. Although CQF has a

1644 CMC, 2024, vol.81, no.1

larger jitter, it simplifies the configuration of the GCL compared to TAS and can use a lightweight
heuristic algorithm to schedule the injection time slots of TS flows [24,25]. CQF can achieve better
resource utilization and load balancing effects on the transmission path, thus having better application
prospects in reducing the impact of faults and increasing the number of reroutable TS flows.

To address the issues, this paper studies the fault-tolerant scheduling problem of TS flows in
TSN and proposes a graph attention residual network-based routing and fault-tolerant scheduling
mechanism for data flow in the power communication network distribution area (GRFS), with specific
contributions as follows:

1) A communication system architecture for integrated terminals based on CQF and fault recovery
method is designed. This architecture reduces the complexity of the routing scheduling algorithm and
the impact of permanent faults on the solution by using CQF with simple scheduling configuration and
adopts a fault recovery method that prioritizes the rerouting of faulty traffic. CQF and fault recovery
used in the architecture improve the upper limit of system performance under ideal states and avoid
frequent expansion and change of TSN as the power data communication network develops.

2) An optimization model for the joint routing and scheduling problem is established. The model
aims for a higher scheduling success rate, with traffic latency and network load as constraints. The
model finds more feasible solutions in the network with topological changes by gradually specifying
the routing and injection time slot range and reduces the faulty TS flows caused by PF by controlling
the network load instead of mandatory resource reservation, thereby increasing the upper limit of
the ideal state scheduling success rate and objectively reserving resources for the rerouting of faulty
TS flows.

3) A multi-head graph attention residual network (MGAR) based Dueling Double Deep Q-
Network (D3QN) with prioritized experience replay algorithm (PER-MD3QN) is constructed. PER-
D3QN uses the MGAR encoder to reconstruct the TSN state, traffic features to obtain feature
embedding vectors, and the dueling network decoder to decode the feature embedding vectors into
decisions. So, PER-MD3QN flexibly adjusts the weights through the attention mechanism of MGAR,
selects the relatively key information from the characteristics of the current task in the various input
TSN and traffic, and finds routes with legal injection time slots for the TS flow.

The rest of this paper is organized as follows. Section 2 introduces the related works. Section 3
introduces the communication system architecture for integrated terminals based on CQF and fault
recovery methods. Section 4 introduces the optimization model for joint routing and scheduling
designed for the TSN scenario with node-link failures, aiming to maximize the scheduling success
rate of TS flows. In Section 5, the design of the D3QN algorithm based on MGAR to reconstruct the
TSN state and traffic features, and then decoded by a multi-layer perceptron, is detailed. Section 6
provides simulation and result analysis. Finally, conclusions are drawn in Section 7.

2 Related Works

The challenges to the reliability and sustainability of TSN networks can be broadly categorized
into two types: temporary faults and permanent faults. Temporary faults, primarily caused by bit
flips, result in data frame errors, which are typically addressed through time redundancy by sending
multiple copies of the same data over the same link [26]. However, given the heightened sensitivity
of power communication networks to scenarios involving permanent node or link failures, this
paper primarily focuses on permanent fault issues. In response to permanent node or link failures,
Balasubramanian et al. [2] employed a TSN controller based on federated learning, considering

CMC, 2024, vol.81, no.1 1645

multiple paths with the lowest joint failure probability to provide protection, thereby minimizing the
risk of tolerance failure due to multi-point faults. Pahlevan et al. [3] based on heuristic algorithms
and proposed a fault-tolerant list scheduler for time-triggered communication in TSN. Syed et al. [4]
developed a fault-tolerant dynamic scheduling and routing approach. Dobrin et al. [5] explored fault-
tolerant scheduling in time slot sensitive networks, providing insights for the security and dependability
of critical embedded systems. Zhou et al. [6] presented a reliability-aware scheduling and routing
strategy for TSN networks, increasing the network’s fault-tolerance. Zhou et al. [7] proposed an
ASIL-decomposition-based approach for routing and scheduling in safety-critical TSN networks,
addressing the challenges of high-integrity applications. Chen et al. [8] used ILP and introduced a meta-
heuristic-based method for multipath joint routing and scheduling of time-triggered traffic in TSN
for IIoT applications. Atallah et al. [9] investigated routing and scheduling for time-triggered traffic in
TSN, advancing the understanding of industrial network communication. Chen et al. [10] suggested
a heuristic-based dynamic scheduling and routing method for industrial TSN networks, aiming to
enhance network efficiency. Feng et al. [11] proposed a method that combines temporal redundancy
protection across multiple disjoint paths with online rerouting and scheduling for link protection,
supplementing failed paths caused by permanent faults. However, the method in [11] inevitably
requires more resources than static redundancy paths. As the rapidly evolving power communication
networks face escalating communication demands among converged terminals, spatially redundant
path protection methods as mentioned may necessitate frequent expansion and adjustment due to
resource redundancy limitations.

Recognizing the negative impact of static spatial redundancy on scheduling performance,
Kong et al. [13] introduced a dynamic redundancy approach for rerouting failed TS flows, leveraging
SDN architecture and ILP solvers. This method boasts lower bandwidth redundancy requirements and
effective protection against multi-point faults. Nandha Kumar et al. [14] utilized heuristic algorithms
to identify the minimal connected subgraph for isolating problem areas, minimizing the solution time
for traffic rerouting in the affected network segments. Bush [27] pointed out that preconfiguring or
storing scheduling for every possible network fault in resource-constrained and dynamically changing
TSNs is infeasible, introducing the concept of processing-storage trade-off through scheduling seeds
and utilizing SMT to solve polymorphic reconfiguration scheduling under resource constraints.
Nevertheless, methods based on ILP, SMT, and heuristic algorithms experience increased average
computation time as network and traffic scales grow. Although seamless redundancy may not always
be necessary for industrial communication networks, acceptable recovery times for applications are
within milliseconds and must not exceed the grace period, i.e., the time the application can operate
without communication [28]. Thus, addressing issues such as excessive resource consumption for path
protection and long computation times for existing link protection solutions, this paper adopts DRL,
capable of interacting with the environment, adapting to network changes, and solving problems
rapidly, to implement link protection.

To swiftly respond to highly dynamic network states, Yang et al. [18,19] employed DRL-based
TS flow scheduling methods but overlook routing-induced bottlenecks. Zhong et al. [29] proposed
a joint routing and scheduling approach using DRL to assign routes and transmission slots hop-
by-hop for traffic flows, offering faster correction of transmission paths during network failures.
Similarly, Yu et al. [30] realized online joint routing and scheduling in deterministic networks through
DRL algorithms and sub-actions for hop-by-hop routing and scheduling. However, DNN used in
these DRL frameworks does not directly consider the neighborhood relationships of node links and
the spatial propagation and mutual influence of traffic, resulting in deficiencies when processing
graph-structured data. Due to GCN’s superior representation capability for graph information [31],

1646 CMC, 2024, vol.81, no.1

Yang et al. [20] presented a solution combining DRL and GCN, achieving better performance than
DRL algorithms using DNN as function approximators. While effectively enhancing DRL’s ability to
handle high-dimensional graph-structured data, GCN’s training process relies on eigendecomposition
of the Laplacian matrix [32]. Changes in network topology leading to alterations in the corresponding
Laplacian matrix can compromise GCN-based model performance [33]. Conversely, if the network
topology remains unchanged, features of abnormal node links are indiscriminately aggregated into
the features. Therefore, GAT, which is also suitable for graph-structured data and can adaptively
adjust information weights according to task requirements, is more suitable for ensuring the overall
performance of the scheduling mechanism under abnormal conditions [34]. Ideally, given the varying
destination nodes of different flows and the differing paths that satisfy delay and queue capacity
constraints from the current node to the destination, the contributions of surrounding nodes to
decision-making also differ. GAT can better perceive the importance and relevance of information
from different neighbor nodes. By integrating a residual network structure that mitigates over-
smoothing, the Graph Attention Residual Network is better equipped for scenarios involving TSN
topology changes and traffic anomalies due to faults. This approach ensures a more nuanced and
task-specific representation of node features, enhancing the network’s responsiveness and reliability in
dynamic traffic conditions. Consequently, this paper adopts an improved DRL algorithm that captures
network state changes and extracts features into a multi-head graph attention residual network to
provide reliable solutions for TS flows. Additionally, to accommodate fault tolerance, the scheduling
strategy should enhance scheduling success rates while maintaining network load balance, thereby
controlling resource utilization at reasonable levels across nodes, mitigating losses from individual
link or node failures, and increasing schedulable traffic capacity.

