
Copyright © 2024 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

echT PressScience

DOI: 10.32604/cmc.2024.055406

ARTICLE

Research on Tensor Multi-Clustering Distributed Incremental Updating
Method for Big Data

Hongjun Zhang1,2, Zeyu Zhang3, Yilong Ruan4, Hao Ye5,6, Peng Li1,* and Desheng Shi1

1School of Computer Science, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
2Ministry of Science and Technology Innovation, China Communications Services Corporation Limited, Beijing, 100071, China
3School of Artificial Intelligence, The University of Manchester, Manchester, M13 9PL, UK
4Ministry of Technology Innovation, China Telecom Artificial Intelligence Technology (Beijing) Corporation Limited, Beijing,
100032, China
5Ministry of Science and Technology Innovation, Zhongbo Information Technology Research Institute Corporation Limited,
Nanjing, 210012, China
6Jiangsu Postal Big Data Technology and Application Engineering Research Center, Nanjing University of Posts and
Telecommunications, Nanjing, 210003, China

*Corresponding Author: Peng Li. Email: lipeng@njupt.edu.cn

Received: 26 June 2024 Accepted: 10 September 2024 Published: 15 October 2024

ABSTRACT

The scale and complexity of big data are growing continuously, posing severe challenges to traditional data
processing methods, especially in the field of clustering analysis. To address this issue, this paper introduces a
new method named Big Data Tensor Multi-Cluster Distributed Incremental Update (BDTMCDIncreUpdate),
which combines distributed computing, storage technology, and incremental update techniques to provide an
efficient and effective means for clustering analysis. Firstly, the original dataset is divided into multiple sub-
blocks, and distributed computing resources are utilized to process the sub-blocks in parallel, enhancing efficiency.
Then, initial clustering is performed on each sub-block using tensor-based multi-clustering techniques to obtain
preliminary results. When new data arrives, incremental update technology is employed to update the core tensor
and factor matrix, ensuring that the clustering model can adapt to changes in data. Finally, by combining the
updated core tensor and factor matrix with historical computational results, refined clustering results are obtained,
achieving real-time adaptation to dynamic data. Through experimental simulation on the Aminer dataset, the
BDTMCDIncreUpdate method has demonstrated outstanding performance in terms of accuracy (ACC) and
normalized mutual information (NMI) metrics, achieving an accuracy rate of 90% and an NMI score of 0.85,
which outperforms existing methods such as TClusInitUpdate and TKLClusUpdate in most scenarios. Therefore,
the BDTMCDIncreUpdate method offers an innovative solution to the field of big data analysis, integrating
distributed computing, incremental updates, and tensor-based multi-clustering techniques. It not only improves
the efficiency and scalability in processing large-scale high-dimensional datasets but also has been validated for
its effectiveness and accuracy through experiments. This method shows great potential in real-world applications
where dynamic data growth is common, and it is of significant importance for advancing the development of data
analysis technology.

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2024.055406
https://www.techscience.com/doi/10.32604/cmc.2024.055406
mailto:lipeng@njupt.edu.cn

1410 CMC, 2024, vol.81, no.1

KEYWORDS
Tensor; incremental update; distributed; clustering processing; big data

1 Introduction

The proliferation of social networks, e-commerce platforms, and mobile technologies has ushered
us into the era of big data, characterized by an unprecedented surge in data volume. These technologies
generate vast datasets that are not only massive in scale but also complex in structure, encompassing
multi-dimensional information and a variety of entity relationships. The complexity of these datasets
poses significant challenges to traditional data processing and analysis methods, which may struggle
to effectively capture multidimensional structures and nonlinear relationships within the data, or may
require substantial computational resources and time to process such extensive datasets [1].

To address these challenges, tensor decomposition has emerged as an effective method for
handling big data. As a multidimensional data structure, tensor can naturally represent user-user
relationships in social networks and user-commodity-time relationships on e-commerce platforms [2].
The goal of tensor decomposition is to identify a low-dimensional representation that minimizes infor-
mation loss from the original tensor [3]. This approach allows for the distribution of computational
tasks across multiple nodes for parallel processing, thereby enhancing computational efficiency and
scalability, and has been widely applied in fields such as recommendation systems, image compression,
and computer vision [4].

