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ABSTRACT

Analyzing physical activities through wearable devices is a promising research area for improving health assess-
ment. This research focuses on the development of an affordable and real-time Human Activity Recognition
(HAR) system designed to operate on low-performance microcontrollers. The system utilizes data from a body-
worn accelerometer to recognize and classify human activities, providing a cost-effective, easy-to-use, and highly
accurate solution. A key challenge addressed in this study is the execution of efficient motion recognition within
a resource-constrained environment. The system employs a Random Forest (RF) classifier, which outperforms
Gradient Boosting Decision Trees (GBDT), Support Vector Machines (SVM), and K-Nearest Neighbors (KNN) in
terms of accuracy and computational efficiency. The proposed features Average absolute deviation (AAD), Standard
deviation (STD), Interquartile range (IQR), Range, and Root mean square (RMS). The research has conducted
numerous experiments and comparisons to establish optimal parameters for ensuring system effectiveness,
including setting a sampling frequency of 50 Hz and selecting an 8-s window size with a 40% overlap between
windows. Validation was conducted on both the WISDM public dataset and a self-collected dataset, focusing on five
fundamental daily activities: Standing, Sitting, Jogging, Walking, and Walking the stairs. The results demonstrated
high recognition accuracy, with the system achieving 96.7% on the WISDM dataset and 97.13% on the collected
dataset. This research confirms the feasibility of deploying HAR systems on low-performance microcontrollers and
highlights the system’s potential applications in patient support, rehabilitation, and elderly care.

KEYWORDS
Accelerometer; classification; wearable computing; activity recognition; HAR

1 Introduction

Over the last several decades, significant advancements have been made in HAR research, driven
by its wide range of applications [1]. Increasingly, practical challenges necessitate solutions rooted in
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activity recognition, including those in healthcare [2,3], fall detection [4,5], and industry [6], among
others. By gathering user behavior data, activity recognition technology enables diverse interaction
methods, empowering systems to proactively assist users in their tasks [7].

The goals of HAR include representing human activities posture in multiple videos or sensor
data, analyzing interactive objects, understanding the semantics of actions, and ultimately enabling
the computer to comprehend the activities sequence like humans do [8–12]. Three typical approaches
to HAR are: i) computer vision-based methods [8,9], ii) methods utilizing environmental interaction
sensors [10], and iii) methods employing wearable sensors [11,12]. With vision-based HAR, the data
obtained from the camera is processed including the following steps: Data Preprocessing, Object
Segmentation, Feature Extraction and Activity Classification Deployment [13]. Due to the vast
demand and economic value that vision-based HAR brings, in the past few decades, many researchers
have proposed many video-based HAR technologies, which can rapidly detect human activity using
video and motion sensors. However, in vision-based HAR, there are factors that affect accuracy such
as angle, shadow of the object, light intensity, and especially privacy issues of individuals that need
to be considered [14,15]. In contrast, smartphones and wearable sensors can overcome this privacy
problem and can be widely used for HAR [16–19].

HAR sensors can be broadly classified into wearable, and environmental [10–12]. Each sensor
type has its own advantages and applications [20]. Due to the rapid development of wireless sensor
networks, a large amount of data has been collected for HAR using different types of sensors [21].

Based on research on sensor technology and activity patterns [22,23], researchers have proposed
many HAR methods using various sensors each other, including an accelerometer, gyroscope, mag-
netometer (for orientation), barometer (for altitude change), and heart rate monitor. Accelerometers
have been widely used thanks to their ability to capture information about a subject is acceleration and
velocity, which is very suitable for various human physical activities [24–27]. For instance, Bao et al. [24]
used five small biaxial accelerometers worn on different body parts (e.g., limbs and hip) to collect
sensor data while volunteers performed twenty daily activities like walking, standing, and sitting,
.... They extracted features from both the time and frequency domains of the accelerometer data
and built a classification model to recognize these activities. By comparing different classifiers, they
found that a decision tree achieved the best performance with an accuracy of 84.0% [24]. However,
it’s important to note that accuracy in HAR can be influenced by factors like individual body types
or sensor placement. The system HAR cannot only recognize activities routine but also gauge the
intensity of activities. Tapia et al. [28] achieved this with a real-time system using five accelerometers
and a heart rate monitor, boasting an impressive 94.6% accuracy when tailored to the specific user.
However, 56.3% subject-independent accuracy, and 80.6% accuracy without differentiating the activity
intensities. While studies like [29,30] showed that more sensors often lead to better results, researchers
are grappling with a trade-off: accuracy vs. user comfort. After all, bulky setups become a burden,
hindering long-term adoption. This is why there is increasing research into developing HAR systems
based on a single sensor [31].

The studies are increasingly exploring methods that utilize a single accelerometer for activity
recognition [32]. For example, Ravi et al. [33] conducted a study to explore this possibility, using a
single tri-axial accelerometer mounted on the pelvic region to collect data for eight activities including
standing, walking, running, climbing stairs (both up and down), sitting, vacuuming, and brushing
teeth. Their findings demonstrate the potential of single-sensor HAR for recognizing a wide range of
everyday activities. They proposed a meta-level classifier combining decision table, Decision Tree (DT),
KNN, SVM, and Naïve Bayes. The experiments are extended across four different dataset settings,
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achieving improved performance compared to with base-level classifier. Similarly, Gupta et al. [34]
investigated feature selection for activity recognition using a belt-worn accelerometer. Their findings
suggest that a wrapper-based approach and feature selection outperforms a filter-based approach
when combined with Naïve Bayes and KNN classifiers. The classification outcomes showed over
95% accuracy across 6 activities. Their work’s limitation was the data collection involved only 7
participants (between the ages of 22 and 28). In [35], the authors used a single accelerometer (tri-
axis) for HAR. In their research, the accelerometer had to be attached to the chest of an individual
in a specific orientation. They proposed a hierarchical prediction model to classify static, dynamic,
and transitional activities, applying the model to recognize activities in a natural setting. The overall
accuracy reached up to 97.9%, classifying 15 behaviors. However, when tested across 5 different
locations, the accuracy of the system declined by 47%. The authors in [36] concentrated on classifying
6 distinct walking styles using a mobile-based accelerometer and an IMU sensor. Furthermore, the
WISDM activity dataset was utilized for validation [37]. Deep learning models effectively classify
more activities with a very high accuracy rate [24,36]. Huang et al. conducted two studies on HAR
using wearable sensors with CNNs [38,39]. Both studies were conducted on the Raspberry Pi Model
3 B+ platform and presented improvements that resulted in superior classification performance (with
both studies achieving approximately 99% accuracy). However, deep learning models have a certain
computational complexity, causing longer run times and more resource usage [40]. Therefore, using
deep learning models on low-cost, low-performance microcontroller is not feasible. Machine learning
(ML) models still have the potential to be used for real-time classification of human activities with
lower computation and significantly shorter execution times [41].