Unlike TAS, which requires the configuration of GCL, CQF assumes that the packet transmission
and reception cycles must be identical on two adjacent switches; packets received in one cycle must
be transmitted in the next cycle by the switch; and the two transmission queues alternately perform
queue reception and transmission in each cycle. Therefore, the traffic transmitted in a CQF-based
TSN may experience a jitter of up to two cycles in the worst case, but the upper bound of TS flow
delay can be determined based on the number of routing hops and transmission cycles, simplifying
the complexity of solving the joint routing and scheduling problem for TS flows with different delay
requirements. Moreover, to address the issue of uneven load distribution across different time slots
caused by TS flows with different periods transmitting on the same link, Yan et al. [22] increased
the number of schedulable TS flows by utilizing the uneven load in different time slots through
modifying the injection slot offsets of TS flows on a given route using a lightweight heuristic algorithm.
Quan et al. [23] achieved online scheduling based on the above work. Cheng et al. [35–37] employed
DRL algorithms to quickly solve the injection slot offsets on specified routes for TS flows in scenarios
such as traffic bursts. Wang et al. [38] combined the DRL-based injection slot scheduling method
in wired TSNs with 5G networks, expanding the application scenarios of CQF-based TSNs. While
Cheng et al. [35–38] all used DRL algorithms to solve the injection slot problem in CQF, they did not
consider optimizing routing factors. Therefore, the proposed GRFS in this paper is designed based on
CQF, taking into account both routing planning and the scheduling of injection slot offsets. Without
reducing the problem size by limiting the selectable paths, GRFS employs DRL algorithms to solve
the fault recovery results, thereby better utilizing network bandwidth resources and providing a larger
solution space for fault tolerance design.

CMC, 2024, vol.81, no.1 1647

3 System Architecture

This section presents the communication system architecture of the integrated terminal based
on CQF and fault recovery method, as shown in Fig. 1. The scheduling mechanism of this paper is
designed based on SDN, including a system architecture that comprises the transport layer, control
layer, and application layer, as detailed below:

1) Transport Layer: The transport layer is composed of network elements such as switches, full-
duplex physical links, and various integrated terminals. At the transport layer, integrated terminals
continuously communicate, generating TS flows for different services such as control, monitoring, and
measurement. TSN switches will collect data on the state of network resources at a specified frequency
during each transmission period and forward it to the control layer and report the working condition
of their own nodes and link detection at the end of the transmission period. The transmission requests
generated by the terminals are uploaded to the centralized user configurator (CUC) of the SDN
controller, where CUC analyzes the user transmission requests and transfers them to the centralized
network configurator (CNC) for processing and issuance.

2) Control Layer: The CNC can be functionally abstracted into modules such as the monitoring
module, analysis module, decision module, and scheduling module, with specific functions as follows:

Monitoring Module (MM): Node and link monitoring, which monitors and receives network
status information uploaded by the transport layer switches at a certain frequency through the
southbound interface, records traffic analysis to display links with traffic loss and nodes that fail to
report information in time.

Analysis Module (AM): Receives and records user transmission requests from CUC and network
status information provided by MM. AM determines the order in which the decision module processes
the traffic based on attributes such as abnormal traffic, arrival time, business priority, and traffic cycle
size. In case of abnormal situations, AM notifies the scheduling module to release resources occupied
by the relevant traffic and prioritizes processing of the relevant traffic.

Decision Module (DM): Receives the transmission tasks and TSN status provided by the AM,
constructs an optimization model for joint routing and scheduling, and solves for routes with legal
injection time slots for the traffic through the PER-MD3QN algorithm on a hop-by-hop basis, passing
the results to the scheduling module. Thereafter, DM collects relevant experiences and saves them in the
prioritized experience replay pool, and trains and updates the PER-MD3QN network with experiences
taken from the pool at a certain frequency.

Scheduling Module (SM): Receives and executes operations to release resources occupied by
traffic from the AM. SM checks the decisions given by DM to see if they meet related constraints
such as traffic latency and network resources. Among the legal decisions, SM finds the injection time
slots that minimize the maximum load and finally modifies the flow table to make the joint routing
and scheduling operations effective.

1648 CMC, 2024, vol.81, no.1

Figure 1: System architecture

4 System Model
4.1 Network Model

As depicted in Fig. 1, the overall network topology of the transport layer is represented as
G = {V , E}. Here, V = {va|a ∈ [1, |V |]} denotes the set of switch nodes corresponding to the topology,
where the operation | · | indicates the total number of elements in the set ·; E = {ea|a ∈ [1, N]}
represents the set of physical links, with ea.sv, ea.ev denoting the source and destination nodes of
the link, respectively. To better utilize graph-structured data to represent network resources and
the characteristics of TS flows, and because TS flows are primarily transmitted over links and
occupy corresponding resources, the network topology G is reconstructed into G′ = {V ′, E ′}. In
this reconstruction, the new nodes V ′ = {va′ |va′ = ea} represent the original N links E, and the new
links E ′ = {

ea′ , b′ |ea.ev == eb.sv
}

represent the topological relationship of predecessor links pointing to
successor links. Additionally, the adjacency matrix of the network topology is denoted by A = RN×N.
When Aa′ , b′ = 1, it indicates ea′ , b′ ∈ E ′, and when Aa′ , b′ = 0, it indicates ea′ , b′ /∈ E ′. The SDN controller
updates the adjacency matrix A based on the real-time network status.

Suppose the number of transmission tasks is FL; this paper abstracts the i − th transmission
tasks as flowi, represented by the tuple flowi = {

ti, srci, dsti, pri, di, prdi, φi, ϕi, anmi

}
. The number

of flows successfully transmitted until time slot t is sf t. The set of all transmission tasks is F =
{flowi | i ∈ [1, FL]}. Here, ti, srci, dsti represent the transmission time slot, source node, and
destination node identifiers for flowi, respectively. pri, di, prdi, φi, ϕi, anmi denote the priority,
maximum latency, sending period, planned transmission path, legal injection time slot range, and
fault status of flowi, respectively. Time slot, when flowi is scheduled on φi, is at least t = ti + |φi|.
Traffic is divided into different priority levels pri based on the type of service, with the total number
of types being ρ, the higher the pri, the higher the priority. The scheduling mechanism prioritizes the

CMC, 2024, vol.81, no.1 1649

processing of fault-related traffic for multiple transmission requests uploaded at the same time slot,
strictly scheduling according to the priority level.

To unify the different transmission periods of TS flows, the hyper-period T is equal to the least
common multiple of the periods of all TS flows, as shown in Eq. (1), where the operation lcm (·)
indicates the least common multiple of elements in the set ·. The hardware scheduling time slot sl
for the CQF queue flip must meet the condition as shown in Eq. (2) to ensure that data sent by each
flow at different periods can be processed, where the operation gcd (·) indicates the greatest common
divisor of elements in the set.

T = lcm
(
prdi

)
, i ∈ [1, FL] (1)⎧⎪⎨

⎪⎩
max (sl) = gcd

(
prdi

)
, i ∈ [1, FL]

prdi%sl == 0, i ∈ [1, FL]

T%sl == 0

(2)

Assuming a uniform transmission rate s for all links and a maximum transmission unit (MTU)
for data frame length, to prevent congestion, a maximum value ξ for the total data frames that a port
can send must be set, as shown in Eq. (3). Here, dprop and dsync are the propagation and synchronization
delays, respectively.

ξ = ⌊(
sl − dprop − dsync

) ∗ s/MTU
⌋

(3)

The capacity of the link sending queue at time slot t is represented as qa
t . The queue resource

utilization of the link a over an entire hyper-period T starting from time slot t for T/sl slots is
represented as ua

t , and the overall network resource utilization is uG′
t , as shown in Eqs. (4) and (5).