However, traditional tensor decomposition methods often necessitate recalculating the entire
decomposition process when integrating new data, leading to inefficiencies and delays that are
incompatible with real-time processing demands [5]. As data volume continues to grow, these methods
are increasingly challenged to keep pace with the analysis and mining of large-scale dynamic data [6].
Therefore, leveraging tensor algebra theory and combining the strengths of existing clustering methods
to develop a clustering approach suitable for big data has become a critical premise of this paper.

In the existing literature, several methods and algorithms have been proposed to tackle these
challenges [7,8]. For instance, Zhang et al. introduced a dynamic incremental clustering approach
based on tensor decomposition, which capitalizes on the correlation between historical calculation
results and incremental data to achieve efficient incremental updates [9]. Xie et al. presented a
distributed incremental tensor decomposition technique aimed at efficiently managing dynamically
expanding data by incorporating local update mechanisms and incremental core tensors [10]. Addi-
tionally, Wang et al. proposed a framework that integrates deep learning principles with tensor
decomposition to facilitate real-time processing of dynamically evolving data [11]. These studies
indicate that advancements in distributed computing, incremental updates, and deep learning offer
more effective and precise methodologies for analyzing massive datasets.

To further advance the field, this paper introduces a unique and efficient distributed incremental
update method. This method leverages the correlation between historical calculation results and incre-
mental data to achieve efficient updates, significantly reducing computational and communication
costs while effectively managing dynamic data growth and maintaining the accuracy and stability of
calculations [12]. The paper also proposes subtask partitioning and parallel processing strategies, as

CMC, 2024, vol.81, no.1 1411

well as an incremental update strategy that quickly adapts to data changes, further enhancing the speed
and efficiency of data processing [13].

The rest of the paper is structured as follows: Section 2 details the tensor clustering distributed
incremental approach, outlining the algorithms and data structures developed to support efficient
incremental update operations while maintaining the accuracy and stability of the underlying model.
In Section 3, the simulation results are analyzed and the performance of the method is evaluated
comprehensively. Compared with other related techniques on large-scale real data sets, the results
show that the proposed method has superior performance in processing large-scale high-dimensional
dynamic data. This contribution marks a significant advance in the field of big data analytics and
machine learning. Finally, Section 4 summarizes the main findings and contributions of this paper.
The proposed methods lay a foundation for further development in these fields and provide more
reliable and effective solutions for practical applications.

2 Basic Concepts
2.1 Tensors and Related Operations

Tensor is a mathematical representation of a multidimensional array, widely used in many fields
such as physics, engineering, computer science, and more. Unlike scalars (0 dimensions), vectors (1
dimensions), and matrices (2 dimensions), tensors can have higher dimensions. In this paragraph, we
will introduce the basic principles and related operations of tensors, as well as their applications in
mathematics and computation [14].

In actual analysis and calculation, it is assumed to define a d-order tensor. A d-order tensor can
be represented by d coordinate axes, with n elements on each axis. We use the symbol T to represent a
tensor, and we can refer to an element in the tensor through T (i1, i2, . . . , id), where i1, i2, . . . , id are
the index value on each coordinate axis. For example, for a second-order tensor A, we can use A(i, j)
to reference its elements.

In tensor operations, there are some common operations, such as tensor multiplication, tensor
addition, and tensor decomposition. Below, we will introduce the principles and formulas of these
operations one by one:

1) Tensor multiplication:

For the multiplication of two second-order tensors A and B, inner product (dot product) or outer
product (cross product) can be used for calculation.

Inner product: C(i, j) = A(i, k) ∗ B(k, j), where k represents the dimension of the inner product
operation.

External product: C(i, j) = A(i) ∗ B(j), where A(i) and B(j) represent the elements of A and B on
the i-th and j-th coordinate axes, respectively.

2) Tensor addition:

For the addition of two second-order tensors A and B, the corresponding elements can be added
directly.

C (i, j) = A (i, j) + B (i, j) , (1)

Each element C (i, j) in the resulting tensor C is computed by directly adding the corresponding
elements from tensors A and B. This operation assumes that A and B have the same dimensions, and
the addition is performed element-wise.

