
Copyright © 2024 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

echT PressScience

DOI: 10.32604/cmc.2024.055574

ARTICLE

A Discrete Multi-Objective Squirrel Search Algorithm for Energy-Efficient
Distributed Heterogeneous Permutation Flowshop with Variable Processing
Speed

Liang Zeng1,2,3, Ziyang Ding1, Junyang Shi1 and Shanshan Wang1,2,3,*

1School of Electrical and Electronic Engineering, Hubei University of Technology, Wuhan, 430068, China
2Hubei Key Laboratory for High-Efficiency Utilization of Solar Energy and Operation Control of Energy Storage System, Hubei
University of Technology, Wuhan, 430068, China
3Xiangyang Industrial Institute of Hubei University of Technology, Xiangyang, 441100, China

*Corresponding Author: Shanshan Wang. Email: wangshanshan@hbut.edu.cn

Received: 01 July 2024 Accepted: 12 September 2024 Published: 15 October 2024

ABSTRACT

In the manufacturing industry, reasonable scheduling can greatly improve production efficiency, while excessive
resource consumption highlights the growing significance of energy conservation in production. This paper
studies the problem of energy-efficient distributed heterogeneous permutation flowshop problem with variable
processing speed (DHPFSP-VPS), considering both the minimum makespan and total energy consumption (TEC)
as objectives. A discrete multi-objective squirrel search algorithm (DMSSA) is proposed to solve the DHPFSP-
VPS. DMSSA makes four improvements based on the squirrel search algorithm. Firstly, in terms of the population
initialization strategy, four hybrid initialization methods targeting different objectives are proposed to enhance
the quality of initial solutions. Secondly, enhancements are made to the population hierarchy system and position
updating methods of the squirrel search algorithm, making it more suitable for discrete scheduling problems.
Additionally, regarding the search strategy, six local searches are designed based on problem characteristics to
enhance search capability. Moreover, a dynamic predator strategy based on Q-learning is devised to effectively
balance DMSSA’s capability for global exploration and local exploitation. Finally, two speed control energy-efficient
strategies are designed to reduce TEC. Extensive comparative experiments are conducted in this paper to validate
the effectiveness of the proposed strategies. The results of comparing DMSSA with other algorithms demonstrate
its superior performance and its potential for efficient solving of the DHPFSP-VPS problem.

KEYWORDS
Distributed heterogeneous permutation flowshop problem; squirrel search algorithm; muli-objective optimization;
energy-efficient; variable processing speed

1 Introduction

The permutation flow-shop scheduling problem (PFSP) is a typical scheduling problem with a
wide range of applications, commonly used in large-scale production. In 1954, Johnson first proposed
a PFSP scheduling problem [1]. The core idea of PFSP is to divide the production process into multiple

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2024.055574
https://www.techscience.com/doi/10.32604/cmc.2024.055574
mailto:wangshanshan@hbut.edu.cn

1758 CMC, 2024, vol.81, no.1

stages and allocate each stage to specifically designed production lines, aiming to optimize production
efficiency. The work tasks for each production line are specially designed and optimized. Upon
completing a stage, a production line transfers materials or products to the next line and proceeds with
the subsequent task. Therefore, PFSP can significantly improve production efficiency. Nonetheless, the
problem has been proven to be NP-hard when the number of machines exceeds three [2]. Therefore,
designing effective algorithms for PFSP holds important academic value and practical significance [3].

On the one hand, the quantity of orders for enterprises has significantly expanded due to the
advancement of industrial technology and worldwide trade. Increasingly, managers are recognizing
the challenges faced by traditional single factories in meeting market and customer demands within
a dynamic production environment [4]. Distributed scheduling, enabling collaborative production
among multiple factories, has garnered significant attention for its high production efficiency and
optimal resource utilization [5]. Naderi et al. [6] first proposed the distributed permutation flow-shop
scheduling problem (DPFSP) in 2010. DPFSP is an extension of PFSP that involves job assignment
to factories and the determination of job processing sequences within each factory, rendering it more
intricate than PFSP. Gao et al. [7] improved GA and designed effective crossover and mutation oper-
ators for DPFSP. Gao et al. [8] also improved TS and proposed a method to generate neighborhood
by exchanging working subsequences, which improved the performance of the algorithm for DPFSP.
In 2016, Rifai et al. [9] proposed multi-objective DPFSP, taking makespan, total cost and average
delay as optimization objectives, and designed an adaptive neighborhood search algorithm to solve
this problem. Lin et al. [10] proposed Iterated Cocktail Greedy (ICG) algorithm for DFPSP without
waiting, which includes destruction mechanism and two self-coordination mechanisms. Shao et al. [11]
proposed a distributed estimation algorithm based on Pareto frontiers and created three probability
models to solve sequence-related DPFSP. Lu et al. [12] proposed a multi-objective cooperative
optimization algorithm based on Pareto Front, which achieved good convergence in solving DPFSP
with buffers. Zhao et al. [13] improved the water wave algorithm and designed four local search
methods, exhibiting exceptional performance in optimizing blocked DPFSP scenarios. However,
a comprehensive review of prior research reveals that the majority of studies have concentrated
on homogeneous factories, characterized by identical machines and processing times. However, in
actual production, each factory may have different machine types and processing times, which are
called heterogeneous factories. When studying the distributed heterogeneous permutation flowshop
problem (DHPFSP), it is essential to consider not only job allocation across multiple factories but
also the disparities in machines and processing times, thereby augmenting the problem’s complexity.
Additionally, the inclusion of machine and processing time heterogeneity brings the production
process closer to real-world requirements. Therefore, numerous scholars have designed corresponding
algorithms for DHPFSP. Ruiz et al. [14] presented an iterative greedy algorithm with enhanced
initialization, showcasing its effectiveness in optimizing the makespan in DHPFSP. Bargaoui et al. [15]
devised a highly efficient heuristic initialization method utilizing chemical reaction optimization
(CRO) and incorporating greedy and crossover strategies, exhibiting superior performance on the
Taillard benchmarks. Li et al. [16] introduced an improved artificial bee colony algorithm (IABC)
for the makespan of DHPFSP, which utilized a workload-balanced initialization method and local
search. The effectiveness of IABC was tested on famous benchmarks. Lin et al. [17] improved the
backtracking search algorithm and designed effective encoding-decoding schemes and heuristic rules,
the results show the strong superiority of the algorithm. These methods mentioned above for DHPFSP
have shown excellent performance, but they only optimize the objective of makespan.

On the other hand, as the global economy develops and resource consumption exceeds sus-
tainable levels, the issue of global warming is escalating in severity. Environmental organizations

CMC, 2024, vol.81, no.1 1759

and government institutions have begun to advocate energy-efficient and consumption reduction in
various manufacturing sectors. Improving environmental sustainability has emerged as a pressing
concern [18]. Statistical data reveals that the manufacturing industry comprises roughly 33% of global
energy consumption and contributes approximately 38% to carbon emissions [19]. In light of this,
the manufacturing industry has started to attach great importance to reducing energy consumption.
Hence, when devising production plans, integrating conventional economic indicators like energy
efficiency and completion time is of paramount importance, alongside the development of effective
energy-efficient measures and technologies. Researchers have undertaken studies on energy-efficient
scheduling problems in DHPFSP. In 2017, Wang et al. [20] considered energy consumption for the
first time in DPFSP, and proposed Energy-efficient Distributed Permutation Flow Shop Problem,
EDPFSP Afterward, Wang et al. [21] suggested a cooperative memetic algorithm that designed
knowledge-driven operators based on the properties of non-dominated solutions, which effectively
optimized completion time and TEC in DHPFSP. Li et al. [22] improved the NSGA-II algorithm
through the introduction of a novel population generation method and the design of operators
targeting completion time and energy consumption in DHPFSP. Zhao et al. [23] designed a self-
learning Jaya algorithm and proposed an evaluation criterion that combines TEC and makespan.
The higher performance of the suggested method was confirmed by experimental data. Fathollahi-
Fard et al. [24] established a new multi-objective heuristic algorithm based on the Social Engineering
Optimizer and built a mixed-integer linear model. Experimental outcomes verified the efficacy of the
suggested algorithm in reducing energy consumption and model efficiency.

However, a comprehensive analysis of previous research reveals that numerous scholars in the field
of DHPFSP have neglected the influence of variable processing speeds on scheduling, or assuming
constant speeds. That is, in terms of research objects, there are relatively few researches on distributed
workshops with energy-saving performance, and the vast majority of researches still aim at minimizing
the makespan, which cannot meet the current diverse scheduling requirements. The Distributed Het-
erogeneous Permutation Flowshop with variable processing speed (DHPFS-VPS) allows products to
be processed on multiple production lines and dynamically scheduled based on real-time conditions to
improve production efficiency and reduce costs. Some relevant studies have shown that using variable-
speed DPFSP algorithms can effectively reduce waiting and queueing times in the manufacturing
process [25]. Considering the need for more efficient workshop scheduling solutions in modern
industrial production, DHPFS-VPS holds substantial research value, prompting a growing number
of scholars to investigate this problem. Huang et al. [26] proposed a bi-roles co-evolution algorithm
(BRCE) for DHPFS-VPS, which designed various local search strategies for energy consumption
and machine speeds and proposed an effective energy-efficient strategy. Wang et al. [27] proposed
an improved multi-objective whale swarm algorithm (MOWSA) for DHPFS-VPS, which aimed to
improve energy efficiency without compromising production efficiency and introduced an updated
utilization mechanism for completion time and machine speeds. Generally, research on DHPFS-VPS
remains relatively limited, and its exploration is still in the early stages compared to scheduling methods
employed for single production lines. Although there are still many challenges in practical applications,
such as considering logistics and collaboration between production lines, the concept of DHPFS-VPS
has been receiving increasing attention and exploration [28]. Consequently, undertaking further in-
depth research in this field holds immense significance and presents promising prospects for practical
application.

It can be seen that with the deepening of research and the development of industry, the types of
DPFSP have gradually become diversified. At the same time, various swarm intelligence algorithms

1760 CMC, 2024, vol.81, no.1

have gradually become the mainstream methods for solving various types of DPFSP. Table 1 summa-
rizes the state of the art of DPFSP research in detail.