A high-load threshold thd is set, and when the link resource utilization ua
t ≥ thd, it is considered a

high-load link, as shown in Eq. (6). The total number of such links is denoted as hllt (high load link).
At the same time, a reward function is used to guide the DRL algorithm in limiting the allocation of
queue resources that exceed thd for normal traffic.

ua
t = 1, if a is anormal else

T/sl∑
η=1

qa
(t+η)

/ (ξ ∗ T/sl) (4)

uG′
t = 1

N

N∑
a=1

ua
t (5)

hllt =
N∑

n=1

{
1, if un

t >= thd
0, else (6)

At time slot t, the resource usage status of the link a queue capacity can be represented as lsa
t ={

ua
t ,

T/sl∪
η=1

qa
t+η

}
. The state of the flows that have been scheduled on link a (denoted as scheduled flow state)

can be described based on whether the destination nodes are the same or different from the currently

scheduled traffic as sfsa
t = {0, 0} if a is anormal else

{ ∑
va

′ ∈φj∩dstj !=i

|flowj|, ∑
va

′ ∈φj∩dstj=i

|flowj|
}

. The state of

the traffic currently being processed for scheduling on the link pfs, can be described based on the set
of legal injection time slots ϕi, the sending period prdi, and the maximum number of hops allowed by

the flow latency H as pfsa
t = T/sl−1∪

η=0

(
H − ϕ, if a is normal and ∃ϕ ∈ ϕi, (η + ϕ) %prdi == 0 esle − 1

)
.

1650 CMC, 2024, vol.81, no.1

Finally, to prevent routing loops and routing traffic to faulty nodes, wna
t = 1 indicates that the node

connected to link a is a faulty node, a link already on the transmission path of flowi, and a link that
is not a successor link of flowi. disa

t = N, if a is abnormal else h represents the shortest hop count h
from link a to the destination node. Thus, the overall real-time state of the network is represented as
in Eq. (7).

rtst = {
lsa

t , sfsa
t , pfsa

t , wna
t , disa

t |a ∈ [1, N]
}

(7)

4.2 Problem Optimization Model

4.2.1 Routing Hop Constraints

In the CQF model, the end-to-end (E2E) delay E2Ei of flowi generally depends only on the cycle
size sl and the range of path hops H within [(H − 1) ∗ sl, (H + 1) ∗ sl]. Therefore, considering the
worst-case scenario, flowi must arrive at the destination node after at most Hi hops as shown in Eq. (8).

Hi = 	di/sl
 − 1 (8)

4.2.2 Injection Time Slot Offset Constraints

To ensure that TS flows are sent out within the current cycle and do not conflict with the data
frames of the next cycle, the maximum legal injection slot offset ϕi should be less than the period of
flowi, as shown in Eq. (9).

0 ≤ max (ϕi) < prdi (9)

4.2.3 Transmission Delay Constraints

After flowi has planned the route φi, to arrive at the destination node within the specified time
slot, the maximum value of the feasible set of injection slots ϕi is as shown in Eq. (10).

max (ϕi) ≤ Hi − |φi| (10)

4.2.4 Path Constraints

If the current determined path of flowi ends with link a in φi, then the constraint as shown in
Eq. (11), the set of available next links next should include link b pointed to by link a, and the selected
link should not be a faulty link or an invalid link that forms a loop, and the number of hops of this link
to the destination node should not exceed the limit currently determined by the route and the range
of legal injection slots.

next = {
b|Aa, b = 1, wnb

t = 0, ∃ϕ ∈ ϕi, h = Hi − ϕ − |φi| , disb
t ≤ h

}
(11)

4.2.5 Queue Capacity Constraints

In the injection slot range of flowi, there must be at least one slot on the sending queue of link b
that meets the buffer space corresponding to the time slot of flowi sending period, as shown in Eq. (12).
After performing action, ϕi will be updated to the set that satisfies Eq. (12).

∃ϕ ∈ ϕi, t′ = (t + 1 + ϕ) % (T/sl) , qj

(t′+η)%(T/sl)
< ξ , η ∈ T/prdi−1∪

k=0
k ∗ prdi/sl (12)

Finally, since the scheduling mechanism of this paper needs to ensure the scheduling performance
of the mechanism under fault conditions, the scheduling success rate sr and the number of high-load

CMC, 2024, vol.81, no.1 1651

links hllt are used as evaluation factors. The calculation of sr is shown in Eq. (13), where |Fsch| represents
the total number of scheduled flows. The goal is to improve sr while ensuring load balance and reducing
the number of high-load links hllt as much as possible, so as to reduce the number of flows that need
to be rescheduled and reserve network resources for retransmission in case of node failure or link
interruption. Therefore, the problem optimization model can be formally stated as Eq. (14):

sr = sf t/ |Fsch| (13)

max (sr)
s.t. Hi = 	di/sl
 − 1

0 ≤ max (ϕi) < prdi

max (ϕi) ≤ Hi − |φi|
next = {

b|Aa,b = 1, wnb
t = 0, ∃ϕ ∈ ϕi, h = Hi − ϕ − |φi| , disb

t <= h
}

∃ϕ ∈ ϕi, t′ = (t + 1 + ϕ) % (T/sl) , qj

(t′+η)%(T/sl)
< ξ , η ∈ ∪T/prdi−1

k=0 k ∗ prdi/sl

(14)

5 Algorithm Design
5.1 PER-MDQN Algorithm Elements

In the PER-MD3QN-based scheduling algorithm of this paper, the specific meanings of state,
action, and reward are as follows:

1) State

In this scheduling mechanism, the state is the current TSN resource information and traffic
information rtst = {

lsa
t , sfsa

t , pfsa
t , wna

t , disa
t |a ∈ [1, N]

}
collected by the system at each time slot t.

Therefore, the environmental state at time slot t is represented as shown in Eq. (15).

St = rtst (15)

2) Action

Since directly selecting the flow path would make the action space dimensionality of the com-
putation process too high, the model will output suitable routing for each flow and sends it to the
corresponding sending queue hop-by-hop, thereby maximizing the use of network resources and more
reasonably forwarding flows. As shown in Eq. (16), the action at time slot t is represented as actt, which
is a set of N-length one-hot vectors. Here, at (n) = 1 indicates that link n is selected as the routing path
for flowi, and the rest are 0.

actt = {at (n) |n ∈ [1, N]} (16)

3) Reward

ri
t =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z, if scheduled successfully

λ ∗
(

un
t

uG′
t

)
+

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, if un
t > thd∑

ϕ∈Eq.12

(∑
η

ξ − qn

(t′+η)%(T/sl)

)
/Δh

, t′ = (t + 1 + ϕ) % (T/sl)
, η ∈ ∪T/prdi−1

k=0 k ∗ prdi/sl
, Δh = Hi − ϕ − |φi| − disn

t + 1

, else

−Z, if break any constraints

(17)

1652 CMC, 2024, vol.81, no.1

As shown in Eq. (17), in this scheduling mechanism, the reward function ri
t is composed of the

reward value for successful scheduling, the reward for the flow being scheduled and transmitted on
intermediate links, and the penalty value for scheduling failure. The reward for intermediate links
needs to not only improve the scheduling success rate as much as possible but also ensure the balanced
load of network resources, limiting the occupation of link resources exceeding the high-load threshold
and the resources of links that can reach the destination node with fewer hops. So ri

t is related to the
proportion of the next link selected by the utilization rate un

t and the overall network resource utilization
rate uG

t , and the sum of the idle capacity distributed in each time slot corresponding to the legal set
of injection time slots satisfying Eq. (12), and the upper limit of hops to reach the destination node h
and the minimum hops from the sending link to the destination node disn

t . The related coefficient λ is
negative. When the route is successfully planned to the dsti or does not overlap with other candidate
paths or the flow scheduling ends with a constraint violation, the flow scheduling end flag donet will
be 1, otherwise it will be 0.