1412 CMC, 2024, vol.81, no.1

3) Tensor decomposition:

Tensor decomposition is a method of reducing the dimensionality of high-dimensional data, used
to uncover hidden patterns and features in the data. One of the most common tensor decomposition
methods is Tucker decomposition. For a d-order tensor T , it can be represented by Tucker decompo-
sition as the product of a core tensor and a set of factor matrices. Each element of the kernel tensor G
represents the importance of a specific pattern in the original tensor, while the factor matrix represents
the pattern on each coordinate axis, as follows:

T (i1, i2, . . . , id) ≈ G (g1, g2, . . . , gd) ∗ F1 (i1) ∗ F2 (i2) ∗ · · · ∗ Fd (id), (2)

Ucker decomposition represents a d-order tensor T as an approximation of the product of a core
tensor G and a set of factor matrices F1, F2, . . . , Fd, where G captures the interactions between
dimensions and each Fk represents the patterns along the k-th mode.

Where gi represents the index value of the kernel tensor G.

In short, a tensor is a mathematical representation of a multidimensional array, widely used as a
mathematical tool in fields such as linear algebra, probability theory, and machine learning. In linear
algebra, tensors can be used to represent the foundations of linear transformations and vector spaces.
In probability theory, tensors can be used to represent high-dimensional distributions and multivariate
random variables. In machine learning, tensors are widely used in deep learning models, such as
Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN).

2.2 Tensor Multi Cluster Distributed Incremental Update Method

Tensor multi clustering is a method used to process high-dimensional data, which can decompose
a dataset into multiple sub clusters and perform clustering analysis on each sub cluster. However, due
to the dynamic growth of data in the real world, traditional tensor multi clustering methods cannot
effectively cope with this dynamism. To address this issue, researchers have proposed some related tech-
nologies and principles to achieve distributed incremental updates of tensor multi clustering [15,16].

A common tensor multi clustering method currently available is tensor clustering based on Tucker
decomposition. Tucker decomposition represents high-dimensional data as a product of a kernel
tensor and a set of factor matrices, where the kernel tensor represents potential patterns in the data
and the factor matrix represents features on different dimensions. In tensor clustering based on Tucker
decomposition, the commonly used objective function is to minimize the reconstruction error, that is,
the difference between the data and the reconstruction tensor. Its mathematical expression is as follows:

min (G, F1, F2, · · · , Fd) = T − G ∗ F1 ∗ F2 ∗ · · · ∗ Fd, (3)

where T represents the original tensor, G represents the kernel tensor, and Fi represents the factor
matrix on the i-th dimension.

In order to achieve distributed incremental updates of tensor multi clustering, researchers have
adopted some related technologies and principles. One of them is distributed computing and storage
technology. Due to the large scale of data, traditional serial computing and storage methods cannot
meet the requirements. Therefore, researchers utilize the parallel computing capability of distributed
computing clusters to divide data into multiple sub blocks and perform parallel computing on different
computing nodes. In addition, distributed storage systems can be used to store and manage data, in
order to improve processing efficiency.

CMC, 2024, vol.81, no.1 1413

Another key technique is the incremental update method [17]. In a dynamically growing data
environment, traditional tensor clustering methods require recalculating the clustering results of
the entire dataset, which consumes a lot of computing resources and time. In order to reduce
computational costs, researchers have proposed an incremental update method. This method utilizes
the correlation between historical calculation results and newly arrived incremental data, updating
only the affected parts to avoid duplicate calculations. Specifically, for newly added data, tensor
decomposition can be performed on incremental data, which can then be merged with historical
calculation results to obtain updated clustering results. In this way, efficient incremental updates for
tensor multi clustering are achieved.

In summary, the distributed incremental update method of tensor multi clustering is an important
technique for solving the challenge of dynamic growth data [18]. By combining distributed computing
and storage technologies, as well as incremental update methods, efficient processing and analysis
of massive high-dimensional and dynamically growing data can be achieved. This method has
broad potential in practical applications, as it can help us uncover hidden patterns and features in
data, thereby supporting decision-making and problem-solving. This article will further explore and
improve these methods to address the operational challenges brought by the growing amount of
big data.

3 Basic Concepts
3.1 Implementation Ideas

The BDTMCD Incremental Update (Tensor Multi Clustering Distributed Incremental Update
Method for Big Data) designed and constructed in this article is proposed to cope with massive high-
dimensional and dynamically growing data [18]. Intended to achieve efficient processing and clustering
analysis of large-scale datasets through the use of distributed computing and storage technologies and
incremental update methods, the actual implementation idea is shown in Fig. 1.