Table 1: The key details of DPFSP research

Author Schedule problem Optimization objective Core algorithm Date

Naderi et al. [6] DPFSP Makespan Heuristic algorithm 2010
Gao et al. [7] DPFSP Makespan GA 2011
Gao et al. [8] DPFSP Makespan TS 2013
Rifai et al. [9] DPFSP Makespan, total cost LNS 2016
Lin et al. [10] DPFSP Makespan ICG 2016
Shao et al. [11] DPFSP Makespan EDA 2019
Lu et al. [12] DPFSP Makespan, TEC CO 2022
Zhao et al. [13] DPFSP Makespan WWO 2022
Ruiz et al. [14] DHPFSP Makespan GA 2019
Bargaoui et al. [15] DHPFSP Makespan CRO 2019
Li et al. [16] DHPFSP Makespan ABC 2019
Lin et al. [17] DHPFSP Makespan BSA 2017
Wang et al. [21] DHPFSP Makespan, TEC CMAF 2022
Li et al. [22] DHPFSP Makespan, TEC NSGA-II 2021
Zhao et al. [23] DHPFSP Makespan, TEC SD-Jaya 2021
Fathollahi et al. [24] DHPFSP Makespan, TEC SEO 2021
Huang et al. [26] DHPFS-VPS Makespan, TEC, MS BRCE 2023
Wang et al. [27] DHPFS-VPS Makespan, TEC, MS MOWOA 2020

The Squirrel Search Algorithm (SSA) is a novel type of swarm intelligence optimization algorithm
[29]. Since SSA was proposed, it has been applied to many fields in engineering, including single-
objective optimization and multi-objective optimization, demonstrating its practicality and compet-
itiveness in solving engineering problems. It is renowned for its simplistic structure and exceptional
performance, making it highly esteemed within the academic community [30]. Currently, there have
been multiple studies applying SSA to different fields, such as MEMS vector hydrophone arrays
[31], classification of X-ray images [32], and multi-objective economic environmental scheduling.
Sakthivel et al. [33] utilized SSA to minimize the total fuel cost and emissions of multi-regional
generating units to effectively manage power generation and realize multi-regional economic and
environmental scheduling. Wang et al. [34] proposed a dynamic multi-objective SSA and successfully
applied it to multi-objective FJSP. Jaishankar et al. [35] used a multi-purpose SSA to secure an
efficient blockchain network of healthcare data to generate intelligent and secure healthcare systems,
ultimately resulting in 26.87% higher throughput, 34.67% higher efficiency, 22.97% lower latency,
37.03% lower compute overhead, and 34.29% higher storage costs. Guha et al. [36] combined quasi-
opposition learning and SSA to develop the controller of wind turbine. Ishwarya et al. [37] combined
convolutional neural network and SSA to accurately predict human posture. Maden et al. [38] used
SSA to optimize the model parameters of photovoltaic power generation and improve the effectiveness
of the photovoltaic system. Nevertheless, research on the discretization of SSA remains limited, and
its application to solving the DHPFSP has not been explored. Therefore, this study aims to enrich

CMC, 2024, vol.81, no.1 1761

the application research of SSA and expand the solution methods for DHPFSP-VPS, which holds
significant theoretical and practical significance.

The remaining structure of the paper is as follows: In Section 2, the problem is defined, and a
multi-objective mixed integer programming model is presented. Section 3 provides an introduction to
the standard Squirrel Search Algorithm. In Section 4, the proposed Discrete Multi-objective Squirrel
Search Algorithm is described in detail. Section 5 discusses the experimental process and analyzes the
results obtained. Finally, Section 6 concludes the paper and suggests potential research extensions for
future studies.

2 Problem Description
2.1 Definition of DHPFSP-VPS

DHPFSP-VPS is a highly complex multi-objective combinatorial optimization problem, posing
significant challenges to manufacturing production scheduling. The description of DHPFSP-VPS
is as follows: There are n(i = 1, . . . , n) jobs and F(f = 1, . . . , F) factories in the problem. Each
factory faces a permutation flowshop scheduling problem and is equipped with m(j = 1, . . . , m)

machines. Consequently, every job comprises m stages of operations. In the DHPFSP-VPS, the
initial step involves assigning each job to a distinct factory. Subsequently, the processing sequence
of jobs within each factory needs to be determined. Moreover, the selection of processing speeds for
each operation is required. The processing time for each operation of a job is different in different
factories, exhibiting heterogeneity. Once a job is assigned to a factory, all its operations are completed
within that factory. All jobs start processing on the first machine and finish processing on the last
machine. By scheduling the processing sequences within each factory and selecting different processing
speeds, distinct makespan, and TEC values can be obtained. Each operation Oij has a standard
processing time ti, j on each machine. If the processing speed for Oij is V v, its actual processing time is
Pi, j = ti, j/V v, and the energy consumption W i, j is proportional to both Pi, j and Vv

2. Therefore,
increasing the processing speed leads to a reduction in processing time at the expense of higher power
consumption by the machine.

The assumptions of DHPFSP-VPS are as follows:

(1) All machines in all factories are available and ready for processing at time zero, and all factories
commence processing at time zero.

(2) Each machine is capable of handling only one operation at a time.

(3) When a job is assigned to a factory, all its operations are carried out exclusively within that
factory.

(4) Subsequent operations of a job can only begin once their preceding operations have been
completed.

(5) Potential interruptions during job processing and machine failures are not accounted for.

2.2 MILP model for DHPFSP-VPS

To facilitate the description of the model, the notations employed throughout this study are
defined as follows:

Indices:

i: set for jobs, i ∈ {1, ..., n};

1762 CMC, 2024, vol.81, no.1

j: set of machines, j ∈ {1, ..., m};
f : set of factories, f ∈ {1, ..., F};
v: set of speed, v ∈ {1, ..., s};
Parameters:

n: the number of all jobs;

m: the number of machines in each factory;

F : the number of factories;

s: the number of processing speeds;

l: job positions in a sequence, l ∈ {1, ..., n};
Vv: the vth processing speed;

Oi,j: operation of job i on machine j;

Decision variables:

Pi,j: the standard processing time of Oi,j;

Pi,j: the actual processing time of Oi,j;

PPf ,j,v: the energy consumption per unit time of machine j in factory f running at speed v;

SPf ,j: the energy consumption of the machine j at stand-by mode per unit time in factory f ;

PECf ,j: processing energy consumption of machine j in factory f ;

SECf ,j: idle energy consumption of machine j in factory f ;

TEC: total energy consumption;

Cmax: the makespan of a schedule;

Cl,j,f : the completion time of position l on machine j in factory f ;

C(f): the makespan of factory f ;

xi,l,f : a binary variable is defined as 1 when job i occupies position l in factory f , and 0 otherwise.

zi,j,v: a binary variable is defined as 1 when job i process on machine j at speed v, and 0 otherwise

DHPFSP-VPS includes two objectives: makespan and TEC.

The first objective, makespan, is represented by Eq. (1), where the makespan is the sum of the
completion times of all jobs.

Makespan = Cmax = maxf C (f) ∀f (1)

The second objective, TEC, is represented by Eq. (2), where the energy consumption includes the
processing energy consumption (PEC) of all machines in the factories and the idle energy consumption
(SEC). The calculation methods for PEC and SEC are demonstrated in Eqs. (3) and (4), respectively.

TEC =
F∑

f =1

m∑
j=1

(
PECf ,j + SECf ,j

)
(2)

PECf ,j =
n∑

i=1

n∑
l=1

(
xi,l,f · pi.j ·

s∑
v=1

zi.j.v · ppf ,j,v

)
∀f , j (3)

CMC, 2024, vol.81, no.1 1763

SECf ,j =
(

C (f) −
n∑

i=1

pi,j ·
n∑

i=1

xi,l,f

)
· SPf ,j ∀f , j (4)

Makespan and TEC are the two most important indicators in production, and also they are
two conflicting objectives. A smaller makespan implies a shorter completion time, which requires
higher processing speeds. However, higher processing speeds lead to increased energy consumption.
Therefore, to achieve a better balance between the two objectives, it is essential to employ effective
scheduling strategies and make appropriate speed selections.

Based on the aforementioned assumptions and the actual production scenario, the constraints of
DHPFSP-VPS are as follows:

n∑ F∑
xi,l,f = 1 ∀i (5)

n∑ F∑
xi,l,f = 1 ∀l (6)

s∑
v=1

zi,j,v = 1 ∀i, j (7)

pi,j = ti,j ·
s∑

v=1

zi,j,v

Vv

∀i, j (8)

Cl,j,f =
n∑

i=1

xi,l,f · pi,j l = 1, j = 1, ∀f (9)

Cl,i,f ≥ Cl,j−1,f +
n∑

i=1

xi,l,f · pi,j ∀l, j, f (10)

Cl,i,f ≥ Cl,j−1,f +
n∑

i=1

xi,l,f · pi,j ∀l > 1, j, f (11)

C (f) ≥ Cl,j,f ∀l, f (12)

Cl,j,f ≥ 0 ∀l, j, f (13)

Cmax = maxf C (f) ∀f (14)

xi,l,f ∈ {0, 1} ∀i, l, f (15)

zi,j,v ∈ {0, 1} ∀i, j, v (16)

Eq. (5) restricts each job to be assigned to a single factory. Eq. (6) guarantees that each machine
handles only one job concurrently. Eq. (7) makes sure that each operation is executed at a single speed.

1764 CMC, 2024, vol.81, no.1

Eq. (8) represents the actual processing time for operation Oij. Eq. (9) guarantees that the starting time
for the first job on the first machine in factory f is zero. Eq. (10) ensures that each operation of a job
can only begin after its preceding operation has finished. Eq. (11) ensures that each machine can only
process the next operation after completing the previous one. Eqs. (12) and (13) are processing time
constraints for each factory. The makespan objective is defined as Eq. (14). Eqs. (15) and (16) specify
the range of binary variables.

2.3 Encoding and Decoding

Encoding method in scheduling occupied an important position in scheduling solution [39].
DHPFSP-VPS, includes three sub-problems: (i) determining the factories for processing each job;
(ii) determining the job processing sequence within each factory; (iii) selecting processing speeds
for operations. To better utilize DMSSA for solving DHPFSP-VPS, this study adopts a three-stage
encoding, which includes job sequence (JS), factory assignment (FS), and variable speed encoding
(VS). An example of DHPFSP-VPS with 7 jobs, 2 factories, and 3 speed options is presented in Table 2.
In this example, four jobs are processed in Factory 1 with the sequence of 1, 5, 3, 7, while three jobs
are processed in Factory 2 with the sequence of 6, 2, 4. Each job consists of three operations, and each
factory has three machines dedicated to processing these operations. Assuming a standard processing
time of 3 h for each operation, the schedule’s Gantt chart, generated based on the scheduling scheme
in Table 2, is depicted in Fig. 1.