This work of paper is to harness the capabilities of these body-worn sensors in HAR. The following
are the main challenges encountered during the research of HAR systems that utilize wearable sensor
devices:

– Challenge 1: The computational complexity of the algorithm is significantly high, which
hinders the design of a device capable of accurately recognizing real-time activity.

– Challenge 2: In instances where the low-performance processor is unable to directly recognize
the device, unprocessed data is transmitted to the server. This could potentially lead to
communication errors. Conversely, the use of high-performance microcontrollers results in
escalated costs.

The study addresses the challenge of real-time human activity recognition (HAR) using accelerom-
eter sensors on low-cost, low-performance microcontrollers. This research distinguishes itself by
focusing on the efficient deployment of computationally simple algorithms for real-time activity
classification. The proposed system aims to support the health care of patients during the recovery
period or for the elderly. The main contributions of this paper are outlined as follows:

– Contribution 1: This research examines the viability of implementing a low-complexity algo-
rithm on low-performance microcontrollers to solve the HAR problem. The RF algorithm is
embedded directly onto the microcontroller, enabling real-time activity classification. RF is
selected for its balance between accuracy and computational efficiency, making it well-suited
for resource-constrained devices. By leveraging the simplicity of accelerometer data and the
efficiency of RF, the system achieves effective and cost-efficient activity recognition, even on
low-cost microcontrollers. Similar to the methods used in studies [2,3], the model is trained
on high-performance machines, after which the optimized algorithm is embedded into the
microcontroller.
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– Contribution 2: Optimized Activity Selection and Feature Extraction. Five key activities—
Standing, Sitting, Jogging, Walking, and Walking the stairs—were meticulously selected based
on their relevance and frequency in daily life. Recognizing the potential confusion between
Upstairs and Downstairs in the data, these activities were combined into a single category.
This strategic selection enhances the accuracy and reliability of the classification system.
Additionally, the feature extraction process is tailored to the constraints of low-performance
microcontrollers, ensuring the system’s efficiency and effectiveness.

– Contribution 3: A cost-effective HAR system with real-time capabilities. This system integrates
electronic circuits, signal processing, and ML models to enable immediate action recognition.
The process includes several steps: i) data collection; ii) data preprocessing; iii) feature extrac-
tion; iv) direct classification of actions on the microcontroller; v) efficient wireless transmission
to a compact server to ensure real-time processing.

The remainder of this paper is structured as follows:

– Section 1: Discussion of related research work and problems of the proposed system.
– Section 2: Presentation of materials and methods to describe the system model. The proposed

method uses a classifier RF with low-complexity and is suitable for the activity recognition
problem of the study. The proposed features AAD, STD, IQR, Range, and RMS.

– Section 3: Evaluation and discussion of system performance with five selected activities.
– Section 4: Conclusion of the article.

2 Materials and Methods
2.1 Activities Recognition Model

In this work, a supervised learning method will be implemented to achieve higher accuracy [42].
The comprehensive system methodology encompasses three stages: 1) the gathering of data; 2) the
analysis of the model; 3) the identification of activities, which includes both implementation and
evaluation. This process is depicted in Fig. 1.

Figure 1: The activity recognition process
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In the first stage of the study, acceleration data is collected from the proposed device to classify
activities. Specifically, data are gathered along three axes (referred to as Ax, Ay, and Az). In the next
stage, the data is segmented into smaller chunks. Using a sliding window technique, the timeline is
traversed, meticulously recording a variety of information related to the activity in question. Each
vector derived from these segments combines a multitude of features painstakingly extracted from
the data, setting the stage for the following phase. The next phase focuses on the careful selection of
relevant features, which will then be used as input to the classifier.

The final stage encompasses both implementation and evaluation, wherein the features chosen
in the previous step are input into the training process, facilitating the construction of a robust
classification model. Leveraging the knowledge embedded in this model, classifiers are then deployed
to perform highly accurate recognition of activities.

2.2 Data Collection

This study proposes a system consisting of an accelerometer, a cost-effective Inertial Measurement
Unit (IMU), and a wireless connector for bidirectional data transmission into a wearable device
on a can. This device supports direct data transfer to a smartphone (in this study the smartphone
used operates on the Android platform). The system was designed to significantly minimize user
inconvenience during the data recording process. The structure of the proposed system is depicted
in Fig. 2.

Figure 2: The proposed system (a) and the wearable device worn by volunteers (b)
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The proposed system in this study integrates a 3-DOF ADXL345 accelerometer to measure
motion data. To ensure that all activities in the study could be measured, the parameters of the
ADXL345 sensor were used, with a full scale of ± 4 g, a sensitivity of 128 LSB/g, and a noise
level of 150 μg. This setup allows the collection of motion data on three-axis: Ax, Ay, and Az.
The ADXL345 3-DOF sensor is connected to the PIC18F4520 microcontroller via an I2C interface.
Additionally, through UART communication, the ESP8266 Module is interfaced with the MCU for
data transmission. The device is powered by a 3.7 V–6000 mAh battery and is rechargeable.