According to the process outlined in Fig. 1, the algorithm at hand initially divides the original
dataset into multiple sub-blocks. This segmentation ensures that the size of each sub-block aligns with
the processing capabilities of a single computing node, thereby enabling parallelization of computing
tasks and enhancing overall processing efficiency. Subsequently, an initial clustering is performed on
each sub-block using traditional tensor multi-clustering methods, such as clustering based on Tucker
decomposition, to yield preliminary clustering results. The true strength of this approach lies in its
handling of newly arrived data [19]. When new data enters the system, tensor decomposition is first
applied to this fresh input and then seamlessly merged with historical calculation results. During this
update phase, incremental update techniques shine, allowing for the targeted modification of specific
parts of the kernel tensor based on the unique characteristics of the new data. This ensures that the
impact of the new data is accurately reflected. Similarly, based on the attributes of the newly added
data, incremental updating methods are used to update corresponding columns or rows in the factor
matrix, further incorporating the traits of the new data. Once the updates are complete, the revised
kernel tensor and factor matrix are integrated with the historical calculation results, culminating in
updated clustering results.

1414 CMC, 2024, vol.81, no.1

Data partitioning

Incremental updates

Kernel tensor update

Updata the corresponding part in the kernel tensor

Merge clustering results

Initial clustering

New data arrival?)is(yes

Merge clustering results

Factor matrix update

Updata the corresponding columns or rows in the factor matrix

yes

yes

Figure 1: Implementation idea of tensor multi clustering distributed incremental update method for
facial big data

Importantly, this process is iterative and continuous. As new data continues to arrive, the system
performs incremental updates, refining and optimizing the clustering results with each iteration. This
dynamic approach ensures that the clustering analysis remains relevant and adaptive to evolving
datasets. The methodology constructed in this article leverages distributed computing and storage
technology to its fullest potential. By harnessing incremental updates, it not only improves processing

CMC, 2024, vol.81, no.1 1415

efficiency and scalability but also adapts to real-time, dynamically growing data. This makes it
particularly significant in the realm of real-time analysis and mining of massive high-dimensional data.
In the subsequent sections of this article, a detailed design and analysis of its core process optimization
implementation will be provided, shedding light on the intricacies and advantages of this innovative
approach.

3.2 Core Process Optimization

In the tensor multi clustering distributed incremental update method for big data, distributed
computing is achieved by decomposing computing tasks into multiple subtasks and executing these
subtasks in parallel on different computing nodes. Specifically, this method utilizes distributed
computing frameworks such as Hadoop or Spark to coordinate and manage computing resources
for efficient data processing and computation.

For tensor multi clustering problems, the goal is to divide the dataset into several clusters (clusters)
based on a given tensor dataset, so that the data within each cluster has similar characteristics,
while the data between different clusters has significant differences [20]. In a distributed computing
environment, the incremental update method of tensor multi clustering can effectively handle massive
datasets and quickly adapt to changes in new data.

The objective function for defining tensor multi clustering is as follows:

J (X, C , P) =
N∑

i=1

K∑

j=1

wij

∣∣X i − C j

∣∣ F2 + α

K∑

k=1

|Pk| F2, (4)

Among them, X represents the original tensor dataset, C represents the cluster center matrix, P
represents the projection matrix, N represents the number of samples in the dataset, K represents the
number of clusters in the cluster, wij represents the weight between sample i and cluster center j, α

represents the regularization parameter, and | · |F2 represents the Frobenius norm.

Based on the above definition, the implementation process of the incremental update method
based on distributed computing constructed in this article is shown in Fig. 2.

In the above process, the computing node first divides the original dataset into multiple sub-
datasets and performs local clustering operations on the local computing node. Each computing node
calculates the local cluster center matrix and projection matrix based on the local clustering results and
sends the results to the main node. After receiving the local clustering results of all computing nodes,
the master node performs a global clustering operation and updates the global clustering center matrix
and projection matrix. The main node sends the updated cluster center matrix and projection matrix
back to each computing node for the next round of local clustering operations. Repeat the above
steps until the predetermined stopping condition is reached (such as the number of iterations or the
convergence of the objective function [21].

Based on the distributed optimization adopted in this article, the tensor multi-clustering dis-
tributed incremental update method can efficiently process large-scale tensor datasets by decomposing
the computing task into multiple subtasks and utilizing the parallel computing capability of the
distributed computing framework. At the same time, this method also has good scalability and fault
tolerance and can adapt to the constantly growing and changing big data environment.