Table 2: An example of DHPFSP-VPS

FSi(J,F ,V) JS 1 5 2 7 6 3 4
FA 1 1 2 1 2 1 2
VS 3 1 3 1 2 3 1

1 1 1 3 2 2 2
2 2 2 1 1 2 2

5M1 1 3

1

7

5 3 7

51 3 7

M2

M3

Machine

Time/h

Factory1

M1 2 4

26

2 4

M2

M3

6

4

6

Machine

Time/h

Factory2

Figure 1: Gantt chart according to Table 2

During the decoding process, jobs are initially assigned to factories based on FA. Subsequently, the
job processing sequence within each factory is arranged according to JS. Lastly, the processing speeds
for each operation of the jobs are determined based on VS. The actual processing time is calculated
by dividing the standard processing time by the processing speed. The processing energy consumption
can be calculated based on the principle that it is positively correlated with the square of the processing
speed.

CMC, 2024, vol.81, no.1 1765

3 Squirrel Search Algorithm
3.1 Description of the Squirrel Search Algorithm

Squirrel Search Algorithm (SSA) is a new swarm intelligence algorithm proposed in recent years,
which has been proved to be highly competitive in solving real-world problems. However, there is
no research on the application of multi-objective squirrel search algorithm in distributed job shop
scheduling. SSA is a three-population based algorithm, which has excellent population cooperation
ability and can avoid blind crossover and mutation in scheduling optimization, which is very important
for complex combinatorial optimization problems. In addition, energy-efficient distributed job-shop
scheduling usually involves a large number of job and resource problems, and the data dimension of
the optimization problem is high, while the excellent performance of SSA in dealing with similar high-
dimensional data makes it may be a suitable choice to deal with such problems. In view of this, as well
as the advantages of SSA compared with other algorithms in convergence speed and avoiding local
optimum, this paper chooses SSA algorithm to solve the optimal energy-saving distributed job shop
scheduling problem.

SSA proposed by Jain et al. [29] in 2018 based on the dynamic feeding and gliding behavior of
flying squirrels. Flying squirrels possess a parachute-like membrane that enables them to alter lift
and air resistance effortlessly during gliding, exhibiting a complex and energy-efficient aerodynamic
motion. During warm seasons, squirrels glide continuously among forest trees in search of food and
to store excess provisions. However, in winter, reduced food availability and leaf scarcity increase the
risk of predation, resulting in decreased squirrel activity. Squirrels only regain their activity levels at
the end of winter. Three assumptions are formulated to enhance the simulation of squirrel behavior:

(1) Each squirrel in the forest occupies a tree individually.

(2) The forest comprises three types of trees: hickory, oak, and normal trees. Hickory trees offer
the highest-quality food, oak trees provide regular food, while normal trees do not have any food
resources.

(3) The forest consists of a single hickory tree and three oak trees, while the remaining trees are
normal trees.

Under the given assumptions, the positions of each squirrel are randomly initialized. Then, the
fitness of each squirrel is evaluated, and the individuals are sorted in ascending order based on their
fitness. The squirrel with the best fitness is assigned to the hickory tree, and the squirrels ranked 2nd
to 4th in terms of fitness are assigned to the oak trees. The remaining squirrels are allocated to the
normal trees.

3.2 Individual Location Update Methods

Squirrels update their positions by gliding across different trees. The updating of squirrel positions
can be categorized into three stages, determined by the initial and final positions of their glides.

Step 1: Squirrel located on oak tree moves towards the hickory tree using the position update
method described by Eq. (17).

FSt+1
at =

{
FSt

at + dg × Gc × (
FSt

ht − FSt
at

)
R ≥ Pdp

random location otherwise
(17)

where FSat is the location of the squirrel on the oak tree and FSht is the location of the squirrel on the
hickory tree. dg represents a random gliding distance, Gc is a gliding parameter, and R is a random
number in [0,1]. Pdp represents the probability of the presence of a predator.

1766 CMC, 2024, vol.81, no.1

Step 2: Squirrel located on normal tree migrates to the oak tree using the position update method
depicted in Eq. (18):

FSt+1
nt =

{
FSt

nt + dg × Gc × (
FSt

at − FSt
nt

)
R ≥ Pdp

random location otherwise
(18)

Step 3: Squirrel located on normal tree relocates to the hickory tree using the location update
method illustrated in Eq. (19):

FSt+1
nt =

{
FSt

nt + dg × Gc × (
FSt

ht − FSt
nt

)
R ≥ Pdp

random location otherwise
(19)

3.3 Season Detection Condition

To avoid local optima, a seasonality detection condition is introduced after the movement of all
individuals. Eq. (20) is used to determine the seasonality constant, and Eq. (21) is used to determine
the minimum value:

St
c =

√√√√ d∑
k=1

(
FSt

at,k − FSht,k

)2
t = 1, 2, 3 (20)

Smin = 10e−6

(365)
t/(T/2.5)

(21)

where T represents the maximum number of iterations, t represents the current iteration. When St
c <

Smin, the seasonality condition is satisfied, indicating the end of winter. At this stage, squirrels that have
not found food yet are randomly repositioned according to Eq. (22). In the formula, Lévy (n) is the
step size that follows a levy distribution in the random walk model, and FSU and FSL represent the
upper and lower bounds of the individual’s position, respectively.

FSnew
nt = FSL + Lévy (n) × (FSU − FSL) (22)

4 The DMSSA Is Designed Specifically for the DHPFS-VPS Problem
4.1 Hybrid Initialization Strategies

Employing effective initialization methods can substantially enhance the quality of the initial
population, benefiting both the algorithm’s rapid convergence and the final solution’s quality. Hence,
designing an effective initialization strategy for DHPFS-VPS holds immense significance. Four hybrid
initialization strategies are proposed, each based on distinct optimization objectives, as follows:

(1) The principle of makespan prioritizing: To minimize the maximum completion time of the
schedule, the processing speeds of all machines are set to the maximum. Firstly, JS and FA are
randomly initialized, and then the VS of all operations is set to the maximum. This step aids in
minimizing the makespan.

(2) The principle of TEC prioritizing: To minimize the energy consumption of the schedule, the
processing speeds of all machines are set to the minimum. Similarly, JS and FA are randomly initialized
first, and then the VS of all operations is set to the minimum. This step aids in reducing energy
consumption during processing.

(3) To prevent one factory from processing an excessive number of jobs, which could lead to a
longer overall makespan, the factory with the lowest current workload is selected when assigning jobs

CMC, 2024, vol.81, no.1 1767

to factories. Firstly, JS and VS are randomly initialized, and then the processing times of all machines
in each factory are evaluated. The factory with the shortest processing time for a job is chosen to
generate FA. If multiple factories have an equal workload, one of them is randomly selected.

(4) Random initialization: The diversity of the initial population is crucial for achieving the final
scheduling solution [39]. Therefore, as part of this study, a portion of the individuals adopt a random
initialization strategy that involves the random initializing of JS, FA, and VS. This step will help enrich
the diversity of the population.

To effectively implement the aforementioned four strategies, a quarter of the individuals are
generated for each strategy. The adoption of a hybrid initialization strategy allows for a thorough
exploration of the extreme spaces of the two objectives and ensures diversity in the initial population.
This approach is beneficial for increasing the distribution of solutions and accelerating the convergence
speed of the algorithm.

4.2 Improved Strategies for Making DMSSA Applicable to Discrete Scheduling Problems

4.2.1 Improved Population Hierarchy

In the standard SSA, the population is categorized into three categories: one squirrel perched on
a hickory tree, three squirrels on oak trees, and the remaining individuals on normal trees. During
foraging, collaboration is required. However, the basic SSA exhibits slow convergence speed and
premature convergence. This is because the SSA relies only on the guidance of four squirrels, which
weakens the information exchange and cooperation among the population, to some extent limiting
the algorithm’s search capability. In the process of collective search, having too few guiding individuals
weakens the group’s collaborative ability and leads to a linear centralization of population decision-
making. This is reflected in the convergence process, where the algorithm cannot escape the domain
of local optimal solutions and experiences premature convergence.

This study improves the population hierarchy system of squirrels by adjusting the distribution
proportions of the population individuals as follows: 10%: 30%: 60%, as shown in Fig. 2, where “ps”
represents the population size. Following the improvement, the number of individuals in categories
FSht and FSat increases, enhancing the guiding role of the head individuals. As this research deals
with a multi-objective problem, a sorting method akin to the non-dominated sorting and crowding
distance employed in the NSGA-II algorithm is utilized to rank the individuals. The top 10% of the
sorted individuals are assigned to hickory trees, followed by assigning 10% to 40% of individuals to
oak trees and allocating the remaining 60% of individuals to normal trees.

Figure 2: Improvement of the algorithm population hierarchy

1768 CMC, 2024, vol.81, no.1

4.2.2 Improved Position Updates

DHPFS-VPS is a discrete problem, while SSA is continuous, so it is necessary to improve the
position update method. The improved DMSSA categorizes the squirrel movement into three stages,
corresponding to the three types:

Step 1: The squirrels on the oak tree (FSat) move towards the hickory tree (FSht). In the absence
of predators (R ≥ Pdp), individuals on the hickory trees guide the individuals on the oak trees using
discrete Partial Match Crossover (PMX) for JS. Fig. 3 illustrates an example of PMX. Firstly, squirrels
located on the hickory trees and oak trees are selected, respectively. Then, two different points are
randomly selected, and the permutations between these two points are exchanged to generate two
offspring FS1 and FS2. These generated individuals may contain illegal solutions and require mapping.

Figure 3: PMX

As shown in Fig. 3, there are repetitions in Jobs 1 and 7 in FS1. Similarly, there are repetitions
in Jobs 3 and 6 in FS2. For FS1, the repeated job 1 is replaced with the corresponding Job 3 in FS2.
Likewise, Job 5 is replaced with Job 7, and the extra Job 7 is then replaced with Job 6. For FS2, after
applying the same replacement operation, the final two new individuals FSnew1 and FSnew2 are generated.

Since there is no correlation between the factory assignment and speed settings of each job, and
speed settings do not have permutation constraints, Uniform Crossover (UX) is used for FA and VS.
UX randomly selects corresponding encodings of two individuals for exchange. Fig. 4 illustrates a
schematic diagram of UX.

When a predator is present (R < Pdp), the squirrel’s movement is not guided by superior individuals,
and in the standard SSA, the squirrel randomly moves to other positions. However, in this case, as
FSat is already a better individual, randomly moving to other positions would result in the loss of its
previous memory, which is unfavorable for algorithm convergence. Thus, in this paper, the random

CMC, 2024, vol.81, no.1 1769

movement of FSat is improved by importing the local search methods introduced in Section 4.3.1.
Local search are conducted near the current position, which not only retains the previous memory
but also prevents the algorithm from getting trapped in local optima. The movement of FSat after the
improvement of Eq. (17) is shown in Eq. (23), where ⊗ denotes crossover.