The testing was conducted on a Dell XPS-9310 laptop equipped with a 4.2 GHz processor and
8 GB of RAM. Experimental data recording was carried out with a group of 14 students (7 men and
7 women), aged between 18–22 years, with heights ranging from 1.5–1.9 m and weights between 42–
67 kg, selected from Phenikaa University in Vietnam. Additionally, two individuals aged 65 and 72,
with heights of 1.4 and 1.46 m and weights of 42 and 46 kg, respectively, were included to collect data
on activities. The sampling frequency of the proposed device worn at the waist is 50 Hz. Five states
were collected: Standing for 40 min, Sitting for 30 min, Jogging for 10 min, Walking for 22 min, and
Walking the stairs for 44 min. To evaluate the performance of the algorithm, the WISDM dataset was
utilized [29]. A detailed explain of the activities is presented in Table 1 below.

Table 1: Explain the activities

Activity Explain

Standing Standing naturally, stable.
Sitting Sitting on a chair.
Jogging Running with an even pace and slowly.
Walking Normal walking.
Walking the stairs Walking up or down a staircase by taking individual steps.

Following the construction of the model as detailed in Fig. 1 and the development of hardware
devices that fulfill the model’s requirements as shown in Fig. 2a, the model will be trained, and the
action classification algorithm will then be embedded in the microcontroller on wearable devices. The
central processor in the proposed device is a PIC18F4520 microcontroller. Once installed, the devices
will be attached at the waist of the volunteers.

This research focuses on developing optimized algorithms for low-performance, cost-effective
microcontrollers (Tiny Machine Learning) to operate within embedded systems and Internet-of-
Things (IoT) devices. Specifically, the algorithm is embedded into the device in the study to be able
to perform real-time activity recognition. In this study, the microcontroller served as the Central
Processing Unit (CPU) for the embedded device, therefore, programming wearable devices to rec-
ognize activities in real-time was very important. Real-time identification involved considerations for
algorithmic complexity and memory requirements. As a result, on wearable devices in real-time, a ML
algorithm like RF is well-suited for deploying HAR. RF leverages randomness in both sampling and
feature selection to build diverse decision trees (DTs) and combines their predictions through majority
voting, improving the accuracy and robustness of the model [43]. In this algorithm, the DTs were
constructed based on the trained data, which provided feature thresholds for creating binary DTs. The
implementation of the RF algorithm on devices is carried out in the following steps: In the setup phase,
variables (from the ADXL345 library) were first declared to establish thresholds for distinguishing
between motor and non-motor activities, set values for tap and double tap, threshold, and free-fall
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time, and set interrupts. In the Loop phase, the model determined which activity was occurring.
RF algorithm with approximately 100 decision trees analyzes accelerometer data and classifies the
activities. From the training process, the thresholds were derived. This process occurs every 5 s to
deliver real-time results while maintaining low computational complexity. The RF algorithm flowchart
for real-time classification is illustrated in Fig. 3 below.

Figure 3: Embedded program for real-time activity classification

2.3 Feature Selection

2.3.1 Sliding Window

Following the reception of data from the accelerometer, it was synthesized and used to analyze
activity features. The data was then segmented into smaller parts, each containing information
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related to the activity. This segmentation is necessary due to the sequential nature of activities, which
complicates the definition of activity boundaries.

This study segmented the data using a sliding window due to its simplicity and suitability for real-
time activity classification research [44]. In this case, the signal of the 3-DOF ADXL345 accelerometer
is divided into time windows of fixed size. The selection of window size has a direct impact on the
system’s recognition performance. To determine the most optimal window size, experiments were
conducted with windows of varying sizes ranging from 1 to 22 s, with overlapping intervals of 0%
to 95%.

Initial data analysis was performed using the WISDM dataset [29]. This dataset provides move-
ment data for daily activities, captured by the accelerometer of a smartphone. In this study, the
volunteers put the phone in their pocket and the user performed the correct actions during the test.
Table 2 shows the total number of observations of activities from the WISDM dataset using a sliding
window size of 8 s and an overlap ratio of the windows of 40%. The dataset collected from 36 volunteers
includes five activities: Standing, Sitting, Jogging, Walking, and Walking the stairs. The extracted
dataset includes a total of 16,381 observations.

Table 2: Activity data from the WISDM dataset

Activity pattern Total observations

Standing 695
Sitting 857
Jogging 5093
Walking 6355
Walking the stairs 3381
Total 16,381

During the testing phase, 16 volunteers performed the activities in Table 1 while the device was
worn on their waist (as depicted in Fig. 2b). Table 3 showcases the number of operations from the
collected dataset using a window size of 8 s (with a 40% overlap). The extracted dataset from this
process comprises a total of 6299 observations.

Table 3: Activity data from the collected dataset

Activity pattern Total observations

Standing 1459
Sitting 1179
Jogging 989
Walking 1459
Walking the stairs 1213
Total 6299
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2.3.2 Feature Extraction

To achieve high classification performance, selecting features with activity information is
extremely important Fig. 4 depicts the data distribution from the initial 200 data samples collected
from the X -axis acceleration of each activity (in the collected dataset). This illustration aids in scoping
and selecting appropriate features for activity classification.

Figure 4: The histogram depicts a portion of data along the X -axis

In this study, data was collected from volunteers with careful attention to consistency. The
volunteers we selected share similar characteristics such as age, height, and weight. During the
collection process, they performed the exact activities under close supervision, ensuring uniformity
across the data. Consequently, the differences between the data from male and female groups, as well
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as between young and elderly groups, are minimal. While Fig. 4 presents a blended distribution of
data from multiple participants, Fig. 5 shows a portion of movement data along the X -axis from a
participant in the collected dataset. A comparison between Figs. 4 and 5 reveals that the amplitude
variations on the X -axis are not significantly different between these two instances, reflecting the
controlled conditions under which the data was gathered.