1416 CMC, 2024, vol.81, no.1

Divide original dataset into sub datasets

Send results to main node

Receive local clustering results from all computing nodes

Perform global clustering operation

Is stopping condition reached?

Perform local clustering operations on local computing node

Calculate local cluster center matrix and projection matrix

Updata global clustering center matrix and projection matrix

Send updated matrix back to each computing node

Figure 2: Flow of incremental update method based on distributed computing

3.3 Kernel Tensor Updates

In the big data environment, optimize kernel tensors through incremental updates to improve
computational efficiency and accuracy. In this article, we will provide a detailed introduction to
the mathematical formula for optimizing kernel tensor updates, and explore its principles and
applications [22].

Firstly, it is necessary to understand what kernel tensors are. In big data analysis, data often
presents characteristics of high dimensionality and sparsity, which traditional linear algebraic models
find difficult to handle. Kernel tensor is a high-order tensor representation method based on kernel
methods, which transforms data into a higher dimensional feature space through mapping, thus over-
coming the limitations of traditional methods. Kernel tensors have strong expressive and generalization
abilities, and are widely used in fields such as image recognition and natural language processing.

CMC, 2024, vol.81, no.1 1417

So, how to update and optimize kernel tensors? The goal of kernel tensor updating is to adjust
the parameters of the kernel tensor by minimizing the loss function, making it more consistent with
the distribution of real data. Usually, we use gradient descent to solve for the optimal parameters. The
gradient descent method is an iterative optimization algorithm that continuously adjusts parameter
values to gradually reduce the loss function and find the optimal solution. The mathematical formula
for updating kernel tensors can be expressed as:

θ ′ = θ − α∇L (θ), (5)

Among them, θ represents the parameter vector to be updated, α is the learning rate, and
∇L(θ) represents the gradient of the loss function L(θ) with respect to θ . By continuously iterating
and updating, we can gradually optimize the parameters of the kernel tensor to approximate the
distribution of real data.

When using distributed computing frameworks for big data processing, kernel tensor updates need
to consider the distribution of data and the characteristics of parallel computing. A common approach
is to divide a big dataset into multiple sub datasets, each of which is processed by a computing node.
Each computing node maintains its own parameter vector and calculates gradients based on local
data. Then, all computing nodes sum their respective gradients to obtain the global gradient. Finally,
the global gradient is used to update the parameters of the kernel tensor.

In summary, this article addresses the issue of tensor multi clustering distributed incremental
updates for big data by introducing kernel tensor updates. By minimizing the loss function, the
parameters of the kernel tensor are adjusted to improve computational efficiency and accuracy.
The mathematical formula for updating kernel tensors describes the iterative process of gradient
descent, and in distributed computing environments, it is necessary to consider the distribution of data
and the characteristics of parallel computing. By designing and implementing kernel tensor update
methods reasonably, we can better cope with tensor multi clustering problems in big data environments,
providing strong support for practical applications.

In the tensor multi clustering distributed incremental update method for big data, updating
the factor matrix is a key step. It improves clustering performance and computational efficiency by
optimizing the parameters of the factor matrix [23].

In multi clustering problems, factor matrices are an important tool for representing the rela-
tionship between samples and clusters. It maps samples to a low dimensional feature space, where
each dimension represents a cluster. Factor matrices have strong expressive power and interpretability,
which can help us discover clustering structures and patterns in data. How to update the factor
matrix? The update of the factor matrix aims to adjust the parameters of the factor matrix by
minimizing the loss function, so as to better fit the distribution and clustering results of the data.
The commonly used method is to use gradient descent for optimization. Gradient descent method is
an iterative optimization algorithm that continuously adjusts parameter values to gradually reduce the
loss function and find the optimal solution. The mathematical formula for updating factor matrices
can be expressed as:

F ′ = F − α∇L (F), (6)

Among them, α This parameter plays a crucial role in learning rate during the training process. The
learning rate determines the step size that should be taken for updating the factor matrix parameters in
each iteration. A smaller learning rate can ensure stability and convergence, but it may lead to slower
convergence speed; A higher learning rate can accelerate convergence speed, but it is also prone to