4) Multi-Head Graph Attention Residual Network

As shown in Fig. 2, the encoder model based on MGAR in PER-MD3QN processes the uploaded
TSN network topology A and the TSN scheduling information composed of N link features rtst,
and then is decoded by the decoder with a dueling architecture. rtst will go through the K-layer
MGB (multi-head graph attention networks-based block) feature extraction of the encoder residual
connection one by one, and then the obtained link vectors are spliced into a 1-dimensional vector
provided to the decoder of the dueling network architecture for decoding and output. Each MGB layer
in the encoder has H independent attention mechanisms, each of which can perform the operation
described as gatk,h

t = GATk
h

(
Xk

t , A
)

, k ∈ K, h ∈ H, and adaptively adjust the weights of the
information of each neighboring link according to the current input Xk

t of the k-th layer, selectively
focus on key information, and weight the information transmission between different links to obtain
the output gatk,h

t . Specifically, the calculation of atk,h
i,j is shown in Fig. 3, where Xk

t,i is the representation of
link i in the feature matrix, Wk,h

gat is the shared linear transformation matrix in the attention mechanism
h, akk,h will map the concatenated high-dimensional features to a real number, and LeakyReLU (·)
is an activation function. As shown in Eqs. (18) and (19), after calculating the normalized attention
coefficients atk,h

i,j between each link i and the adjacent links in the k-th layer of the attention mechanism
h, the final representation gatk,h

t is obtained by weighted summation. σ (·) is the exponential linear unit
(ELU) function, a nonlinear activation function. Finally, the output of the k-th layer MGB is the

average of the results obtained by each attention mechanism σ

(
1
H

H∑
h=0

gatk,h
t

)
. As shown in Eq. (20),

the input of the 1st layer MGB in the encoder model is rtst, and the input Xk+1
t of the k + 1 layer MGB

is the sum of the output of the k-th layer MGB and the input obtained from the residual connection
of the k-th layer MGB. Therefore, the input of the encoder model is rtst and the output result is XK+1

t .

atk,h
i,j = exp

(
LeakyReLU

(
akk,h

[
Wk,h

gatX
k
t,i||Wk.h

gatX
k
t,j

]))
∑

Ai,j=1

exp
(
LeakyReLU

(
akk,h

[
Wk,h

gatX
k
t,i||Wk.h

gatX
k
t,j

])) (18)

gatk,h
t =

{
σ

(
N∑

j=0

atk,h
i,j Wk,h

gatX
k
t,j

)
|i ∈ [0, N] , Ai,j = 1

}
(19)

Xk+1
t = Xk + σ

(
1
H

H∑
h=0

gatk,h
t

)
, X1

t = rtst (20)

CMC, 2024, vol.81, no.1 1653

Figure 2: Networks of PER-MD3QN

Figure 3: Graph attention coefficients

5) Loss Function

Q-learning is a classic reinforcement learning algorithm that guides an agent to make optimal
actions in different states by learning a value function, known as the Q-function. As shown in Fig. 2,
in this paper, the PER-MD3QN algorithm is used to solve the problem optimization model. The PER-
MD3QN algorithm improves the performance of the Q-learning algorithm in reinforcement learning
tasks through the Dueling architecture and Double Q-learning improvements. As shown in Eq. (21),
for the state St processed by the encoder model to output XK+1

t , the Dueling architecture of the encoder
model decomposes the Q-value function Qt

(
XK+1

t , actt; θt

)
into a state value function Vt

(
XK+1

t , actt; θt

)
and an advantage function At

(
XK+1

t , actt; θt

)
, allowing the agent to learn the value of the state and the

pros and cons of different actions simultaneously. Here, θt represents the network parameters at time
slot t.

Qt

(
XK+1

t , actt; θt

) = Vt

(
XK+1

t , actt; θt

) +
(

At

(
XK+1

t , actt; θt

) − 1
|A|

∑
act

At

(
XK+1

t , actt; θt

))
(21)

Q-learning utilizes the temporal-difference (TD) error ζt in experience replay to learn and update
the value function. The update rule is shown in Eq. (22), where δ ∈ (0, 1] represents the learning rate.

Qt

(
XK+1

t , actt; θt

) ← Qt

(
XK+1

t , actt; θt

) + δ ∗ ζt (22)

1654 CMC, 2024, vol.81, no.1

TD error is the computation of the difference between the value function estimate of the current
state and the value function estimate of the next state. Due to the Double Q-learning computational
architecture of the PER-MD3QN algorithm, which has an evaluation network eval Qt

(
St, actt; θt,eval

)
and a target network target Qt

(
St, actt; θt,target

)
, the predicted value yt and the TD error calculation are

shown in Eqs. (23) and (24). Here, γ is the discount factor, and donet indicates whether the current
scheduling has ended.

The larger the ζt, the more the experience needs to be learned and updated. Therefore, Prioritized
Experience Replay assigns a replay priority pert to the corresponding experience based on ζt, as shown
in Eq. (25). Here, υ is a small constant to prevent the probability of extracting experiences where ζt is
0 from being 0. The corresponding sampling probability is shown in Eq. (26), where the exponent α

determines the use of priority levels, with 0 corresponding to a uniform situation. The priority replay
method changes the sampling method of experience, but it introduces bias, which is not conducive
to the training of neural networks. As shown in Eq. (27), the bias is corrected by using importance
sampling wt, where the exponent β represents the degree of correction and m represents the total
number of samples.

yt = rt + (1 − donet) ∗ γ ∗ targetQt

(
St

′
, arg max

(
evalQt

(
St

′
, actt

′
; θt,eval

))
; θt,target

)
(23)

ζt = yt − evalQt

(
St, actt; θt,eval

)
(24)

pert = |ζt| + υ (25)

PERt = (
pert

)α

/
∑(

pert

)α

(26)

wt =
(

1
m

∗ 1
PERt

)β

(27)

So, the PER-MD3QN algorithm learns the optimal network parameters θt by iteratively minimiz-
ing the loss function, as shown in Eq. (28):

L
(
θt,eval

) = 1
m

m∑
t

wt ∗
(
yt − evalQt

(
St, actt; θt,eval

))2
(28)

The loss function can be used to optimize the network with stochastic gradient descent. The PER-
MD3QN algorithm draws a small batch of weighted samples from the experience replay buffer RB to
calculate the gradient, as shown in Eq. (29):

∇θt,eval
L

(
θt,eval

) = 1
m

m∑
t

wt ∗ ζt ∗ ∇θt,eval
evalQt

(
St, actt; θt,eval

)
(29)

6) Network Update

The PER-MD3QN algorithm obtains the stochastic gradient descent to update the parameters,
as shown in Eq. (30). And after several updates, the target network performs a soft update with the
parameters of the evaluation network at a certain proportion, as shown in Eq. (31):

θt,eval ← θt,eval + δ∇θt,eval
L

(
θt,eval

)
(30)

θt,target ← τ ∗ θt,eval + (1 − τ) ∗ θt,target (31)

CMC, 2024, vol.81, no.1 1655

5.2 PER-MD3QN-Based Joint Routing and Scheduling Algorithm

Algorithm 1: PER-MD3QN-based joint routing and scheduling algorithm
Input: transmission domain network topology G = {V , E}, the capacity of the prioritized experience
replay buffer M, the set of transmission tasks F , learning rate δ, soft update coefficient τ , discount
factor γ , training episodes ep, training steps per episode sp.
Output: the routing for each scheduling request φ.
1: Initialize PER-MD3QN: θt,eval ← random, θt,target ← θt,eval.
2: Initialize replay buffer: RB ← M.
3: For episode = 1 to ep do:
4: While F is not empty do:
5: Order F by transmission time ti ascending, abnormal status anmi descending, priority
pri ascending.
6: Free the resource occupied by all the flowi with anmi = 1.
7: Set end flag donet = 0.
8: While donet == 0 do:
9: Reset state St based on Eq. (15).
10: With probability ε select a random action actt.
11: Or with probability 1 − ε, choose actt = argmax evalQ

(
St, actt; θt,eval

)
.

12: Execute action actt and observe rt, donet and next state St′ .
13: Get replay priority pert based on Eq. (25) and store (St, actt, rt, St′ , donet) in RB.
14: End while
15: Determine injection time slot ϕi min according to the Algorithm 2.
16: F .pop_front ().
17: Sample transitions from RB with priority PERt and update pert.
18: Calculate yt based on Eq. (23).
19: Calculate L

(
θt,eval

)
based on Eq. (28) and update θt,eval based on Eq. (30).

20: Every sp steps, update θt,target based on Eq. (31).
21: End while
22: End for

5.3 Minimizing the Maximum Per-Slot Traffic Load on the Transmission Path Algorithm

Since the joint routing and scheduling algorithm based on MD3QN yields the transmission path
φi and the legal range of injection time slots ϕi for the TS flow, specific injection time slots still need
to be determined. Moreover, to meet the optimization goal of maximizing the scheduling success
rate, the algorithm aims to minimize the maximum per-slot traffic load on the transmission path and
output ϕi min.

If the legal range of injection time slots ϕi is empty or the transmission path φi does not end
with the destination node, Algorithm 2 directly returns −1, indicating a scheduling failure (Lines 1–
3). Otherwise, Algorithm 2 iterates through each legal time slot ϕ in the set ϕi, finds the maximum
per-slot traffic load loadi occupied by the traffic of different period groups during the transmission
according to the path φi, and thus finds the time slot ϕi min corresponding to the minimum maximum
per-slot traffic load loadi,min and outputs it (Lines 5–14).