Figure 5: The histogram depicts a portion of movement data of a person along the X -axis

From Fig. 4, it remains evident that static states such as Standing and Sitting are characterized
by values confined to a specific, narrow range. For instance, Standing predominantly featured
approximately 150 data points concentrated around Ax ≈ 0 g (with 1 g equal to 9.8 m/s2), while
Sitting exhibited nearly 190 data points along the X -axis at 0.14 g. Consequently, two key features,
namely AAD and IQR, were chosen to assess data concentration, effectively distinguishing static states
from dynamic ones, and even differentiating between different static states. On the other hand, moving
states such as Walking, Jogging, and Walking the stairs have a significantly different range of values
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compared to static states. As a result, the Range was selected as a suitable measure to capture the
distinctions between the highest and lowest values among these dynamic states.

Additionally, referring to Fig. 4, it can be noticed that among the motion states, Walking and
Walking the stairs show a significant concentration of values between 0 and 1.5 g and gradually sparse
values towards the boundary, while the values for Jogging show a more even distribution. Effectively
capturing the differences between these dynamic operations, STD emerges as a valuable feature for
quantifying data propagation.

Furthermore, Standing, Jogging, and Walking the stairs consistently featured a higher number of
data points around Ax ≈ 0 g compared to Sitting and Walking. Therefore, the choice of RMS was
suitable for characterizing all five of these activities. In summary, the five features selected for this
study were AAD, STD, IQR, Range, and RMS. Table 4 presented the formulas of the five features
AAD, STD, IQR, Range, and RMS calculated on the X -axis, Y -axis, and Z-axis applying the same
formulas. Tables 5 to 7 gave the results of the acceleration data calculated according to the AAD, STD,
IQR, Range, and RMS statistical features for operations in all three dimensions (X , Y , and Z).

Table 4: The formula for the features of acceleration data in the X -axis

Feature Formula

AAD
1
n

n∑
j=1

xj − Mean (x) (1)

STD σ(Xi) =
√

1
N

N∑
j=1

(xj − μ)2 (2)

IQR Q3 − Q1 (3)

Range range (Xi) = [
minN

j=1

{
xj

}
, maxN

j=1

{
xj

}]
(4)

RMS RMSXi =
√

1
N

∑N

j=1 xj
2 (5)

where:

– Xi is the ith record; N is the total of data samples (a window size);
– xj is the jth sample of the record Xi;
– σ(Xi) is the standard deviation of Xi;
– min and max are the minimum and the maximum value of Xi;
– Q3 and Q1 are the value at the 75th and the 25th percentile of the data;
– RMSXi represents the root mean square of Xi.

Table 5: X -axis acceleration data (g)

Standing Sitting Jogging Walking Walking the stairs

AAD 0.05 0.013 0.33 0.23 0.168
STD 0.09 0.022 0.41 0.291 0.2649
IQR 0.056 0.012 0.589 0.37 0.191

(Continued)
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Table 5 (continued)

Standing Sitting Jogging Walking Walking the stairs

Range 1.22 0.187 2.21 1.38 1.734
RMS 0.12 0.318 0.41 0.29 0.265

Table 6: Y -axis acceleration data (g)

Standing Sitting Jogging Walking Walking the stairs

AAD 0.02 0.009 0.734 0.42 0.28
STD 0.029 0.01 0.83 0.5 0.366
IQR 0.027 0.01 1.38 0.8 0.421
Range 0.22 0.12 2.83 1.949 1.80
RMS 1.01 0.949 1.19 1.098 0.88

Table 7: Z-axis acceleration data (g)

Standing Sitting Jogging Walking Walking the stairs

AAD 0.03 0.01 0.40 0.25 0.24
STD 0.05 0.017 0.51 0.4 0.3
IQR 0.04 0.012 0.618 0.26 0.347
Range 0.38 0.159 2.58 2.17 1.8
RMS 0.15 0.127 0.547 0.4 0.419

In Table 5, the AAD feature remains consistent in its ability to differentiate between Standing
(0.05) and Jogging (0.33) during a static state along the X -axis. In Table 6, STD continues to effectively
distinguish Jogging from Walking the stairs. Furthermore, IQR is used to differentiate the Standing
action with a value of 0.04 from the remaining activities, including static actions such as Sitting
combined with other activities (as shown in Table 7). Overall, human activities exhibit significant
differences.

In this study, for the problem of classifying real-time activities on low-cost, low-power micro-
controllers, the selected five features, although not novel and relatively simple, are perfectly suitable.
After selecting the five features (AAD, STD, IQR, Range, and RMS), the dataset was divided into
a training set and a test set. The study experimented with different ratios of training and test set,
concluding that a ratio of 60% training and 40% test set yielded the best results. It is important to
note that the training set, which consisted of 60% of the original dataset, was randomly sampled from
different subjects. Similarly, the remaining 40% formed the test set, ensuring that there was no overlap
between the training and test set. The proposed features were utilized to analyze the training dataset
for model development.

In order to gain a more comprehensive insight into the contributions of the training dataset, this
study uses t-Distributed Stochastic Neighbor Embedding (t-SNE), a data dimensionality reduction
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tool, which maps the distribution of each data point from a high-dimensional space into a 2- or
3-dimensional space. Fig. 6 represents the WISDM dataset through the t-SNE algorithm. Fig. 6a
reveals a considerable degree of confusion among the majority of activities. However, in Fig. 6b,
after conducting testing involving all five previously mentioned features, the boundaries separating
different activities become notably distinct. Employing all of these features in tandem consistently
yields superior results in activity classification when compared to utilizing each feature individually.
It is notable that the classification of activities such as Standing (depicted by the orange region) and
Sitting (depicted by the blue region) proves to be straightforward. Meanwhile, the activities of Jogging
(indicated by the pink region), Walking (represented by the green region), and Walking the stairs
(represented by the brown region) exhibit some degree of overlap.

Figure 6: The WISDM dataset without features (a) and with features (b) in 2D space

The five features AAD, STD, IQR, Range, and RMS are also used with the collected dataset as the
WISDM dataset. Fig. 7 illustrates the histogram of the collected dataset obtained through the t-SNE
algorithm. It was evident that the activities in the collected dataset were distinctly classified, although
there remained a slight overlap among Jogging, Walking, and Walking the stairs.