FSt+1
at =

{
FSt

at ⊗ FSt
ht R ≥ Pdp

FSt
at local search otherwise (23)

Figure 4: UX

Step 2: The squirrels on the normal tree (FSnt) move towards the hickory tree (FSht). In the absence
of natural enemies (R ≥ Pdp), individuals on the hickory trees guide individuals on the normal trees,
following a similar approach as described in Eq. (23). For JS, PMX guidance is still used, while UX
guidance is employed for FA and VS. When natural enemies are present (R < Pdp), a mutation approach
is used instead of the “random location” described in Eq. (18), which is advantageous for increasing the
population’s diversity. For JS, the mutation involves randomly swapping the positions of two items. For
FA, the mutation entails randomly selecting an item and reassigning it to a different factory. For VS,
the mutation entails randomly selecting an operation and changing its speed. The improved movement
approach for Eq. (18) is described in Eq. (24).

FSt+1
nt =

{
FSt

nt ⊗ FSt
ht R ≥ Pdp

FSt
nt mutation otherwise (24)

Step 3: The squirrels on the normal tree (FSnt) move towards oak trees (FSat). The movement
approach in this step follows the same approach as in Step 2, and the improved movement approach
for Eq. (19) is described in Eq. (25).

FSt+1
nt =

{
FSt

nt ⊗ FSt
at R ≥ Pdp

FSt
nt mutation otherwise (25)

4.3 Search Strategy

4.3.1 Local Search Strategy

In the standard SSA, the superior individuals on the oak trees may undergo random initialization
to other positions, as shown in Eq. (17). This causes the superior individuals to completely abandon
their prior memory, resulting in a considerable loss of the previous iterative outcomes. To address this
issue, an improvement is proposed in this study. When R < Pdp, a local search strategy is applied to
the individuals on the oak trees. Designing an effective local search strategy can greatly enhance the
individuals’ search ability and have a positive impact on scheduling outcomes [40]. Therefore, based

1770 CMC, 2024, vol.81, no.1

on the characteristics of DHPFS-VPS, this study introduces the following six local search strategies
for the individuals on the oak trees. Each local search algorithm needs to be executed sequentially,
ensuring equal triggering frequency for all six algorithms. For detailed implementation, please refer
to Algorithm 1.

LS1: Randomly select two jobs and swap their positions, as shown in Fig. 5a. This operation helps
increase the diversity of solutions.

Figure 5: Local search

LS2: Perform an insertion operation within the critical factory. Within a critical factory, randomly
select a critical operation and insert it at another possible position in the factory, as shown in Fig. 5b.

LS3: Perform an insertion operation outside the critical factory. Within a critical factory,
randomly select a critical operation and insert it into a possible position in another factory, as shown
in Fig. 5c. This helps reduce the makespan.

LS4: Exchange operation between factories. Randomly select two factories, then randomly select
two operations and exchange their positions, as shown in Fig. 5d.

LS5: Perform a speed increase operation within critical factories. Within a critical factory,
randomly select a critical operation and increase its processing speed, as shown in Fig. 5e. This helps
reduce the makespan.

LS6: Perform an exchange operation within critical factories. Within a critical factory, randomly
select two critical operations and swap their positions, as shown in Fig. 5f.

Algorithm 1: Local search method
Input: Randomly select an individual in FSt

at , k = 1
(Continued)

CMC, 2024, vol.81, no.1 1771

Algorithm 1 (continued)
Output: The updated individual
While the stopping requirement is not met do

If k = 1
LS1;

Else If k = 2
LS2;

Else If k = 3
LS3;

Else If k = 4
LS4;

Else If k = 5
LS5;

Else If k = 6
LS6;

End If
k = k + 1;
If k > 6 then set k = 0;

End While
If the current solution dominate the original one, update the solution.

4.3.2 Dynamic Predator Strategy based on Q-Learning

(1) An introduction to Q-Learning

Watkins et al. [41] first introduced Q-learning in 1992, which has now become one of the
most famous reinforcement learning methods. It assists algorithms in selecting optimal parameters
throughout the iteration process and enhancing algorithm performance. Q-learning is comprised of a
quintuple (A, E, C, S, R), representing the Agent, Environment, Action set, State set, and Reward.
Referring to Fig. 6, the Agent performs action At based on its current state St at time t in the
Environment, then receives reward Rt+1, and its state transitions to a new state St+1. Eq. (26) is used to
update the Q-value as follows:

Q (St, At) = Q (St, At) + α [Rt + γ max (Q (St+1, At) − Q (St, At))] (26)

Figure 6: Q-learning

1772 CMC, 2024, vol.81, no.1

Q(St, At) represents the Q-value when taking action At in state St, Rt represents the reward signal,
α is the learning rate, and γ is the discount factor. This formula means that after taking action At, we
receive an immediate reward Rt and add it to the maximum Q-value of the next state St+1, updating the
corresponding element in the Q-table. This operation is controlled by α, which determines the learning
speed, but it is also influenced by γ , which represents the future rewards in the next stage of the Q-
value. When α tends to 0, the immediate reward has minimal impact on the current Q-value, leading
to slower learning but more stable learning. Conversely, larger values of α enable faster learning but
may lead to unstable Q-values.

(2) Definition of agent and action

In SSA, the probability of predator existence, denoted as Pdp, affects the individual’s movement
direction. In the standard SSA, Pdp is a fixed value of 0.1, which is obviously not conducive to
dynamically selecting the movement mode of the algorithm during iteration [42]. Tooptimize the
selection of individual movement directions at different stages of iteration and obtain a better Pareto
solution set, a dynamic Pdp based on Q-learning is designed. The predator existence probability for each
generation is abstracted as an agent, representing the successful parameter selection. Three candidate
values for the predator existence probability are set: Pdp = 0.3, 0.5, and 0.7.

(3) State setting

The changes in the Agent’s state provide feedback to Q-learning to determine whether the action
taken can improve the quality of the Pareto Front (PF). To describe the state, convergence (CV) and
diversity (DV) metrics are defined, as shown in Eqs. (27) and (28):

CV (P, P∗) =

√∑
y∈P

minx∈P∗ dis (x, y)
2

|P| (27)

DV =

N−1∑
i=1

∣∣∣∣di −
−
d

∣∣∣∣
(N − 1)

−
d

(28)

The calculation of CV and DV is similar to LI , etc. [43]. Here, P represents the PF obtained by the
algorithm, and P∗ is a predefined reference point. di denotes the Euclidean distance between adjacent

points in the PF , and
−
d is the average of di values. A smaller CV is better, while a larger DV is better. To

describe the changes in the state, Eqs. (29) and (30) provide the calculation methods for the variations
of CV and DV at each iteration.

� CV = CVi−1 − CVi (29)

� DV = DVi − DVi−1 (30)

According to the different values of �CV and �DV during the iteration process, four states are
defined, namely:

(1)�CV > 0, �DV > 0;

(2)�CV > 0, �DV ≤ 0;

(3)�CV ≤ 0, �DV > 0;

CMC, 2024, vol.81, no.1 1773

(4)�CV ≤ 0, �DV ≤ 0;

Specifically, (1) and (2) occur in the early stages of iteration, where the population is relatively
scattered. (3) and (4) occur in the later stages of iteration, where the population becomes more
clustered.

(4) Definition of reward

Following the execution of an action, the agent is either rewarded or punished. The selected action
will be rewarded if it increases the PF’s diversity; otherwise, it will be punished. For this study, the
maximum reward value is predetermined as 10, as used in previous research. To mitigate the impact
of punishment on previous rewards, the punishment is set to 0. The definition of rewards in this paper
is shown in Eq. (31):

Reward =
{

10 � DV > 0
0 � DV ≤ 0 (31)

(5) Based on Q-learning parameter selection

Algorithm 2 describes the details of parameter selection based on Q-learning. Firstly, the Q-table
is initialized with all zeros, and CV and DV as well as the state St are initialized. Then, the action At

is executed, resulting in PF, and �CV and �DV are updated. The agent transitions to the next state
St+1. Lastly, the (St, At) in the Q-table is updated using Eq. (26).

Algorithm 2: Dynamic predator strategies based on Q-learning
Input: Population, α,γ
Output: Q-table
Q-table(4,3)=0; CVi = CVi−1 = DVi = DVi−1 = 0;
While the stopping requirement is not met do

CVi = CVi−1; DVi = DVi−1;
Calculate agent’s state St;
Select the max (St,Ai) action At, i = 1, 2, 3, 4;
Execute action At for SSA to update population and get PF;
Calculate Ci and i by Eqs. (27) and (28);
Calculate Ci and i by Eqs. (29) and (30);
Get action At’s reward (St,At) by Eq. (20);
Calculate the new solution state St+1;
Update the Q-table by Eq. (26);

End While

4.4 Speed Control Energy-Efficient Strategy

TEC, an additional crucial objective of DHPFS-VPS. Designing effective energy-efficient tech-
niques is a key technology for energy scheduling. However, in DHPFS-VPS, makespan and TEC are
two conflicting sub-objectives, where improving one objective may lead to the deterioration of the
other. Based on this characteristic, this paper presents two speed control energy-efficient strategies
that specifically address idle time. These strategies can adjust the processing speed of the machine,
reducing energy consumption and minimizing idle time with no impact on makespan.

Speed reduction strategy be applicated to when the start time of an operation on the same machine
is greater than the end time of the previous operation, idle time is generated. Therefore, reducing the

1774 CMC, 2024, vol.81, no.1

processing speed of the operation before the idle time period can effectively decrease idle time, as
shown in Fig. 7. After implementing this operation, the processing speeds of operations O5,2, O5,3,
and O3,3 are slowed down, and the idle time T 1 and T 2 disappear, T 3 reducing by half to T ’3. The
critical path, representing the longest path from the start to the end, determines the makespan of this
schedule. To ensure that the makespan is not affected, this operation must be applied solely to non-
critical operations outside the critical path.

Figure 7: Speed reduction strategy

Speed increase strategy be applied when idle time is generated due to the excessive processing time
of a preceding operation, as in Fig. 7a where the operation O3,2 has excessive processing time, causing
the start time of O3,2 to be later than the end time of O5,2, a period of idle time is created. Thus, by
appropriately increasing the processing speed of O3,1, and reducing its processing time, the start time
of O3,2 can be advanced, consequently reducing idle time. As shown in Fig. 8, the implementation of
the speed increase strategy not only reduces idle time but also decreases the makespan.

Figure 8: Speed increase strategy

The speed reduction strategy extends the completion time of the preceding operation before
idle time, whereas the speed increase strategy advances the start time of the succeeding operation
after idle time. Both strategies can reduce energy consumption without increasing the makespan.
To balance the number of machines, a random selection probability of 0.5 is set for each of the
two strategies. Furthermore, to minimize runtime, we specify that the execution of the strategies
should only occur when the working time exceeds 80% of the total time. This strategy serves as a
comprehensive alternative to the seasonal detection condition discussed in Section 3.3 of SSA.