1656 CMC, 2024, vol.81, no.1

Algorithm 2: Minimizing the maximum per-slot traffic load on the transmission path algorithm
Input: transmission path φi, the legal range of injection time slots ϕi.
Output: the time slot to minimize the maximum traffic load on the path ϕi min.
1: If len (ϕi) == 0 or φi [−1] .ev! = dsti:
2: Return −1.
3: End if
4: ϕi,min = −1, loadi,min = ξ .
5: For ϕ in ϕi do:
6: loadi = 0.
7: For j in φi do:

8: loadi = max
(

loadi, qj

p,(ti+(ϕ++)+σ)%(T/sl)

)
, σ ∈ T/prdi−1∪

k=0
k ∗ prdi/sl.

9: End for
10: If loadi,min > loadi do:
11: ϕi,min = ϕ.
12: End if
13: End for
14: Return ϕi,min

6 Simulation Analysis
6.1 Experimental Environment

The hardware environment is configured with a 12th Gen Intel(R) Core(TM) i9-12900H CPU.
The network topology environment and traffic generation are implemented based on the Python
3.9 NetworkX module and SimPy module. The problem optimization model relies on the joint
routing and scheduling algorithm based on PER-MD3QN and other benchmark algorithms, which
are constructed using the PyTorch 1.12.0 module and torch-geometric 2.3.1 module.

The main experimental parameters are as shown in Table 2. This paper generates a network
scenario composed of 5 end nodes (EN) and 15 transit nodes based on the Erdös-Rényi graph model
with an edge creation probability of 0.001 and a maximum node degree of 5 [2]. Each node is ensured
to have at least 3 edges, not exceeding 5 edges. Propagation delay is ignored, and the initial capacity
of the links is set to 1.2 Gbit/s. The hyper-period slot T for each node’s cyclic forwarding is 1 ms,
the CQF slot is taken to the maximum value of 200 μs according to Eq. (2), and the capacity of the
sending queue buffer per slot is 20 data frames. During the 30-s operation period, time-sensitive flows
with random starting EN and destination EN are sent at random time slots in the order of priority
from high to low, with 200, 300, and 500 flows, respectively, to simulate the uncertainty of the network
environment. The bandwidth requirements of each flow follow a Poisson distribution, and the sending
period belongs to one of 200, 200, 1000 μs, and the maximum delay is related to the average E2E delay
of the maximum path obtained by the K Shortest Path algorithm (KSP). The K value related to the
simulation algorithm and KSP is 3.

In PER-MD3QN, the number of MGB layers K is set to 2, and the multi-head attention
mechanism H in each layer is set to 3, with the graph attention layer’s input and output channel
dimensions both being

∣∣rtsa
t

∣∣ = 15, corresponding to feature dimensions of link a. The fully connected
layers are a common fully connected layer with dimensions

(∣∣rtsa
t

∣∣ ∗ |V ′|)×256, an advantage function
fully connected layer with dimensions 256 × |V ′|, and a value function fully connected layer with
dimensions 256 × 1. The high-load link threshold thd in the problem model is set to 0.7. The reward

CMC, 2024, vol.81, no.1 1657

function has a constant Z set to 1.5, and the parameter λ is set to −0.25, which aims to improve the
scheduling success rate by reducing the average resource utilization rate during model training. The
algorithm training parameters are shown in Table 3.

Table 2: Experiment parameters

ID Nodes Average links Faulty links Hyper-period T CQF time slot
sl

Number of flows
FL

1 20 80 0 1 ms 200 μs 1000
2 20 80 1 1 ms 200 μs 1000
3 20 80 3 1 ms 200 μs 1000
4 20 80 6 1 ms 200 μs 1000

Table 3: Algorithm training parameters

Parameter Value

Learning rate δ [0.0002, 0.001]
Discount factor γ 0.9
Training update steps sp 100
Soft update coefficient τ 0.005
Minimum sample count m 64

6.2 Results and Analysis

This paper prepared the following benchmark schemes for comparison to evaluate the schedul-
ing performance of the GRFS scheduling mechanism depending on Algorithm 1: Heuristic-based
Dynamic Scheduling and Routing Algorithm (HDSR) [10], TSN Subgraph-based Heuristic Rerouting
and Rescheduling Algorithm (THRR) [14], Deep Reinforcement Learning Aided No-Wait Scheduler
(DRLS) [19], and Scheduler Based on DRL with Integrated GCN (DIGS) [20]. HDSR considers the
impact of the source node’s location on the entire routing and scheduling, using the KSP algorithm to
generate K non-intersecting paths and evaluate the impact of the transmission of these paths on other
TS flows, thereby selecting the optimal 2 redundant paths for data transmission. THRR introduces
the concept of TSN subgraphs, using a heuristic weighted KSP algorithm that considers both spatial
locality and traffic priority to quickly reroute and reschedule the flows in the problem area. DRLS
calculates the path by the Shortest Path (SP) algorithm and outputs GCL for TS flows by the link
resource feature perception and DRL algorithm, thereby ensuring as much as possible the transmission
without queuing delay. DIGS is based on the GCN’s perception of the graph structure of network
resources and outputs joint routing and scheduling actions with the goal of minimizing the average
delay. The main indicator for scheduling performance evaluation is the scheduling success rate sr.

6.2.1 Algorithm Convergence

In a large-scale network environment, the centralized scheduling of the problem optimization
model is difficult to produce effective actions, leading to a high failure rate in the initial stage of

1658 CMC, 2024, vol.81, no.1

training, which cannot provide enough successful experience for the model to train. To accelerate
the training process, this paper adopts two strategies: (1) Applying a control gate mechanism, with a
certain probability, ignoring invalid actions that violate constraints in Section 4.2, thereby increasing
the occurrence of successful experiences; (2) Using a prioritized experience replay method, making the
model pay more attention to those samples that have an important impact on improving the model’s
performance, thereby accelerating the training convergence process and improving learning efficiency;
(3) The PER-MD3QN algorithm uses a duel network to learn the value of the state and the pros
and cons of different actions simultaneously, while separating the evaluation network and the target
network to reduce the problem of overestimation, thereby improving the stability and performance of
the algorithm.

As shown in Fig. 4, the algorithm’s reward results after training for 50,000 steps under different
learning rates generally show an increasing trend with the increase of training steps, and the degree of
oscillation of the curve gradually decreases with the optimization of the strategy. Among them, when
the learning rate is 1e−3, the average reward curve converges around 23k steps; when the learning rate
is 2e−4, the curve converges around 40k steps; when the learning rate is 5e−4, the convergence speed
is between the two. Although different learning rates have a certain impact on convergence, the reward
values obtained after convergence at various learning rates are relatively close and within a more stable
range. Fig. 4 indicates that the learning rate in the range of 2e−4 to 1e−3 has a certain impact on the
convergence speed of the algorithm in this paper but has a smaller impact on performance.

Figure 4: Reward changes with training steps under different learning rates

6.2.2 The Impact of Traffic Scale on Scheduling Performance under Ideal states

As shown in the Fig. 5a, as the traffic scale increases, the scheduling success rate of each strategy
generally shows a downward trend, but the average scheduling success rate of the GRFS strategy is
generally higher than that of other strategies in Experiment 1.

This is because GRFS uses an encoding model based on the GAT residual network, which can
better perceive the resource changes of each node in the network with graph structure compared to
strategies other than DIGS, thereby ensuring the scheduling success rate while maintaining resource
load balance. DIGS, which aims to minimize the average delay when considering scheduling flows,
considers less load balance of resources and has a larger decrease in scheduling success rate than
GRFS when the traffic scale is large. DRLS relies on the routing given by the SP algorithm, leading

CMC, 2024, vol.81, no.1 1659

to a larger decrease in scheduling success rate when the link load is too heavy. HDSR’s redundant
path fault-tolerance method makes the resources required for each flow’s scheduling success higher,
so the scheduling success rate is the lowest under limited resources. THRR adopts a more efficient
fault-tolerance method than HDSR and calculates the weighted routing based on the number of
TS flows and priority on the link, so the scheduling success rate is relatively high. However, as the
traffic scale increases and resource competition intensifies, compared with GRFS, which can adjust
the injection time slot according to the specific load of CQF at different time slots to schedule TS
flows, the scheduling success rate of THRR decreases more.