Figure 7: The collected dataset without features (a) and with features (b) in 2D space
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2.4 Recognition Activities

The extracted feature set will be integrated into the training and classification of activities.
Four commonly used classification methods in machine learning: RF, Gradient Boosted Decision
Tree (GBDT), SVM, and KNN were employed through the Scikit-learn library to assess model
performance. The GBDT model is configured with a learning rate of 0.05, a maximum depth of 3,
and 100 estimators. The SVM model uses a regularization parameter C = 100 and the ‘scale’ option
for γ . The KNN model is set with 5 neighbors and ‘distance’ weights. These configurations balance
model complexity and performance for the dataset at hand.

To assess the effectiveness of the classification model, the classification results were represented
as a confusion matrix, with the test calculated as follows:

acci = TPSi + TNi

TPSi + FPSi + TNSi + FNSi

(6)

seni = TPSi

TPSi + FNSi

(7)

PPVi = TPSi

TPSi + FPSi

(8)

NPVi = TNSi

TNSi + FPSi

(9)

where:

– i denotes a class (Standing, Jogging, Sitting, Walking or Walking the stairs).
– True Positive (TP) signifies the accurate identification by a model when an event or activity

occurs as predicted.
– False Positive (FP) occurs when the device predicts an activity that did not actually happen.
– False Negative (FN) happens when an activity occurs, but the device predicts a different

activity.
– True Negative (TN) occurs when an activity does not happen, the device correctly predicts that

it did not occur.

3 Results and Discussions
3.1 Results

Tables 8 and 9 present the overall accuracy and sensitivity of each classifier on the WISDM
dataset. The performance of these classifiers varies with different window sizes (5, 8, 10, 12, and 15 s).
Among these classifiers, the RF classifier excelled in classification performance, achieving an accuracy
of 96.5% and a sensitivity of 96.7% with an 8 s window size.

Table 8: Accuracy of GBDT, SVM, RF, and KNN on the WISDM dataset

Accuracy-WISDM dataset
Window size (s) GBDT (%) SVM (%) RF (%) KNN (%)

5 92 93 95.9 94

(Continued)
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Table 8 (continued)

Accuracy-WISDM dataset
Window size (s) GBDT (%) SVM (%) RF (%) KNN (%)

8 93.2 94 96.5 94.5
10 93.6 94 96.5 94.2
12 94.7 94 96.5 93.9
15 94.2 95 96.4 94.1

Table 9: Sensitivity of GBDT, SVM, RF, and KNN on the WISDM dataset

Sensitivity-WISDM dataset

Window size (s) GBDT (%) SVM (%) RF (%) KNN (%)

5 92.7 93.5 96.2 94
8 93.7 94.1 96.7 94.5
10 93.9 94.3 96.4 94.1
12 95 93.7 96.3 94.1
15 94.7 94.9 96.4 94.2

Tables 10 and 11 illustrate the accuracy and sensitivity of the collected dataset across various
window sizes and classifiers. Unlike the WISDM dataset, where data is collected from volunteers with
phones placed in their front pockets during activities, the test data is collected using a device fixed
to the waist to minimize movement. The data collection process is structured by individual actions,
reducing deviations. Consequently, the behavioral accuracy in the collected dataset is higher than that
of the WISDM dataset. The RF classifier delivers the highest accuracy (98.3%) and sensitivity (97.5%)
for a window size of 8 s. The superior results in the collected dataset are attributed to the careful
measurement of each activity and testing on a group of individuals with similar age and behaviors,
leading to consistent results.

Table 10: Accuracy of GBDT, SVM, RF, and KNN on the collected dataset

Accuracy-Collected dataset

Window size (s) GBDT (%) SVM (%) RF (%) KNN (%)

5 98.1 97 98.3 98
8 98 97 98.3 97
10 97.7 97 98.2 98
12 97.7 97 98.2 97
15 97.9 97 97.7 98
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Table 11: Sensitivity of GBDT, SVM, RF, and KNN on the collected dataset

Sensitivity-Collected dataset

Window size (s) GBDT (%) SVM (%) RF (%) KNN (%)

5 97 95.8 97.4 96.4
8 96.9 95.5 97.5 95.7
10 96.5 95.5 97.3 96.3
12 96.1 95.3 97 95.7
15 97.3 96.1 96.9 97.3

Table 12 presents the average execution time and energy consumption of the GBDT, SVM, RF,
and KNN algorithms on wearable devices using the collected dataset. The results show that RF has
significantly lower execution time and energy consumption compared to SVM, with only 0.03 s/activity
and 0.01595 J/activity. When compared to KNN (0.019 s/activity and 0.0101 J/activity) and GBDT
(0.0072 s/activity and 0.00383 J/activity), RF does not perform as efficiently in terms of speed or
energy savings. However, when evaluated against accuracy and sensitivity metrics in Tables 10 and 11,
RF outperforms the other algorithms. Specifically, RF achieves the highest accuracy in the 5, 8, and
10-s windows (98.3%) and the best sensitivity across the same window sizes (97.4%, 97.5%, and 97.3%,
respectively). This demonstrates that RF can maintain high accuracy even as window sizes change, a
critical factor in Tiny Machine Learning, where computational resources are limited and models must
be optimized for both time and energy.

Table 12: Average execution time and energy consumption for the test set on wearable devices (within
the collected dataset)

Algorithm Execution time (s/activity) Energy (J/activity)

GBDT 0.0072 0.00383
SVM 0.053 0.02819
RF 0.03 0.01595
KNN 0.019 0.0101

After considering the optimal computational goal and RF’s suitability for users less prone to
sudden changes in actions (such as older users or those in recovery), the RF algorithm appears to be
the preferred choice for classifying direct actions on microcontrollers in this study. The results in this
study are presented in the figures and tables below using a window size of 8 s.