CMC, 2024, vol.81, no.1 1775

4.5 Framework of DMSSA

The overall framework of DMSSA, incorporating the search components mentioned above,
including hybrid initialization, local search, population position updates, parameter selection, and
energy-efficient strategy, is illustrated in Fig. 9. Firstly, high-quality solutions are generated using
hybrid initialization. Secondly, individuals are subjected to a non-dominated sorting based on crowd-
ing distance, and positions are allocated to all individuals. Next, the Q-learning is employed to
select the optimal Pdp. Subsequently, individual position information is updated using an improved
position update approach. Finally, the speed control energy-efficient strategy is applied to effectively
reduce TEC.

Figure 9: Framework of the DMSSA for DHPFSP-VPS

5 Experimental Results and Discussion
5.1 Performance Metrics

(1) Hypervolume (HV) [44]: HV can evaluate the distribution of Pareto solutions in the objective
space. A larger HV value indicates better overall performance of the algorithm. Eq. (32) shows how
to calculate it:

HV (P, r) = p∪
x∈p

v (x, r) a (32)

In the equation, P represents the Pareto solution set obtained by each algorithm, r is the reference
point, and let r be (1.1, 1.1). x represents a normalized Pareto solution, and v represents the volume
of the hypercube.

(2) Inverse Generational Distance (IGD) [45]: It primarily evaluates the convergence and distri-
bution of an algorithm. A smaller IGD value indicates better performance. The calculation formula

1776 CMC, 2024, vol.81, no.1

is shown in Eq. (33):

IGD =

√
n∑

i=1

d∗2
i

n
(33)

In the equation, di represents the Euclidean distance between each point in the true Pareto front
(PF∗) and the nearest point obtained by the algorithm’s Pareto front. n represents the number of points
in PF∗. Since the true values of PF∗ are unknown, in this study, the PF∗ for each problem is obtained
from the runs of all the algorithms.

(3) Spread [46]: It measures the diversity of a solution set by quantifying its extent of spread.
A smaller Spread value indicates better performance. The mathematical expression is provided in
Eq. (34):

Spread =
df + dl + ∑N−1

i=1

∣∣∣∣di −
−
d

∣∣∣∣
df + dl + (N − 1)

−
d

(34)

In the equation, d represents the distance between extreme solutions on the Pareto approximate
solution set, and di represents the distance between boundary solutions of each objective. N is the
number of individuals in the approximate solution set. d is the average value of all di distances.

5.2 Test Problem

Currently, there is no available open-source benchmark specifically designed for DHPFS-VPS.
In this study, Reference [26] served as the basis, and a total of 20 different problems are generated
using the Taillard benchmark. These problems are named following the n-m-F notation. The specific
parameters are presented in Table 3, where n = {20, 50, 100, 200}, F = {2, 3}, m = {5, 10, 20}, and V v =
{1, 1.3, 1.55, 1.75, 2.1}. Each operation’s standard processing time follows a uniform distribution U(1,
99). In heterogeneous factories, each operation has different processing times in different factories. The
processing power is set to 2.0 kWh, with the idle power is set to 1.0 kWh. The CPU stopping time is
set to 0.5×n s. All codes are programmed using MATLAB 2019b, and the software is run on a system
with an Intel(R) Core(TM) i9-9900K CPU @ 3.60 GHz and 64 GB RAM, operating on a Windows
10 system. Each problem is independently run 20 times to confirm the reliability of the results.

Table 3: Data set distribution

Input variables Value

Number of jobs (n) 20, 50, 100, 200
Number of factors (F) 2, 3
Number of machines (m) 5, 10, 20
Production speed (V v) 1, 1.3, 1.55, 1.75, 2.1
Standard processing time (tij) ∼DU(1,99)

CMC, 2024, vol.81, no.1 1777

5.3 Parameter Settings

The performance of an algorithm is influenced by multiple factors, with parameters being
particularly significant. Therefore, it is crucial to determine the optimal parameters for algorithmic
applications. In DMSSA, there are three parameters: the population size (ps), the learning rate (α),
and the decay rate (γ). This study adopts the Taguchi method of design of experiment (DOE) [47] to
find the optimal parameters by setting parameter levels. Based on mainstream parameter settings, this
study sets the parameter levels as follows: ps = 50, 100, 150. γ = 0.7, 0.8, 0.9. α = 0.1, 0.2, 0.3.

A calibration experiment is conducted using an orthogonal array L9(33). Each parameter is
independently run 30 times on the 20_5_2 problem, and the average HV are calculated. As shown
in Fig. 10, we evaluate the impact of the three parameters on the HV value. Considering the
comprehensive influence, the optimal configuration of the parameters is ps = 100, γ = 0.9, α = 0.2.

Figure 10: Main effects plot of HV

5.4 Effectiveness of Hybrid Initialization

To demonstrate the competitiveness of the population generated through hybrid initialization,
100 individuals are generated using both hybrid initialization and random initialization on the
20_10_2 problem. Fig. 11 displays the box plots of the individuals generated by both methods for
the two objectives. After comparing and analyzing the individuals generated by the two different
initialization methods on the two objectives, the results indicate that the population generated by
hybrid initialization has higher quality. Specifically, on makespan and TEC, the population generated
by hybrid initialization exhibits a broader distribution, enabling better exploration and utilization
of the objective space, as seen in Fig. 11a,b. In contrast, the individuals generated by random
initialization are relatively concentrated, constraining the population’s evolutionary development
space. These results suggest that, in the selection of the initial population, hybrid initialization is a
more effective and appropriate strategy.

1778 CMC, 2024, vol.81, no.1

Figure 11: Population boxplot generated by two methods

5.5 Effectiveness of Local Search Strategy

To validate the effectiveness of the local search strategy, DMSSA is compared with DMSSA
without local search (referred to as DMSSA_nols). For each problem, the average results of HV, IGD,
and Spread are shown in Table 4, with bold values indicating the optimal results. DMSSA achieves
15 HV values, 16 Spread values, and all IGD values outperform DMSSA_nols. This indicates that
DMSSA discovers a larger set of non-dominated solutions, and the convergence and distribution of the
solutions are enhanced. In conclusion, the local search strategy maximizes the utilization of problem
attributes, enabling flexible exploration of potential solutions.

Table 4: Date for DMSSA and DMSSA_nols

Problem DMSSA_nols DMSSA
HV IGD Spread HV IGD Spread

20_5_2 0.2135 0.0645 0.8823 0.2485 0.0620 0.7918
20_10_2 0.2235 0.8099 0.9003 0.2315 0.7476 0.9032
20_20_2 0.2218 1.0033 0.8792 0.2253 0.9512 0.8841
50_5_2 0.2048 0.0850 0.8459 0.1993 0.0690 0.8738
50_10_2 0.2171 0.5769 0.9253 0.2285 0.5566 0.9122
50_20_2 0.2269 0.9002 0.9572 0.2286 0.8318 0.8987
100_10_2 0.2179 0.3838 0.9318 0.2278 0.3726 0.9099
100_20_2 0.2273 0.6982 0.9749 0.2262 0.6857 0.9311
200_10_2 0.2182 0.2080 0.9066 0.2233 0.1058 0.8933
200_20_2 0.2227 0.4286 0.9905 0.2228 0.4184 0.9427
20_10_3 0.2275 0.7851 0.9199 0.2249 0.7192 0.8962
20_20_3 0.2233 23.9011 0.9289 0.2275 23.5078 0.9462
50_5_3 0.2081 0.1521 0.9397 0.2091 0.1460 0.8874

(Continued)

CMC, 2024, vol.81, no.1 1779

Table 4 (continued)

Problem DMSSA_nols DMSSA
HV IGD Spread HV IGD Spread

50_10_3 0.2230 0.9084 0.9440 0.2357 0.8896 0.9370
50_20_3 0.2151 115.6593 0.9429 0.2184 113.9682 0.9391
100_5_3 0.2093 0.1443 0.9396 0.2076 0.1400 0.9229
100_10_3 0.2283 0.4590 0.9716 0.2350 0.4509 0.9293
100_20_3 0.2283 0.9482 0.9351 0.2281 0.9425 0.9396
200_10_3 0.2224 0.1122 0.9479 0.2367 0.1015 0.8982
200_20_3 0.2233 0.5456 0.9566 0.2194 0.4601 0.9339

5.6 Effectiveness of Dynamic Predator Strategy Based on Q-Learning

To demonstrate the effectiveness of the dynamic predator strategy based on Q-learning, Fig. 12
illustrates the convergence curves of CV and DV on the 20_5_2 problem. In the figure, each trough-
to-peak cycle can be thought of as one period. Initially, multiple strategies collaborate during the
iteration, leading to a rapid convergence of the population and a significant decrease in CV. During
the search process, Q-learning continuously selects optimal parameters to increase diversity, leading to
continuous fluctuations in DV. In the optimization process, the algorithm often gets trapped in local
optima, but Q-learning is able to continuously select optimal parameters to aid its getting away from
local optima. In later iterations, DV shows an upward trend of fluctuation, indicating an increasing
population diversity. Table 5 provides the Q-table for the last iteration. In the early iterations, a larger
Pdp is needed to increase diversity. During the iteration, to hasten the algorithm’s convergence, it
is necessary to continuously decrease Pdp to guide individuals towards better individuals. However,
blindly approaching the top individuals can cause the algorithm to get caught in local optima, and in
such cases, it is necessary to increase Pdp to enhance population diversity. The data in Table 5 indicates
that in the last iteration, Pdp = 0.3, which means Q-learning can continuously guide individuals towards
excellent individuals in the later stages. In summary, the predator adaptation strategy based on Q-
learning developed in this study can dynamically select optimal parameters at each state.

Figure 12: Change tendency graph of convergence and diversity

1780 CMC, 2024, vol.81, no.1

Table 5: The Q-table for the last iteration

Pdp = 0.3 Pdp = 0.5 Pdp = 0.7

State1 (�CV > 0, �DV > 0) 1.53 3.62 13.67
State2 (�CV > 0, �DV ≤ 0) 1.41 1.08 15.86
State3 (�CV ≤ 0, �DV > 0) 15.96 0 2.21
State4 (�CV ≤ 0, �DV ≤ 0) 5.04 0 11.39

5.7 Comparison with Other Algorithms

To further demonstrate the outperformance of DMSSA, it is compared with classical discrete
multi-objective evolutionary algorithms (MOEAs): (1) General MOEAs: NSGA-II [46], MOEA/D
[48], PESA2 [49]. (2) Famous MOEAs proposed recently: AR-MOEA [50], TSNSGA-II [51]. (3) The
algorithm specifically designed for DHPFSP-VPS, BRCE [26]. All algorithms have a population size
(ps) of 100. The mutation probability for NSGA-II, MOEA/D, PESA2, TSNSGA-II and BRCE is
set to 0.2, and the crossover probability is set to 1.0. The number of neighborhoods for MOEA/D
and AR-MOEA is 10. The experiments are conducted independently, with each algorithm running
20 times on the same experimental platform. All algorithms terminate when the CPU time reaches
0.5 ∗ n s.