Figure 5: Averaged changes of success rate, hll and time cost with the number of TS flows

As shown in the Fig. 5b, the hllt of each strategy increases with the increase of network traffic
scale and the increase of the number of successfully scheduled flows in Experiment 1.

Among them, GRFS ensures the highest scheduling success rate among the strategies while
keeping hllt lower. THRR, due to the weighted routing calculation ignoring the different periods of
traffic occupying the link resources differently, overestimates the link load, although it leads to a lower
scheduling success rate, but also has fewer hllt. HDSR, due to planning multiple redundant paths for
the flow, results in a lower scheduling success rate than DRLS and DIGS, while hllt is higher than
the latter two, so HDSR’s network effective utilization is lower, and it has a negative impact on the
subsequent flow scheduling routing. DRLS, due to only considering the shortest path, has a lower
scheduling success rate, and hllt increases rapidly but the final number is the lowest. DIGS, with E2E
delay as the main optimization goal and less consideration of link load, tends to choose the shortest
path, resulting in a rapid increase in hllt.

As shown in the Fig. 5c, due to the small network scale, the THRR based on heuristic methods
has the least average time slot for routing and scheduling TS flows online in Experiment 1.

HDSR, which is also based on heuristic methods but has a more complex design, takes the longest
average time slot to plan and evaluate multiple redundant transmission paths because the function of
evaluating the impact of the transmission path on the already scheduled flow is related to the current
traffic scale. The time slot consumption of DRLS, DIGS, and GRFS generally increases with the
increase of the complexity of the neural network, and the average time slot consumption does not
increase significantly with the increase of the traffic scale.

6.2.3 The Impact of the Number of Faulty Links on Scheduling Performance

To simulate the occurrence of node failures and link interruptions in the fault state, after all traffic
scheduling in the ideal state of Experiment 1 is completed, 1, 3, and 6 random permanent link faults
will appear respectively in Experiments 2–4, and the traffic on the related links will also fail. Due to
the randomness of the experimental link failure setting, the performance indicator is the proportion
of the average number of faulty flows in total flows (PAFF). Among them, HDSR only calculates the
flows that have no data copies arriving at the destination EN as faulty flows.

1660 CMC, 2024, vol.81, no.1

As shown in the Fig. 6a, the number of faulty flows of each strategy in the fault state increases
with the increase of the number of faulty links.

Figure 6: Averaged changes of PAFF, ARRS and hll with the number of fault links

HDSR relies on the fault-tolerance method of redundant paths, and the number of faulty flows
is very small when 3 links fail, but when 6 links fail, due to multi-point failures, at least one pair of
ENs among the 5 ENs have the redundant paths calculated interrupted, and the number of faulty
flows and PAFF increase significantly. THRR and GRFS, due to considering load balance, lead to a
certain number of faulty flows with random link failures but have a lower PAFF due to a larger average
number of successfully scheduled flows. DIGS and DRLS have link loads mainly concentrated on the
shortest path. So when the number of faulty links increases, the probability of link failures on the
corresponding shortest path increases, and once a failure occurs, it leads to a larger average number
of faulty flows, so there is a higher PAFF.

After the link failure occurs, each strategy reschedules the faulty flows, and the average rerouting
and rescheduling success rate of the faulty flows (ARRS) is shown in the Fig. 6b.

Among them, DIGS, because the GCN used is greatly affected by the network topology, only
modifies the node link state without changing the existing network topology, while DRLS will calculate
a new shortest path according to the updated network and then reschedule. Because HDSR has a
higher scheduling cost, the ARRS of HDSR is obviously lower. DRLS, due to poor perception of the
graph structure of the network, also has a lower ARRS when facing the network after topological
changes. DIGS, although the scheduling performance is too much reduced due to the Laplacian
matrix modification without network topology change, aggregated the abnormal features at the time
slot of convolution, leading to a significant decrease in its scheduling success rate. THRR’s fault-
tolerant method for rerouting and rescheduling of faulty flows performs well in multi-point failures
and has achieved a higher ARRS by using the concept of TSN subgraphs and the heuristic weighted
KSP algorithm based on traffic priority. However, the PER-MD3QN algorithm used by GRFS has a
stronger adaptability to changes in network topology, can perceive the difference between abnormal
links and normal links through GAT. So GRFS adapts well to TSN in the fault state, and adjusts the
injection time slot offset to make better use of network resources at different time slots, and has the
highest ARRS.

As shown in the Fig. 6c, with the increase of faulty links, the hllt of each strategy changes
accordingly. GRFS and THRR maintain a high ARRS, so the hllt shows an upward trend.

Among them, GRFS relies on GAT to perceive the changes in resource status of each node, which
can flexibly schedule traffic under fault conditions, and improves ARRS while balancing the network
resource load as much as possible. Therefore, when there are 6 link faults, GRFS has a smaller hllt

compared to THRR, which uses TSN subgraphs to isolate the areas of multi-point faults. DRLS has
fewer interrupted flows successfully rescheduled when there are many faulty links, resulting in a smaller
increase in hllt. DIGS has a high ARRS when there are 3 link faults and considers less load balancing,
so it has a higher hllt, but when there are 6 link faults, the scheduling performance of DIGS is affected,

CMC, 2024, vol.81, no.1 1661

which leads to a decrease in hllt. HDSR shows a downward trend in hllt before multi-point faults cause
redundant paths to fail, and due to the high cost of routing and scheduling, the rise in hllt is smaller.

6.2.4 The Impact of MGB Layer Depth on Scheduling Performance

From the above experimental analysis, it is known that GRFS relies on an encoding model based
on the GAT residual network to perceive the status of network nodes to achieve flexible traffic
routing and scheduling. The depth of the MGB layers will affect the feature extraction capability of
the encoding model. Therefore, to further explore the impact of the number of MGB layers on the
performance of the algorithm, this section will investigate the performance of GRFS with different
numbers of MGB layers in Experiments 1, 2, 3 and 4.

As shown in the Fig. 7a, in Experiment 1, the number of faulty flows in GRFS first decreases with
the increase of the number of MGB layers, reaching the best effect when the number of MGB layers is
2, and then increases with the increase of the number of MGB layers. And in Experiments 2, 3 and 4,
success rate is always highest when the number of MGB layers is 2 and decreases with the change of
the number of MGB layers.

Figure 7: Averaged changes of success rate, hll and time cost with the number of fault links under
different MGBs

This is possibly because insufficient training, even though residual connections are added to the
MGB, they cannot eliminate the over-smoothing problem. When the number of MGB layers increases,
the information propagation in multi-layer GAT will cause the representations of nodes to tend to
gather, reducing the distinguishability between nodes, thereby affecting the performance of the model.

The Fig. 7b shows the utilization rate of network resources by GRFS with different numbers of
MGB layers, where the scheduling success rate of GRFS is lower and the hllt is similar when the number
of MGB layers is greater than 2.

This is because the over-smoothing problem affects the scheduling performance, causing GRFS
not to choose the appropriate links when scheduling traffic, so the traffic distribution has a longer
transmission path, occupying unnecessary network resources, or the allocated link load is too high.

Moreover, as the number of MGB layers increases, the complexity of the neural network increases,
and the response time of PER-MD3QN becomes larger, which may not be able to reroute and
reschedule in time when the scale of faulty traffic is large as shown in Fig. 7c.

6.2.5 The Impact of Number of Attention Heads in GAT on Scheduling Performance

To further explore the impact of the number of Attention heads in GAT on the performance of
the algorithm, this section will investigate the performance of GRFS with 2 MGB layers and different
attention heads in Experiments 1, 2, 3 and 4.

1662 CMC, 2024, vol.81, no.1

As shown in the Fig. 8a, when the number of attention heads in GAT exceeds 3, an increase
paradoxically reduces success rates. The addition of attention heads up to 3 enhances the model’s
capacity to represent complex graph structures. However, beyond this, the complexity of the current
environment is insufficient for more heads, leading to an information overload that may neglect or
weaken key features or relationships.

Figure 8: Averaged changes of success rate, hll and time cost with the number of fault links under
different attention heads

In Fig. 8b, the minimum of hllt is achieved with 3 attention heads, suggesting excess heads diminish
each’s effectiveness, impacting GRFS performance.

However, Fig. 8c shows the increase in heads does not significantly add computational time due
to parallel processing.