Figs. 8 and 9 show detailed results of using the RF algorithm to classify operations on the WISDM
dataset and the collected dataset for a window size of 8 s. As can be seen from Fig. 8, most behavioral
test samples exhibit relatively clear differentiation (277/279 samples for Standing, 337/344 samples
for Sitting, 2014/2038 samples for Jogging). However, there is a slight discrepancy between Jogging,
Walking, and Walking the stairs.
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Figure 8: Confusion matrix of RF algorithm on the WISDM dataset

Figure 9: Confusion matrix of RF algorithm on the collected dataset
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Similar to the WISDM dataset, in Fig. 9, most activity test samples on the collected dataset
are distinctly differentiated. The accuracy of activity classification is presented in Tables 13 and 14
for the WISDM dataset and the collected dataset, respectively. The accuracy of the RF classifier
across all operations exceeded 90% on both the WISDM dataset and the collected dataset. The
classification performance of the RF classifier is relatively high. The results are calculated according
to Formulas (6)–(9).

Table 13: Model performance on the WISDM dataset

Activity pattern Algorithm performance

Accuracy (%) Sensitivity (%) PPV (%) NPV (%)

Standing 99.92 99.28 99.28 99.97
Sitting 99.89 97.97 100 99.89
Jogging 98.89 98.82 97.62 99.47
Walking 97.56 97.96 95.84 98.69
Walking the stairs 96.80 89.50 94.68 97.31

Table 14: Model performance on the collected dataset

Activity pattern Algorithm performance

Accuracy (%) Sensitivity (%) PPV (%) NPV (%)

Standing 99.94 99.88 100 99.89
Sitting 99.89 98.97 100 99.87
Jogging 98.14 90.53 91.98 98.87
Walking 98.42 96.9 96.45 99.04
Walking the stairs 99.66 99.39 97.04 99.94

The RF classifier achieved remarkable accuracy and NPV rates exceeding 96% on the WISDM
dataset and surpassing 98% on the collected dataset across all operations. Sensitivity and PPV
demonstrated impressive values, surpassing 90% for all classes except for Walking the stairs, which
achieved 89.50% on the WISDM dataset. Remarkably, the Standing and Sitting activities exhibited
absolute index values, achieving complete classification compared to other activities.

The dataset’s overall performance is evaluated using both macro-average and micro-average
methods. The results in Table 15 indicate that the RF classifier stands out as the best-performing
model. Specifically, the micro-average estimation method demonstrates notably high performance,
surpassing 96% on the WISDM dataset and exceeding 99% on the collected dataset.

To validate the effectiveness of the proposed feature set, several individual features from the
proposed set were omitted, and a few new features were systematically added. The model was rerun,
and the resulting data allows for a visual comparison of accuracy between the proposed feature set
and the altered feature sets. Furthermore, in this study, additional features used in [29,37,43,45,46] are
also tested.
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Table 15: Assessment of the RF classification model

Evaluation metrics Micro-average (%) Macro-average (%)

WISDM dataset Collected dataset WISDM dataset Collected dataset

Accuracy 96.51 98.03 98.61 99.21
Sensitivity 96.70 97.13 96.71 97.13
PPV 97.41 97.09 97.48 97.09
NPV 97.41 97.09 99.07 99.52

The features were chosen for the goal of implementation on low-performance microcontrollers,
focusing on time-domain features with minimal computational complexity. Below is a list of these
additional features:

– Mean: average (the average value of a set of numerical data).

– Mean2: mean squared (the average of the squared values in a dataset).

– Kurtosis: measures the peakness or tailness of a probability distribution.

– Median (med): the middle value when the data is arranged in order.

– Percentiles (pe): values dividing the dataset into different percentile parts.

– Skewness (skew): measures the asymmetry of a probability distribution.

– Energy: measures or computes the energy of a signal or data.

In machine learning problems, a crucial step involves extracting features from the raw data. The
selection of features depends heavily on the machine learning model designer’s understanding of the
dataset. Effective feature extraction typically enhances the model’s accuracy; conversely, it introduces
computational overhead, potentially reducing accuracy. Observing Table 16, the model re-run with
the reduced features compared to the original feature set shows a significant decrease in classification
accuracy on the collected dataset. For the WISDM dataset, there is a slight increase and decrease when
reducing some features. Overall, the accuracy for the WISDM dataset does not change much. When
supplementing the original feature set with one or more additional time-domain features, re-running
the model on the WISDM dataset shows a slight increase in classification accuracy. However, for the
collected dataset, the re-run model shows a decrease in accuracy, although not significant.

Table 16: Results from feature set modifications

Features Quantity of
features

Accuracy (%) Change

WISDM dataset Collected dataset

aad, std, iqr, range 4 93.3 94.3 Remove rms
aad, std, iqr, rms 4 97 97.2 Remove range
aad, std, range, rms 4 97 97 Remove iqr
aad, iqr, range, rms 4 97.3 97.2 Remove std
std, iqr, range, std 4 97.5 97.2 Remove aad

(Continued)
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Table 16 (continued)

Features Quantity of
features

Accuracy (%) Change

WISDM dataset Collected dataset

aad, std, iqr, range,
rms, kurtosis

6 97.4 96.8 Add kurtosis

aad, std, iqr, range,
rms, med

6 97.9 97.7 Add med

aad, std, iqr, range,
rms, mean, mean2,
kurtosis

8 97.9 97.4 Add mean,
mean2, kurtosis

aad, std, iqr, range,
rms, mean, mean2,
kurtosis, med, pe

10 98.1 97.9 Add mean,
mean2, kurtosis,
med, pe

aad, std, iqr, range,
rms, mean, mean2,
kurtosis, med, pe, skew,
energy

12 97.6 98.3 Add mean,
mean2, kurtosis,
med, pe, skew,
energy

In the context of behavior classification in this study, increasing the features will lead to increased
computation time, affecting real-time performance. Moreover, any increase in accuracy is not signif-
icant. Since activity classification occurs over a long period, the priority is to select suitable features.
Therefore, the proposed feature set achieves an optimal balance between classification performance
and computational complexity, meeting the study’s requirements.