Tables 6–8 summarize the average HV, IGD, and Spread values obtained by all algorithms on
the 20 problems. The bold values indicate the best results. As shown in Tables 5 and 6, DMSSA
outperforms all other algorithms significantly, achieving better HV and IGD values, indicating
superior overall performance and diversity. However, DMSSA performs relatively worse than BRCE
in terms of HV on 4 problems and IGD on 6 problems. This is because BRCE utilizes an excellent
dual-population cooperation strategy, resulting in better solution sets in a few problems. Overall, this
outcome is deemed acceptable. Regarding the Spread metric presented in Table 8, DMSSA achieves
the highest number of optimal solutions, ranking first, followed by NSGA-II, suggesting that the
Pareto solutions obtained by DMSSA exhibit the best distribution. Table 9 presents the Friedman
rank test results for all MOEAs with a significance level of 0.05. DMSSA ranks first in all metrics,
and the p-values are all below 0.05, signifying the significant superiority of DMSSA over all compared
algorithms.

Table 6: HV of DMSSA and other MOEAs

Problem HV
MOEA/D NSGA-II SPEA2 AR-MOEA TSNSGA-II BRCE DMSSA

20_5_2 0.0857 0.0793 0.0729 0.0085 0.1017 0.2489 0.2383
20_10_2 0.0501 0.0685 0.0375 0.0114 0.0768 0.2331 0.2385
20_20_2 0.0403 0.0595 0.0257 0.0223 0.0509 0.2199 0.2269
50_5_2 0.0435 0.0407 0.0441 0.0660 0.1825 0.2076 0.2092
50_10_2 0.0318 0.0382 0.0238 0.0530 0.0441 0.2304 0.2360
50_20_2 0.0256 0.0379 0.0177 0.0318 0.0568 0.2169 0.2276
100_10_2 0.0243 0.0404 0.0235 0.0266 0.0301 0.2316 0.2189

(Continued)

CMC, 2024, vol.81, no.1 1781

Table 6 (continued)

Problem HV
MOEA/D NSGA-II SPEA2 AR-MOEA TSNSGA-II BRCE DMSSA

100_20_2 0.0210 0.0440 0.0126 0.0195 0.0396 0.2109 0.2186
200_10_2 0.0183 0.0184 0.0124 0.0231 0.0222 0.2273 0.2281
200_20_2 0.0167 0.0287 0.0130 0.0192 0.0470 0.2108 0.2236
20_10_3 0.0581 0.0635 0.0565 0.0778 0.0876 0.2272 0.2300
20_20_3 0.0380 0.0602 0.0333 0.1775 0.1751 0.2291 0.2258
50_5_3 0.0438 0.0412 0.0415 0.8599 0.8512 0.2058 0.2070
50_10_3 0.0314 0.0444 0.0253 0.1651 0.7672 0.2193 0.2284
50_20_3 0.0292 0.0470 0.0189 0.5965 0.6071 0.2223 0.2171
100_5_3 0.0300 0.0290 0.0314 0.7289 0.7170 0.2175 0.2224
100_10_3 0.0208 0.0332 0.0241 0.0983 0.1896 0.2259 0.2265
100_20_3 0.0217 0.0388 0.0128 0.3420 0.3934 0.2123 0.2213
200_10_3 0.0175 0.0167 0.0141 0.2092 0.2155 0.2206 0.2275
200_20_3 0.0165 0.0318 0.0122 0.0512 0.1083 0.2012 0.2217

Table 7: IGD of DMSSA and other MOEAs

Problem IGD
MOEA/D NSGA-II SPEA2 AR-MOEA TSNSGA-II BRCE DMSSA

20_5_2 0.2553 0.1450 0.1347 0.4209 0.1316 0.0366 0.0835
20_10_2 2.3630 1.5430 1.5375 0.6033 1.6697 0.8365 0.8240
20_20_2 2.7245 1.6589 1.6907 0.7387 1.8082 0.8377 0.8374
50_5_2 0.3059 0.2058 0.2017 0.4777 0.2049 0.0610 0.1085
50_10_2 2.2326 1.5291 1.4905 0.4852 1.6623 0.6025 0.5260
50_20_2 3.4822 2.7161 2.8482 1.2311 2.5595 0.8858 0.8536
100_10_2 1.0397 0.7721 0.8263 0.5343 0.7911 0.4923 0.4630
100_20_2 1.6208 1.3932 1.5023 0.8070 1.5042 0.8329 0.7630
200_10_2 0.2611 0.2403 0.2401 0.4411 0.2281 0.0987 0.1169
200_20_2 1.6605 1.4719 1.6559 0.9248 1.5384 0.6250 0.5363
20_10_3 2.7987 1.5957 1.6116 0.3349 1.6816 0.7560 0.7547
20_20_3 31.1316 27.9643 29.9063 39.9080 26.5991 23.7283 23.4942
50_5_3 0.4645 0.2156 0.2095 0.5399 0.2189 0.0893 0.2124
50_10_3 4.1910 2.7143 2.7800 0.8638 2.7907 0.8711 0.8024
50_20_3 111.8082 96.7437 105.8329 132.2805 90.0112 82.4946 82.0380
100_5_3 0.4210 0.2221 0.2156 0.4800 0.2114 0.0905 0.2016
100_10_3 1.7394 1.1709 1.2389 0.4612 1.3224 0.4609 0.4119
100_20_3 3.1533 2.3935 2.8024 1.4782 2.3634 0.9448 0.9436
200_10_3 0.3485 0.3368 0.3343 0.4091 0.3252 0.0809 0.1167
200_20_3 2.6107 2.0960 2.3790 1.5708 2.1225 0.8331 0.8013

1782 CMC, 2024, vol.81, no.1

Table 8: Spread(min) of DMSSA and other MOEAs

Problem Spread

MOEA/D NSGA-II SPEA2 AR-MOEA TSNSGA-II BRCE DMSSA

20_5_2 1.0223 0.9613 0.9816 1.2346 0.9771 0.8101 0.8626
20_10_2 1.0077 0.9779 0.9862 1.0018 0.9968 0.9530 0.9372
20_20_2 1.0067 0.9852 0.9938 1.0073 0.9898 0.9528 0.9259
50_5_2 1.0719 0.9877 0.9869 1.3622 0.9937 0.9656 0.9601
50_10_2 1.0153 0.9937 0.9964 1.0764 1.0003 1.0439 1.0134
50_20_2 1.0017 0.9998 0.9958 1.0410 0.9966 1.0661 0.9956
100_10_2 1.0021 0.9933 0.9966 1.0378 0.9989 1.0598 1.0098
100_20_2 1.0006 0.9949 0.9991 1.0441 0.9948 1.0663 1.0146
200_10_2 1.0070 0.9963 0.9998 1.0094 0.9989 1.2056 1.0827
200_20_2 1.0005 1.0003 1.0431 0.9996 1.0000 1.0615 0.9993
20_10_3 1.0177 0.9977 0.9867 1.0458 1.3962 0.9572 0.9297
20_20_3 1.0092 0.9860 0.9930 1.0366 1.0737 1.0070 0.9409
50_5_3 1.0197 0.9986 0.9959 1.1864 1.2111 0.9744 0.9764
50_10_3 1.0095 0.9994 0.9991 1.0432 1.0688 1.0300 0.9954
50_20_3 1.0044 0.9991 0.9989 1.0499 1.0377 0.9980 0.9753
100_5_3 1.0269 0.9933 1.0073 1.1297 1.0924 1.0374 0.9651
100_10_3 1.0008 1.0019 0.9973 1.0555 1.0276 1.0495 1.0114
100_20_3 1.0017 0.9984 1.0032 1.0694 1.0116 1.0667 0.9936
200_10_3 1.0029 1.0008 0.9983 1.7114 1.0242 1.2155 1.0527
200_20_3 1.0003 0.9996 1.0028 1.0055 1.0046 1.0490 1.0142

Table 9: Frideman ranking of all algorithms

MOEAs HV IGD Spread

Rank P Rank P Rank P

MOEA/D 5.75 2.35E-16 6.42 1.77E-16 4.55 1.39E-08
NSGA-II 6.35 4.12 2.70
SPEA2 5.10 4.42 2.83
AR-MOEA 3.95 4.69 6.20
TSNSGA-II 3.10 4.46 4.60
BRCE 2.30 2.31 4.60
DMSSA 1.45 1.58 2.53

In order to demonstrate the energy-efficient effect of DMSSA more intuitively, Fig. 13 provides
a graphical representation of the PF. Two problems with varying numbers of factories are chosen
to verify the efficacy of DMSSA. The figure illustrates that DMSSA can generate solutions with a

CMC, 2024, vol.81, no.1 1783

uniform distribution, explore a wider range of solutions, and discover a greater number of solutions on
both ends. Fig. 13 presents the set of nondominated solutions found by all algorithms running 20 times
on the 20_5_2 instance and 200_10_3 instances, which strongly illustrates that the non-dominated
solution set found by DMSSA can better explore the frontier, and the number and distribution of
solutions are better. The lowest energy consumption of DMSSA finding solutions (829, 9544.37) is
the most energy-efficient, which is 1.37% less than the lowest energy consumption of BRCE (784,
9677.23), which is the second most energy efficient, and 2.22% less than the lowest energy consumption
of MOEA/D (846, 9761.43), which is the third most energy efficient. Around the completion time
3500 In Fig. 13, the points found by DMSSA are (3496.09, 239556), the points found by SPEA2
are (3504.46, 245153), and the points found by BRCE are (3495.55, 249051). It can be seen that
DMSSA saves 2.28% and 3.81% energy than SPEA2 and BRCE respectively when the completion
time is close. Through the analysis of the time complexity, DMSSA is comparable to other commonly
used metaheuristic algorithms. Moreover, compared to other algorithms, DMSSA can always find
scheduling schemes with even lower TEC. The majority of solutions discovered by DMSSA exhibit
higher efficiency and superiority compared to those found by other algorithms, providing further
evidence of the effectiveness of the speed control energy-efficient strategy.