7 Conclusion and Future Work

In the context of power data communication networks, existing TSN traffic routing and scheduling
mechanisms lack fault-tolerance that does not overly affect the scheduling performance under ideal
states and can handle permanent faults such as link interruptions. This paper proposes a TS traffic
routing and scheduling mechanism based on the fault-tolerant graph attention residual network,
GRFS. Unlike most fault-tolerant mechanisms based on TAS and spatial redundancy, GRFS proposes
a fusion terminal communication system architecture based on CQF and fault recovery to adapt
to the fault-tolerant requirements of the TSN fault state; GRFS constructs an optimized model for
joint routing and scheduling that considers traffic delay constraints and network resource constraints
and designs a PER-MD3QN algorithm based on the multi-head graph attention residual network to
reconstruct the features of TSN and traffic, capturing the changes in the network state of TSN, to solve
the joint routing and scheduling problem model. While improving the scheduling success rate, GRFS
also aims to balance the network load as much as possible, thereby reducing the number of high-
load links and increasing the schedulable traffic volume. By GAT structure optimization and fault
tolerance considerations, GRFS expands the use scenarios of GAT in TSN. But GRFS overlooks the
temporary faults caused by bit flips. And the processing time of PER-MD3QN used by GRFS does not
surpass that of heuristic algorithms when networks and traffic are small scale. Due to the relatively
large jitter of CQF and the fact that fault recovery requires a certain amount of time for rerouting
and rescheduling, system architecture can only be applied in scenarios that do not emphasize seamless
redundancy [28]. The next step is to study how to organically combine time slot redundancy methods to
optimize the scheduling mechanism for handling temporary faults, how to minimize fault processing
time, or how to combine with spatial redundancy path protection, and provide different protection
according to the service level as needed.

Acknowledgement: The authors would like to express appreciation to State Grid Corporation of China
Headquarters Management Science and Technology Project Funding for financial support.

CMC, 2024, vol.81, no.1 1663

Funding Statement: This research was supported by Research and Application of Edge IoT Technology
for Distributed New Energy Consumption in Distribution Areas, Project Number (5108-202218280A-
2-394-XG).

Author Contributions: The authors confirm contribution to the paper as follows: study conception and
design: Zhihong Lin, Zeng Zeng, Yituan Yu, Yinlin Ren, Xuesong Qiu; data collection: Zhihong Lin,
Zeng Zeng, Yituan Yu, Yinlin Ren; analysis and interpretation of results: Zhihong Lin, Zeng Zeng,
Yituan Yu, Yinlin Ren, Xuesong Qiu; draft manuscript preparation: Zhihong Lin, Zeng Zeng, Yituan
Yu, Yinlin Ren, Xuesong Qiu, Jinqian Chen. All authors reviewed the results and approved the final
version of the manuscript.

Availability of Data and Materials: Due to the nature of this research, participants of this study did
not agree for their data to be shared publicly, so supporting data is not available.

Ethics Approval: Not applicable.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] C. Zhuang, Y. Tian, X. Gong, X. Que, and W. Wang, “A survey of key protocols and application scenarios

of time-sensitive networking,” (in Chinese), Telecommun. Sci., vol. 35, no. 10, pp. 31–42, 2019.
[2] V. Balasubramanian, M. Aloqaily, and M. Reisslein, “Fed-TSN: Joint failure probability-based federated

learning for fault-tolerant time-sensitive networks,” IEEE Trans. Netw. Serv. Manag., vol. 20, no. 2, pp.
1470–1486, 2023. doi: 10.1109/TNSM.2023.3273396.

[3] M. Pahlevan, S. Amin, and R. Obermaisser, “Fault tolerant list scheduler for time-triggered communication
in time-sensitive networks,” J. Commun., vol. 16, no. 7, pp. 250–258, 2021. doi: 10.12720/jcm.16.7.250-258.

[4] A. A. Syed, S. Ayaz, T. Leinmüller, and M. Chandra, “Fault-tolerant dynamic scheduling and routing for
TSN based in-vehicle networks,” in Proc. IEEE Vehicular Netw. Conf. (VNC), Ulm, Germany, Nov. 2021,
pp. 72–75.

[5] R. Dobrin, N. Desai, and S. Punnekkat, “On fault-tolerant scheduling of time sensitive networks,” in Proc.
4th Int. Workshop on Security and Dependability of Critical Embedded Real-Time Syst. (CERTS 2019),
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

[6] Y. Zhou, S. Samii, P. Eles, and Z. Peng, “Reliability-aware scheduling and routing for messages in time-
sensitive networking,” ACM Trans. on Embedded Comput. Syst. (TECS), vol. 20, no. 5, pp. 1–24, 2021.
doi: 10.1145/3458768.

[7] Y. Zhou, S. Samii, P. Eles, and Z. Peng, “ASIL-decomposition based routing and scheduling in safety-
critical time-sensitive networking,” in Proc. IEEE 27th Real-Time and Embedded Technol. and Appl. Symp.
(RTAS), Nashville, TN, USA, May 2021, pp. 184–195.

[8] C. Chen and Z. Li, “Meta-heuristic-based multipath joint routing and scheduling of time-triggered traffic
for time-sensitive networking in IIoT,” in Proc. 2nd Int. Conf. on Green Commun., Netw., and Internet of
Things (CNIoT 2022), Xiangtan, China, 2023, vol. 12586, pp. 1–6.

[9] A. A. Atallah, G. B. Hamad, and O. A. Mohamed, “Routing and scheduling of time-triggered traf-
fic in time-sensitive networks,” IEEE Trans. Ind. Inform., vol. 16, no. 7, pp. 4525–4534, 2019. doi:
10.1109/TII.2019.2950887.

[10] H. Chen, M. Liu, J. Huang, Z. Zheng, W. Huang and Y. Xiao, “A heuristic-based dynamic scheduling and
routing method for industrial TSN networks,” in Proc. IEEE 10th Int. Conf. on Cyber Security and Cloud
Comput. (CSCloud)/IEEE 9th Int. Conf. on Edge Comput. and Scalable Cloud (EdgeCom), Xiangtan,
China, Jul. 2023, pp. 440–445.

https://doi.org/10.1109/TNSM.2023.3273396
https://doi.org/10.12720/jcm.16.7.250-258
https://doi.org/10.1145/3458768
https://doi.org/10.1109/TII.2019.2950887

1664 CMC, 2024, vol.81, no.1

[11] Z. Feng, Z. Gu, H. Yu, Q. Deng, and L. Niu, “Online rerouting and rescheduling of time-triggered flows
for fault tolerance in time-sensitive networking,” IEEE Trans. Comput. Aided Des. Integr. Circuits Syst.,
vol. 41, no. 11, pp. 4253–4264, 2022. doi: 10.1109/TCAD.2022.3197523.

[12] F. M. Pozo Pérez, G. Rodriguez-Navas, and H. Hansson, “Self-Healing protocol: Repairing scheduels
online after link failures in time-triggered networks,” in Proc. 51st IEEE/IFIP Int. Conf. on Dependable
Syst. and Netw. (DSN), Taipei, Taiwan, Jun. 21–24, 2021, pp. 129–140.

[13] W. Kong, M. Nabi, and K. Goossens, “Run-time recovery and failure analysis of time-triggered traffic in
time sensitive networks,” IEEE Access, vol. 9, pp. 91710–91722, 2021. doi: 10.1109/ACCESS.2021.3092572.

[14] G. Nandha Kumar, K. Katsalis, P. Papadimitriou, P. Pop, and G. Carle, “SRv6-based time-sensitive
networks (TSN) with low-overhead rerouting,” Int. J. Netw. Manag., vol. 33, no. 4, 2023, Art. no. e2215.

[15] A. Kostrzewa and R. Ernst, “Achieving safety and performance with reconfiguration protocol
for ethernet TSN in automotive systems,” J. Syst. Archit., vol. 118, 2021, Art. no. 102208. doi:
10.1016/j.sysarc.2021.102208.

[16] X. Wang, H. Yao, T. Mai, Z. Xiong, F. Wang and Y. Liu, “Joint routing and scheduling with cyclic queuing
and forwarding for time-sensitive networks,” IEEE Trans. Vehicular Technol., vol. 72, no. 3, pp. 3793–3804,
Mar. 2023. doi: 10.1109/TVT.2022.3216958.

[17] S. Yang, Y. Zhang, T. Lu, and Z. Chen, “CQF-based joint routing and scheduling algorithm in time-
sensitive networks,” in 2024 IEEE 7th Adv. Inf. Technol., Electron. and Automat. Control Conf. (IAEAC),
Chongqing, China, 2024, pp. 86–91. doi: 10.1109/IAEAC59436.2024.10503933.