3.2 Discussion

Feature selection holds a critical position in the recognition process, substantiated by previous
research [37,43,46,47]. Many studies have broadened their scope to encompass numerous features in
order to more accurately identify human activities. Some studies have combined up to 43 features, as
seen in Catal et al. [45], and even 64 features, as explored in the study by Vavoulas et al. [37]. This study
applied five time-domain features (AAD, STD, IQR, Range, and RMS) along with the optimal sliding
window size (8 s) to two datasets: the WISDM dataset and the collected dataset. The results show
relatively high activity recognition accuracy, such as 96.7% on the WISDM dataset and 97.13% on
the collected dataset. The classification process will be performed in real-time on the microcontroller.
Furthermore, the classification status is updated and sent every 5 s. So, the five simple features above
are completely consistent with the goals and equipment of the article. Fig. 10 presents the classification
results on a terminal (smartphone).

Some researchers employ accelerometer data and deep learning to classify human activities.
Chen et al. developed a CNN model and modified the convolution kernel to adapt to the characteristics
of the three-axis acceleration signal [48]. Their experimental results indicate that CNN performs
effectively, achieving an average accuracy of 93.8%. Lee et al. introduced a method based on 1D
CNN with an accuracy of 92.71% [49]. However, this study utilized only three types of human activity
data—walking, running, and standing still—collected using smartphone accelerometers. In part of
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the work done in this study, we tested the classification of the five actions Standing, Sitting, Jogging,
Walking, and Walking the stairs on the WISDM dataset using a deep learning network architecture.
The evaluation employed Long Short-Term Memory (LSTM) for assessment. Experimental results
indicate that, using both micro-average and macro-average estimation methods, the accuracy and
sensitivity are highly satisfactory. With LSTM, test results have given Accuracy > 99% and Sensitivity
> 97%, testing shows that LSTM is a worthy choice for the HAR problem. However, LSTM (or
deep learning) requires significant training and testing time, surpassing RF, GBDT, SVM, and KNN.
Consequently, deploying deep learning might not be viable on cost-effective microcontrollers such as
the PIC18F4520.

Figure 10: Classification is performed by a real-time microcontroller and displayed on a smartphone

Some researchers have explored utilizing built-in accelerometers for activity classification. How-
ever, this method often suffers from reduced accuracy due to interference from routine activities like
phone calls, web browsing, and messaging [29]. Wang et al. [12] conducted research on recognizing
human physical activities based on three-axis accelerometer and gyroscope data. The study used Naive
Bayes and KNN classifiers to evaluate classification ability on a data set of 6 activities: Walking,
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Sitting, Standing, Lying, Upstairs, and Downstairs. The results of the study showed good accuracy
in most activities. However, the Upstairs and Downstairs operation has lower classification, with an
accuracy of 82.78% for Upstairs and 91.78% for Downstairs. In addition, the PPV index is also quite
low, reaching 79.62% for Upstairs and 77.14% for going Downstairs.

In this study, the focus shifts towards healthcare applications for the elderly, individuals in post-
surgery recovery, or those who have experienced accidents. Our research found that separating the
two operations Upstairs and Downstairs does not bring much meaning to the application that the
research is aiming for. In daily activities when a person, the time spent going up and down stairs
can be considered equal. Furthermore, the issue of concern is the frequency of activities over a long
period of time of the user. Therefore, we combined the two activities Upstairs and Downstairs into
Walking the stairs. Consequently, the scope is narrowed down to these five specific behaviors, which
were deemed sufficient for the application while ensuring real-time classification and optimized costs.

In this study, a consistent methodology was employed across two distinct datasets, the WISDM
dataset and a separately collected dataset, to facilitate a comparative analysis of performance
outcomes. The same proposed model was used to train and evaluate both datasets independently.
The aim was not to make a definitive claim about the superiority of one dataset over the other
but rather to explore how different dataset characteristics might influence model performance. By
applying identical preprocessing, feature extraction techniques, and model configurations to each
dataset, a controlled comparison was ensured. It’s important to note that while our collected dataset
showed better performance metrics, this does not inherently imply higher quality in the traditional
sense. Instead, it suggests that the dataset may be simpler or more homogeneous, which might lead to
better performance under the specific conditions tested. However, a more heterogeneous dataset, like
WISDM, might offer richer patterns for the model to learn, potentially improving performance with
unseen data in real-world applications. Furthermore, the study targets elderly individuals and patients
in recovery, where movement variability is generally low, making the characteristics of the collected
dataset particularly suitable and simple for this research.

The overall accuracy results between the WISDM dataset and the collected dataset revealed a
notable difference (98.61% vs. 99.21%). This difference can be explained by several key factors. Firstly,
the WISDM dataset involved a larger number of volunteers (36) compared to the study (16), resulting
in more diverse data in the WISDM dataset. Secondly, differences in the data collection process
significantly influenced the outcomes. In the WISDM dataset, volunteers collected data using their
phone’s built-in accelerometer while the phones were placed in their pockets. In contrast, data in the
collected dataset was obtained from volunteers wearing the device securely on their waists, ensuring
more consistent and reliable data capture. This higher data quality contributed to the improved
classification performance observed with the same proposed model. These results substantiate the
hypothesis that enhanced data quality directly correlates with improved model efficacy. However,
the study has several limitations, including its focus on a single age group with similar physical
characteristics. It is anticipated that if the subjects were children or individuals aged 30–50 or older,
the activity thresholds would likely differ. This issue will be explored further in future studies, which
are beyond the scope of this paper.

This study was also directly compared with the study by Vavoulas et al. [37] using the same
WISDM dataset. Both studies performed classification of six activities: Walking, Jogging, Upstairs,
Downstairs, Sitting, and Standing, without merging Upstairs and Downstairs. A 10-fold cross-
validation was used to ensure robust performance evaluation. The study by Vavoulas et al. utilized
64 features and achieved higher accuracy with the Ibk classifier (99.79%) and J48 classifier (98.63%).
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In another study [45], Catal et al. employed the J48 algorithm, Multi-Layer Perceptron, and Logistic
Regression, using 43 features to classify a broader range of activities, achieving an accuracy of 91.6%.
It is evident that the studies employed a more extensive array of features compared to our study, where
we utilized only 15 features yet achieved a 97.6% accuracy with RF. Additionally, those studies did not
prioritize cost-effectiveness and conducted action classification on a low-performance microcontroller.
It is important to realize that comparing studies using different approaches can be challenging.
However, in comparison to most computer vision-based techniques discussed in [47], our proposed
method achieves higher overall accuracy.