Figure 13: Pareto Frontier obtained by different algorithms

The excellent results of DMSSA are due to the synergy among all the strategies employed.
The initial solutions’ quality is improved by the effective hybrid initialization method, as detailed in
Section 5.3. Furthermore, the improved population ranking system and position update mechanism
enable more efficient solution space exploration. Experimental outcomes, as discussed in Section 5.4,
have demonstrated that the local search strategy substantially enhances the algorithm’s overall perfor-
mance. The dynamic predator strategy based on Q-learning effectively improves the distribution and
convergence of solutions, as described in Section 5.5. The comparative results with other algorithms
indicate that DMSSA exhibits outstanding performance, and the proposed speed control energy-
efficient strategy effectively reduces TEC.

In conclusion, the experimental dates validate that DMSSA outperforms other MOEAs in all
cases. The superiority of DMSSA is statistically significant across all scenarios. Therefore, DMSSA is
an effective method for addressing the energy-efficient DHPFSP-VPS problem.

1784 CMC, 2024, vol.81, no.1

6 Conclusion

This paper proposes a discrete multi-objective squirrel search algorithm aimed at solving the
distributed heterogeneous permutation flowshop problem with variable processing speed (DHPFSP-
VPS). Firstly, four initialization methods are designed based on the two optimization objectives.
Secondly, six local search strategies are developed based on the characteristics of the three-stage
encoding. Concurrently, improvements are made to the population ranking system and position
update mechanism of SSA to better suit the characteristics of DHPFSP-VPS and enhance its
search process. Furthermore, the predator strategy based on Q-learning dynamically selects optimal
parameters to balance global exploration and local exploitation, thereby improving the convergence
and distribution of the Pareto solution set. Finally, two speed control energy-efficient strategies are
designed to reduce idle time and decrease TEC. Experimental results on 20 problems validate the
effectiveness of each strategy. Comparative experiments with other algorithms indicate the outstanding
performance of the proposed DMSSA in solving DHPFSP-VPS.

However, there are several aspects of work in this field that deserve further research. It would be
significant to apply DMSSA to practical industrial difficulties based on the real-world manufacturing
context. Moreover, in terms of the problem model, it is also possible to consider more factors, such as
processing delays and machine malfunctions. Furthermore, dynamic scheduling scenarios should be
considered to effectively accommodate the dynamic nature of real-world production.

Acknowledgement: Not applicable.

Funding Statement: This work was in part supported by the Key Research and Development Project
of Hubei Province (Nos. 2020BAB114 and 2023BAB094).

Author Contributions: The authors confirm contribution to the paper as follows: study conception and
design: Liang Zeng; data collection: Ziyang Ding; analysis and interpretation of results: Shanshan
Wang; draft manuscript preparation and manuscript proofreading: Junyang Shi. All authors reviewed
the results and approved the final version of the manuscript.

Availability of Data and Materials: Data is available on request from the authors. The data that
support the findings of this study are available from the corresponding author, Shanshan Wang, upon
reasonable request.

Ethics Approval: Not applicable.

Conflicts of Interest: The authors declare that they have no known competing financial interests or
personal relationships that could have appeared to influence the work reported in this paper.

References
[1] S. M. Johnson, “Optimal two-and three-stage production schedules with setup times included,” Nav. Res.

Logist. Q., vol. 1, no. 1, pp. 61–68, 1954. doi: 10.1002/NAV.3800010110.
[2] M. R. Garey, D. S. Johnson, and R. Sethi, “The complexity of flowshop and jobshop scheduling,” Math.

Oper. Res., vol. 1, no. 2, pp. 117–129, May 1976. doi: 10.1287/moor.1.2.117.
[3] C. N. Wang, G. Andrew Porter, C. C. Huang, V. Tinh Nguyen, and S. Tam Husain, “Flow-shop scheduling

with transportation capacity and time consideration,” Comput. Mater. Contin., vol. 70, no. 2, pp. 3031–
3048, 2022. doi: 10.32604/cmc.2022.020222.

https://doi.org/10.1002/NAV.3800010110
https://doi.org/10.1287/moor.1.2.117
https://doi.org/10.32604/cmc.2022.020222

CMC, 2024, vol.81, no.1 1785

[4] F. T. S. Chan, S. H. Chung, and P. L. Y. Chan, “An adaptive genetic algorithm with dominated
genes for distributed scheduling problems,” Expert Syst. Appl., vol. 29, pp. 364–371, 2005. doi:
10.1016/j.eswa.2005.04.009.

[5] A. Toptal and I. Sabuncuoglu, “Distributed scheduling: A review of concepts and applications,” Int. J.
Prod. Res., vol. 48, no. 18, pp. 5235–5262, Sep. 2010. doi: 10.1080/00207540903121065.

[6] B. Naderi and R. Ruiz, “The distributed permutation flowshop scheduling problem,” Comput. Oper. Res.,
vol. 37, pp. 754–768, 2010. doi: 10.1016/j.cor.2009.06.019.

[7] J. Gao and R. Chen, “A hybrid genetic algorithm for the distributed permutation flowshop scheduling
problem,” Int. J. Comput. Intell. Syst., vol. 4, no. 4, pp. 497–508, 2011. doi: 10.1080/18756891.2011.9727808.

[8] J. Gao, R. Chen, and W. Deng, “An efficient tabu search algorithm for the distributed permu-
tation flowshop scheduling problem,” Int. J. Prod. Res., vol. 51, no. 3, pp. 641–651, 2013. doi:
10.1080/00207543.2011.644819.

[9] A. P. Rifai, H. T. Nguyen, and S. Z. M. Dawal, “Multi-objective adaptive large neighborhood search for
distributed reentrant permutation flow shop scheduling,” Appl. Soft Comput., vol. 40, pp. 42–57, 2016. doi:
10.1016/j.asoc.2015.11.034.

[10] S. W. Lin, K. C. Ying, and C. Y. Huang, “Minimising makespan in distributed permutation flowshops
using a modified iterated greedy algorithm,” Int. J. Prod. Res., vol. 51, no. 16, pp. 5029–5038, 2013. doi:
10.1080/00207543.2013.790571.

[11] W. Shao, D. Pi, and Z. Shao, “A pareto-based estimation of distribution algorithm for solving multiobjec-
tive distributed nowait flow-shop scheduling problem with sequence-dependent setup time,” IEEE Trans.
Autom. Sci. Eng., vol. 16, no. 3, pp. 1344–1360, 2019. doi: 10.1109/TASE.2018.2886303.

[12] C. Lu, Y. Huang, L. Meng, L. Gao, B. Zhang and J. Zhou, “A pareto-based collaborative multi-objective
optimization algorithm for energy-efficient scheduling of distributed permutation flowshop with limited
buffers,” Robot. Comput. Integr. Manuf., vol. 74, 2022, Art. no. 102277. doi: 10.1016/j.rcim.2021.102277.

[13] F. Zhao, D. Shao, L. Wang, T. Xu, and N. Zhu, “Jonrinaldi, an effective water wave optimization algorithm
with problemspecific knowledge for the distributed assembly blocking flow-shop scheduling problem,”
Knowl.-Based Syst., vol. 243, 2022, Art. no. 108471. doi: 10.1016/j.knosys.2022.108471.

[14] R. Ruiz, Q. K. Pan, and B. Naderi, “Iterated Greedy methods for the distributed permutation flowshop
scheduling problem,” Omega, vol. 83, pp. 213–222, 2019. doi: 10.1016/j.omega.2018.03.004.

[15] H. Bargaoui, O. Belkahla, and K. Ghédira, “A novel chemical reaction optimization for the distributed
permutation flowshop scheduling problem with makespan criterion,” Comput. Ind. Eng., vol. 111, pp. 239–
250, 2017. doi: 10.1016/j.cie.2017.07.020.

[16] J. Li, S. Bai, P. Duan, H. Sang, Y. Han and Z. Zheng, “An improved artificial bee colony algorithm for
addressing distributed flow shop with distance coefficient in a prefabricated system,” Int. J. Prod. Res., vol.
57, no. 22, pp. 6922–6942, 2019. doi: 10.1080/00207543.2019.1571687.

[17] J. Lin, Z. J. Wang, and X. Li, “A backtracking search hyper-heuristic for the distributed assembly flow-shop
scheduling problem,” Swarm Evol. Comput., vol. 36, pp. 124–135, 2017. doi: 10.1016/j.swevo.2017.04.007.

[18] M. Akbar and T. Irohara, “Scheduling for sustainable manufacturing: A review,” J. Clean.Prod., vol. 205,
pp. 866–883, 2018. doi: 10.1016/j.jclepro.2018.09.100.

[19] IEA, “Worldwide trends in energy use and efficiency: Key insights from iea indicator analysis,” 2008.
Accessed: Aug. 11, 2024. [Online]. Available: http://sa.indiaenvironmentportal.org.in/files/Indicators_2008.
pdf

[20] J. Wang and L. Wang, “A knowledge-based cooperative algorithm for energy-efficient scheduling of
distributed flow-shop,” IEEE Trans. Syst., Man, Cybern.: Syst., vol. 50, no. 5, pp. 1805–1819, 2018. doi:
10.1109/TSMC.2017.2788879.

[21] J. Wang and L. Wang, “A cooperative memetic algorithm with feedback for the energy-aware distributed
flow-shops with flexible assembly scheduling,” Comput. Ind. Eng., vol. 168, 2022, Art. no. 108126. doi:
10.1016/j.cie.2022.108126.

https://doi.org/10.1016/j.eswa.2005.04.009
https://doi.org/10.1080/00207540903121065
https://doi.org/10.1016/j.cor.2009.06.019
https://doi.org/10.1080/18756891.2011.9727808
https://doi.org/10.1080/00207543.2011.644819
https://doi.org/10.1016/j.asoc.2015.11.034
https://doi.org/10.1080/00207543.2013.790571
https://doi.org/10.1109/TASE.2018.2886303
https://doi.org/10.1016/j.rcim.2021.102277
https://doi.org/10.1016/j.knosys.2022.108471
https://doi.org/10.1016/j.omega.2018.03.004
https://doi.org/10.1016/j.cie.2017.07.020
https://doi.org/10.1080/00207543.2019.1571687
https://doi.org/10.1016/j.swevo.2017.04.007
https://doi.org/10.1016/j.jclepro.2018.09.100
http://sa.indiaenvironmentportal.org.in/files/Indicators_2008.pdf
http://sa.indiaenvironmentportal.org.in/files/Indicators_2008.pdf
https://doi.org/10.1109/TSMC.2017.2788879
https://doi.org/10.1016/j.cie.2022.108126

1786 CMC, 2024, vol.81, no.1

[22] Y. Li, Q. Pan, K. Gao, M. F. Tasgetiren, B. Zhang and J. Li, “A green scheduling algorithm
for the distributed flowshop problem,” Appl. Soft Comput., vol. 109, 2021, Art. no. 107526. doi:
10.1016/j.asoc.2021.107526.