[18] D. Yang, K. Gong, W. Zhang, K. Guo, and J. Chen, “enDRTS: Deep reinforcement learning based
deterministic scheduling for chain flows in TSN,” in Proc. Int. Conf. on Netw. and Netw. Appl. (NaNA),
Qingdao, China, Aug. 2023, pp. 239–244.

[19] X. Wang, H. Yao, T. Mai, T. Nie, L. Zhu and Y. Liu, “Deep reinforcement learning aided no-wait flow
scheduling in time-sensitive networks,” in Proc. IEEE Wireless Commun. and Netw. Conf. (WCNC), Austin,
TX, USA, Apr. 2022, pp. 812–817.

[20] L. Yang, Y. Wei, F. R. Yu, and Z. Han, “Joint routing and scheduling optimization in time-sensitive
networks using graph-convolutional-network-based deep reinforcement learning,” IEEE Internet Things
J., vol. 9, no. 23, pp. 23981–23994, 2022. doi: 10.1109/JIOT.2022.3188826.

[21] Y. Huang, S. Wang, X. Zhang, T. Huang, and Y. Liu, “Flexible cyclic queuing and forwarding for time-
sensitive software-defined networks,” IEEE Trans. Netw. Serv. Manag., vol. 20, no. 1, pp. 533–546, 2022.
doi: 10.1109/TNSM.2022.3198171.

[22] J. Yan, W. Quan, X. Jiang, and Z. Sun, “Injection time planning: Making CQF practical in time-sensitive
networking,” in Proc. IEEE INFOCOM, Toronto, ON, Canada, Jul. 2020, pp. 616–625.

[23] W. Quan, J. Yan, X. Jiang, and Z. Sun, “On-line traffic scheduling optimization in IEEE 802.1 Qch based
time-sensitive networks,” in Proc. IEEE 22nd Int. Conf. on High Performance Comput. and Commun.; IEEE
18th Int. Conf. on Smart City; IEEE 6th Int. Conf. on Data Sci. and Syst. (HPCC/SmartCity/DSS), Yanuca
Island, Cuvu, Fiji, Dec. 2020, pp. 369–376.

[24] Z. Feng, M. Cai, and Q. Deng, “An efficient pro-active fault-tolerance scheduling of IEEE 802.1Qbv
time-sensitive network,” IEEE Internet Things J., vol. 9, no. 16, pp. 14501–14510, Aug. 15, 2022. doi:
10.1109/JIOT.2021.3118002.

[25] W. Ma, X. Xiao, G. Xie, N. Guan, Y. Jiang and W. Chang, “Fault tolerance in time-sensitive networking
with mixed-critical traffic,” in Proc. 60th ACM/IEEE Design Automat. Conf. (DAC), San Francisco, CA,
USA, 2023, pp. 1–6. doi: 10.1109/DAC56929.2023.10247817.

[26] J. Cao, W. Feng, N. Ge, and J. Lu, “Delay characterization of mobile-edge computing for 6G time-sensitive
services,” IEEE Internet Things J., vol. 8, no. 5, pp. 3758–3773, 2020. doi: 10.1109/JIOT.2020.3023933.

[27] S. F. Bush, “Toward efficient time-sensitive network scheduling,” IEEE Trans. Aerosp. Electron. Syst., vol.
58, no. 3, pp. 1830–1842, 2022. doi: 10.1109/TAES.2021.3127311.

[28] S. Kehrer, O. Kleineberg, and D. Heffernan, “A comparison of fault-tolerance concepts for IEEE 802.1
time sensitive networks (TSN),” in Proc. IEEE Emerg. Technol. and Factory Automat. (ETFA), Barcelona,
Spain, 2014, pp. 1–8. doi: 10.1109/ETFA.2014.7005200.

https://doi.org/10.1109/TCAD.2022.3197523
https://doi.org/10.1109/ACCESS.2021.3092572
https://doi.org/10.1016/j.sysarc.2021.102208
https://doi.org/10.1109/TVT.2022.3216958
https://doi.org/10.1109/IAEAC59436.2024.10503933
https://doi.org/10.1109/JIOT.2022.3188826
https://doi.org/10.1109/TNSM.2022.3198171
https://doi.org/10.1109/JIOT.2021.3118002
https://doi.org/10.1109/DAC56929.2023.10247817
https://doi.org/10.1109/JIOT.2020.3023933
https://doi.org/10.1109/TAES.2021.3127311
https://doi.org/10.1109/ETFA.2014.7005200

CMC, 2024, vol.81, no.1 1665

[29] C. Zhong, H. Jia, H. Wan, and X. Zhao, “DRLS: A deep reinforcement learning based scheduler for time-
triggered ethernet,” in Proc. Int. Conf. on Comput. Commun. and Netw. (ICCCN), Athens, Greece, IEEE,
2021, pp. 1–11.

[30] H. Yu, T. Taleb, and J. Zhang, “Deep reinforcement learning based deterministic routing and schedul-
ing for mixed-criticality flows,” IEEE Trans. Ind. Inform., vol. 19, no. 8, pp. 8806–8816, 2022. doi:
10.1109/TII.2022.3222314.

[31] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang and P. S. Yu, “A comprehensive survey on graph
neural networks,” IEEE Trans. Neural Netw. Learn. Syst., vol. 32, no. 1, pp. 4–24, Jan. 2021. doi:
10.1109/TNNLS.2020.2978386.

[32] J. Zhang, Y. Guo, J. Wang, and Y. Wang, “Enhanced graph neural network framework based on feature
and structural information,” (in Chinese), Appl. Res. of Comput./Jisuanji Yingyong Yanjiu, vol. 39, no. 3,
pp. 668–674, 2022.

[33] Q. Xing, Z. Chen, T. Zhang, X. Li, and K. Sun, “Real-time optimal scheduling for active distribution
networks: A graph reinforcement learning method,” Int. J. Electr. Power & Energy Syst., vol. 145, 2023,
Art. no. 108637. doi: 10.1016/j.ijepes.2022.108637.

[34] S. Guo, Y. Lin, N. Feng, C. Song, and H. Wang, “Attention based spatial-temporal graph convolutional
networks for traffic flow forecasting,” in Proc. AAAI Conf. on Artif. Intell., Honolulu, HI, USA, 2019, pp.
922–929.

[35] Z. Cheng, D. Yang, W. Zhang, J. Ren, H. Wang and H. Zhang, “DeepCQF: Making CQF scheduling more
intelligent and practicable,” in Proc. IEEE Int. Conf. on Commun. (ICC), Seoul, Republic of Korea, 2022,
pp. 1–6.

[36] D. Yang, Z. Cheng, W. Zhang, H. Zhang, and X. Shen, “Burst-aware time-triggered flow scheduling with
enhanced multi-CQF in time-sensitive networks,” IEEE/ACM Trans. on Netw., vol. 31, no. 6, pp. 2809–
2824, Dec. 2023. doi: 10.1109/TNET.2023.3264583.

[37] Z. Cheng, D. Yang, R. Guo, and W. Zhang, “Joint time-frequency resource scheduling over CQF-based
TSN-5G system,” in Proc. 15th Int. Conf. on Commun. Softw. and Netw. (ICCSN), Shenyang, China, 2023,
pp. 60–65. doi: 10.1109/ICCSN57992.2023.10297405.

[38] X. Wang, H. Yao, T. Mai, S. Guo, and Y. Liu, “Reinforcement learning-based particle swarm optimization
for End-to-End traffic scheduling in TSN-5G networks,” IEEE/ACM Trans. on Netw., vol. 31, no. 6, pp.
3254–3268, Dec. 2023. doi: 10.1109/TNET.2023.3276363.

https://doi.org/10.1109/TII.2022.3222314
https://doi.org/10.1109/TNNLS.2020.2978386
https://doi.org/10.1016/j.ijepes.2022.108637
https://doi.org/10.1109/TNET.2023.3264583
https://doi.org/10.1109/ICCSN57992.2023.10297405
https://doi.org/10.1109/TNET.2023.3276363

	Graph Attention Residual Network Based Routing and Fault-Tolerant Scheduling Mechanism for Data Flow in Power Communication Network
	1 Introduction
	2 Related Works
	3 System Architecture
	4 System Model
	5 Algorithm Design
	6 Simulation Analysis
	7 Conclusion and Future Work
	References