In this study, the data from 16 volunteers were combined into a single dataset, which was then
split into two datasets: a training set and a test set, with a split ratio of 60% training and 40% test (the
split ensures that the 60% training data is randomly selected without overlapping with the 40% test
data). The same approach was applied to the WISDM dataset with 36 volunteers. This method yields
fairly objective results. However, it also has limitations, as the model may struggle to generalize to
new (unseen) users because the parameters and hyperparameters were learned using the same subjects
that were also used for evaluation. In a study by Gholamiangonabadi et al. [50], Leave-One-Subject-
Out Cross-Validation (LOSOCV) was used to assess the accuracy of HAR models on new subjects. In
LOSOCV, one subject is reserved for evaluation, and the model is trained on the remaining subjects.
This process is repeated each time with a different subject reserved for evaluation, and the results
are averaged over all folds (subjects). The study yielded outstanding results, with an accuracy of up
to 99.85%. In the future, as the dataset is expanded to include more subjects, LOSOCV will be a
method worth considering. Future research plans to explore this issue further to achieve even greater
effectiveness.

Traditional active sorting systems typically run on AI-enabled microcontrollers [36,51]. In con-
trast, this research aims to test the system on a variety of microcontrollers, including low-performance
ones, leading to more optimized costs. However, computation becomes more challenging when
optimizing for low-performance microcontrollers. This approach opens research opportunities across
a wide range of topics and applications. The proposed system is suitable for patients, people in recovery,
and the elderly but may not generalize well to individuals engaged in complex, high-intensity tasks,
such as firefighters or police officers. These activities often occur under difficult conditions like large
fires, thick smoke, or being chased. Additionally, a limitation of the study is that the device must be
fixed in the lumbar region.

The sensor was securely attached to the waist, as depicted in Fig. 2b. Volunteers performed
their daily activities while wearing the device. These volunteers wore the test device throughout
the day. Volunteers were surveyed about their comfort level with wearing and touching the device.
The classification results between the WISDM dataset and the collected dataset show improved
classification performance when the user wears a fixed device. However, in such cases, volunteers may
feel uncomfortable using the device. The performance of activity classification depends on the fixation
ability of the wearable device on the human body and the user’s comfort level when wearing the device.
Users are anticipated to incorporate the proposed wearable devices into their daily routines. The smart
wearable has a battery life of approximately one and a half days. However, given that the device can
be charged daily, much like a smartphone, concerns about battery life become negligible.

In assisted living systems, achieving user acceptance is a critical challenge. While computer vision
approaches offer promising applications, their implementation in this context may be hindered by
privacy concerns [52]. Elderly users may be reluctant to have their images tracked or recorded,
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potentially perceiving such systems as intrusive. The feeling of being monitored can be off-putting
for users. In this regard, waist-worn equipment with embedded sensors offers a practical solution.

This study focuses on the classification of basic activities of daily living (ADLs). Basic activities are
also different for different ages and subjects. As individuals age, ADLs become more difficult and take
more time to complete. Or a patient in recovery may find it difficult to perform ADLs independently.
Based on this research, a healthcare service model can be developed to monitor the elderly or evaluate
patient recovery levels, allowing for the creation of tailored plans to their care needs effectively. The
proposed device also empowers individuals to live independently safely.

Sensor networks, a crucial component of the Internet of Things (IoT) with diverse applications,
have revolutionized many fields, particularly healthcare [1,3]. As populations age globally, the need
for solutions to support independent living grows. This study proposes an activity monitoring system
leveraging IoT technology. This system can automatically monitor an elderly person living alone.
By integrating the system with communication platforms like web or mobile applications (other
communication-related systems within the IoT framework), families can receive real-time updates on
their loved one’s activities (as illustrated in Fig. 10). This real-time monitoring provides peace of mind,
ensuring the well-being of the elderly, especially those residing far from their families. Therefore, the
proposed system offers significant value for elderly individuals, particularly those living independently.

This activity recognition system prioritizes user comfort during extended use. Unlike bulkier
assisted living solutions, our proposed device utilizes unobtrusive and cost-effective accelerometer
sensors. These sensors are small, lightweight, and priced at a fraction of dedicated equipment, making
them ideal for widespread adoption. Furthermore, the device itself is remarkably affordable, with a
price tag of just $15. To maximize battery life and minimize the need for replacements, the system
employs a low sampling rate (50 Hz) while still maintaining accurate activity recognition. Additionally,
the user-friendly design ensures a hassle-free setup process.

4 Conclusions

This research has effectively developed a cost-efficient, real-time human activity recognition
system. By integrating a computationally efficient algorithm into a low-performance microcontroller,
the system has demonstrated the ability to classify fundamental human activities, opening up new
avenues for research in this area. Experimental results reveal that the RF classifier surpasses GBDT,
SVM, and KNN in performance when using an 8-s window size. The RF algorithm proves particularly
suitable for real-time applications due to its computational efficiency with digital data, such as
accelerometer readings. By leveraging five features—AAD, STD, IQR, Range, and RMS—basic daily
activities can be accurately classified.

The research has conducted numerous experiments and comparisons to establish optimal param-
eters for ensuring system effectiveness, including setting a sampling frequency of 50 Hz, selecting an
8-s window size with a 40% overlap between windows, and identifying features that align well with
the data. Additionally, the model was developed, activity thresholds were determined, activities were
labeled, performance was compared, and a complete system was designed for practical deployment.

The proposed system is expected to evolve, enabling the recognition of a broader range of more
complex activities in the future. While this study focused on time-domain features, future systems could
incorporate frequency-domain features or a combination of both domains to enhance performance.
Ultimately, this system can be further developed and optimized for specific applications, including
patient support, rehabilitation, and elderly care.
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