[23] F. Zhao, R. Ma, and L. Wang, “A self-learning discrete jaya algorithm for multiobjective energy-efficient
distributed no-idle flow-shop scheduling problem in heterogeneous factory system,” IEEE Trans. Cybern.,
vol. 52, no. 12, pp. 12675–12686, Dec. 2022, doi: 10.1109/TCYB.2021.3086181.

[24] A. M. Fathollahi-Fard, L. Woodward, and O. Akhrif, “Sustainable distributed permutation flow-shop
scheduling model based on a triple bottom line concept,” J. Ind. Inf. Integr., vol. 24, 2021, Art. no. 100233.
doi: 10.1016/j.jii.2021.100233.

[25] J. Jiang, Y. An, Y. Dong, J. Hu, Y. Li and Z. Zhao, “Integrated optimization of non-permutation flow shop
scheduling and maintenance planning with variable processing speed,” Reliab. Eng. Syst. Safety, vol. 234,
2023, Art. no. 109143. doi: 10.1016/j.ress.2023.109143.

[26] K. Huang, R. Li, W. Gong, R. Wang, and H. Wei, “BRCE: bi-roles co-evolution for energy-efficient
distributed heterogeneous permutation flow shop scheduling with flexible machine speed,” Complex Intelli.
Syst, vol. 9, pp. 4805–4816, 2023. doi: 10.1007/s40747-023-00984-x.

[27] G. Wang, L. Gao, X. Li, P. Li, and M. F. Tasgetiren, “Energy-efficient distributed permutation flow shop
scheduling problem using a multi-objective whale swarm algorithm,” Swarm Evol. Comput., vol. 57, 2020,
Art. no. 100716. doi: 10.1016/j.swevo.2020.100716.

[28] P. Perez-Gonzalez and J. M. Framinan, “A review and classification on distributed permutation flowshop
scheduling problems,” Eur. J. Oper. Res., vol. 312, no. 1, pp. 1–21, 2023. doi: 10.1016/j.ejor.2023.02.001.

[29] M. Jain, V. Singh, and A. Rani, “A novel nature-inspired algorithm for optimization: Squirrel search
algorithm,” Swarm Evol. Comput., vol. 44, pp. 148–175, 2019. doi: 10.1016/j.swevo.2018.02.013.

[30] T. Zheng and W. Luo, “An improved squirrel search algorithm for optimization,” Complexity, vol. 2019,
no. 1, 2019, Art. no. 153. doi: 10.1155/2019/6291968.

[31] P. Wang, Y. Kong, X. He, M. Zhang, and X. Tan, “An improved squirrel search algorithm for maximum
likelihood DOA estimation and application for MEMS vector hydrophone array,” IEEE Access, vol. 7, pp.
118343–118358, 2019. doi: 10.1109/ACCESS.2019.2936823.

[32] E. S. M. El-Kenawy et al., “Advanced meta-heuristics, convolutional neural networks, and feature selectors
for efficient COVID-19 X-ray chest image classification,” IEEE Access, vol. 9, pp. 36019–36037, 2021. doi:
10.1109/ACCESS.2021.3061058.

[33] V. P. Sakthivel and P. D. Sathya, “Multi-area economic environmental dispatch using multi-objective
squirrel search algorithm,” Evol. Syst., vol. 13, no. 2, pp. 183–199, 2022. doi: 10.1007/s12530-021-09366-5.

[34] Y. Wang and J. Han, “A FJSSP method based on dynamic multi-objective squirrel search algorithm,” Int.
J. Antennas Propag., vol. 2021, pp. 1–19, 2021. doi: 10.1155/2021/6062689.

[35] B. Jaishankar, S. Vishwakarma, P. Mohan, A. K. S. Pundir, I. Patel and N. Arulkumar, “Blockchain for
securing healthcare data using squirrel search optimization algorithm,” Intell. Autom. Soft Comput., vol.
32, no. 3, pp. 1815–1829, 2022. doi: 10.32604/iasc.2022.021822.

[36] D. Guha, P. K. Roy, and S. Banerjee, “Frequency control of a wind-diesel-generator hybrid sys-
tem with squirrel search algorithm tuned robust cascade fractional order controller having distur-
bance observer integrated,” Elect. Power Compon. Syst., vol. 50, no. 14–15, pp. 814–839, 2022. doi:
10.1080/15325008.2022.2141925.

[37] K. Ishwarya and A. A. Nithya, “Squirrel search optimization with deep convolutional neural net-
work for human pose estimation,” Comput. Mater. Contin., vol. 74, no. 3, pp. 6081–6099, 2023. doi:
10.32604/cmc.2023.034654.

[38] D. Maden, E. Çelik, E. H. Houssein, and G. Sharma, “Squirrel search algorithm applied to effective
estimation of solar PV model parameters: A real-world practice,” Neural Comput. Appl., vol. 35, no. 18,
pp. 13529–13546, 2023. doi: 10.1007/s00521-023-08451-x.

[39] M. Wu, D. Yang, Z. Yang, and Y. Guo, “Sparrow search algorithm for solving flexible jobshop scheduling
problem,” in Y. Tan, Y. Shi (eds.), Advances in Swarm Intelligence., Cham: Springer, 2021, vol. 12689. doi:
10.1007/978-3-030-78743-1_13.

https://doi.org/10.1016/j.asoc.2021.107526
https://doi.org/10.1109/TCYB.2021.3086181
https://doi.org/10.1016/j.jii.2021.100233
https://doi.org/10.1016/j.ress.2023.109143
https://doi.org/10.1007/s40747-023-00984-x
https://doi.org/10.1016/j.swevo.2020.100716
https://doi.org/10.1016/j.ejor.2023.02.001
https://doi.org/10.1016/j.swevo.2018.02.013
https://doi.org/10.1155/2019/6291968
https://doi.org/10.1109/ACCESS.2019.2936823
https://doi.org/10.1109/ACCESS.2021.3061058
https://doi.org/10.1007/s12530-021-09366-5
https://doi.org/10.1155/2021/6062689
https://doi.org/10.32604/iasc.2022.021822
https://doi.org/10.1080/15325008.2022.2141925
https://doi.org/10.32604/cmc.2023.034654
https://doi.org/10.1007/s00521-023-08451-x
https://doi.org/10.1007/978-3-030-78743-1_13

CMC, 2024, vol.81, no.1 1787

[40] Y. An, X. Chen, K. Gao, Y. Li, and L. Zhang, “Multiobjective flexible job-shop rescheduling with new job
insertion and machine preventive maintenance,” IEEE Transact Cybern, vol. 53, no. 5, pp. 3101–3113, May
2023. doi: 10.1109/TCYB.2022.3151855.

[41] C. J. C. H. Watkins and P. Dayan, “Technical note: Q-learning,” Mach. Learn., vol. 8, no. 3, pp. 279–292,
1992. doi: 10.1023/A:1022676722315.

[42] X. Zhang, K. Zhao, L. Wang, Y. Wang, and Y. Niu, “An improved squirrel search algorithm with repro-
ductive behavior,” IEEE Access, vol. 8, pp. 101118–101132, 2020. doi: 10.1109/ACCESS.2020.2998324.

[43] R. Li, W. Gong, and C. Lu, “A reinforcement learning based RMOEA/D for bi-objective fuzzy flexible job
shop scheduling,” Expert Syst. Appl., vol. 203, 2022, Art. no. 117380. doi: 10.1016/j.eswa.2022.117380.

[44] L. While, P. Hingston, L. Barone, and S. Huband, “A faster algorithm for calculating hypervolume,” IEEE
Trans. Evol. Comput., vol. 10, no. 1, pp. 29–38, 2006. doi: 10.1109/TEVC.2005.851275.

[45] C. H. R. Jethmalani, S. P. Simon, K. Sundareswaran, P. S. R. Nayak, and N. P. Padhy, “Auxiliary
hybrid PSO-BPNN-based transmission system loss estimation in generation scheduling,” IEEE Trans. Ind.
Inform., vol. 13, pp. 1692–1703, 2017. doi: 10.1109/TII.2016.2614659.

[46] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm:
Nsga-ii,” IEEE Trans. Evol. Comput., vol. 6, no. 2, pp. 182–197, 2002. doi: 10.1109/4235.996017.

[47] R. C. Van, “Design of experiments using the taguchi approach: 16 steps to product and process improve-
ment,” Technometrics, vol. 44, no. 3, p. 289, 2002. doi: 10.1198/004017002320256440.

[48] Q. Zhang and L. Hui, “MOEA/D: A multiobjective evolutionary algorithm based on decomposition,”
IEEE Trans. Evol. Comput., vol. 11, no. 6, pp. 712–731, 2007. doi: 10.1109/TEVC.2007.892759.

[49] E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: Improving the strength pareto evolutionary algorithm,”
in TIK Report, ETH Zurich, Computer Engineering and Networks Laboratory, 2001, vol. 103. doi:
10.3929/ethz-a-004284029.

[50] B. Li, K. Tang, J. Li, and X. Yao, “Stochastic ranking algorithm for many-objective optimization
based on multiple indicators,” IEEE Trans. Evol. Comput., vol. 20, no. 6, pp. 924–938, 2016. doi:
10.1109/TEVC.2016.2549267.

[51] F. Ming, W. Gong, and L. Wang, “A two-stage evolutionary algorithm with balanced convergence and
diversity for many-objective optimization,” IEEE Trans. Syst., Man, Cybern.: Syst., vol. 52, no. 10, pp.
6222–6234, 2022. doi: 10.1109/TSMC.2022.3143657.

https://doi.org/10.1109/TCYB.2022.3151855
https://doi.org/10.1023/A:1022676722315
https://doi.org/10.1109/ACCESS.2020.2998324
https://doi.org/10.1016/j.eswa.2022.117380
https://doi.org/10.1109/TEVC.2005.851275
https://doi.org/10.1109/TII.2016.2614659
https://doi.org/10.1109/4235.996017
https://doi.org/10.1198/004017002320256440
https://doi.org/10.1109/TEVC.2007.892759
https://doi.org/10.3929/ethz-a-004284029
https://doi.org/10.1109/TEVC.2016.2549267
https://doi.org/10.1109/TSMC.2022.3143657

	A Discrete Multi-Objective Squirrel Search Algorithm for Energy-Efficient Distributed Heterogeneous Permutation Flowshop with Variable Processing Speed
	1 Introduction
	2 Problem Description
	3 Squirrel Search Algorithm
	4 The DMSSA Is Designed Specifically for the DHPFS-VPS Problem
	5 Experimental Results and Discussion
	6 Conclusion
	References