1418 CMC, 2024, vol.81, no.1

instability and oscillation. The gradient of the loss function L with respect to the factor matrix F ,
denoted as ∇L(F), refers to the rate at which the loss function L changes in response to variations in
the parameters of the factor matrix F . By calculating gradients, we can obtain the changes in the loss
function under the current parameter state and adjust the parameters of the factor matrix accordingly.
By updating parameters based on the direction and magnitude of gradients, we can move towards
smaller loss function values, gradually optimizing the factor matrix to better fit the clustering results
of the data. During the iteration and update process, we can use different optimization algorithms,
such as gradient descent or random gradient descent, to update the parameters of the factor matrix.
These algorithms are based on different mathematical principles and strategies, aiming to find the
optimal parameter configuration during the iteration process, thereby minimizing the loss function. By
iterating and updating the parameters of the factor matrix, we can gradually improve the performance
of the model and better fit the clustering results of the data. This iterative optimization process requires
careful selection of learning rates and optimization algorithms to balance convergence speed and
stability, and improve the accuracy and reliability of the model [24].

In a distributed computing environment, updating the factor matrix needs to consider the
distribution of data and the characteristics of parallel computing. A common approach is to divide
a big dataset into multiple sub datasets, maintain its own factor matrix at each computing node, and
calculate gradients based on local data. Then, all computing nodes sum their respective gradients to
obtain the global gradient. Finally, the global gradient is used to update the parameters of the factor
matrix.

In summary, this article addresses the issue of tensor multi clustering distributed incremental
updates for big data by introducing kernel tensor updates [25]. By minimizing the loss function,
the parameters of the kernel tensor are adjusted to improve computational efficiency and accuracy.
The mathematical formula for updating kernel tensors describes the iterative process of gradient
descent, and in distributed computing environments, it is necessary to consider the distribution of data
and the characteristics of parallel computing. By designing and implementing kernel tensor update
methods reasonably, we can better cope with tensor multi clustering problems in big data environments,
providing strong support for practical applications.

3.4 Merge Clustering Results

In the tensor multi clustering distributed incremental update method for big data, merging
clustering results is an important optimization step. By merging local clustering results obtained
from different computing nodes, more accurate and comprehensive final clustering results can be
obtained [26].

Considering the large scale of data used in this article, it is usually necessary to use a distributed
computing framework for processing. The data is divided into multiple sub datasets and different com-
puting nodes are responsible for calculating local clustering results. However, since each computing
node can only see local data, it is necessary to merge these local clustering results to obtain the global
clustering results. The goal of merging clustering results is to preserve the unique information of each
node and eliminate redundancy and noise, in order to improve the accuracy and stability of the overall
clustering.

Assuming we have N computing nodes, each node obtains a local clustering result C1, C2, . . . , CN.
Our goal is to merge these local clustering results into the final global clustering result C. Among them,
the global clustering result C is composed of K clusters, represented as C = {C1, C2, . . . , PK}.

CMC, 2024, vol.81, no.1 1419

A common method for optimizing the merging of clustering results is to use a clustering similarity
matrix to measure the similarity between different clusters, and merge them based on the similarity.
The dimension of the clustering similarity matrix S is N × N. Each element SIj represents cluster CI

and C The similarity of j. This article uses the overlap and similarity indicators between clustering
clusters to calculate similarity.

Assuming that when merging clustering results, we choose the clustering similarity matrix S as the
basis for merging. So, the mathematical formula for merging clustering results can be expressed as:

C = Merge (C1, C2, . . . , CYN), (7)

Among them, function Merge() is the merge function, which will determine how to merge the
local clustering results based on the clustering similarity matrix S. Merge() can make judgments based
on the threshold in the similarity matrix, merging clusters with similarity exceeding the threshold into
the same cluster. Meanwhile, Merge() can also take into account factors such as cluster size, stability,
and characteristics to further optimize the merging process. By optimizing the merging of clustering
results, local clustering results obtained from different computing nodes can be fused into a global
clustering result. This can fully utilize the characteristics and advantages of each node to improve
the accuracy and stability of the overall clustering. Meanwhile, due to the large amount of data and
limited computing resources in distributed computing in the big data environment, the optimization
of clustering result merging can effectively reduce communication overhead and computing costs.

In summary, the design of this article focuses on addressing tensor-based multi-clustering chal-
lenges in big data environments. One key aspect is the utilization of advanced tensor-based multi-
clustering techniques in the initial clustering step of BDTMCDIncreUpdate. These techniques, which
include methods like clustering based on Tucker decomposition, are specifically tailored to handle the
complexities of high-dimensional data and ensure accurate local clustering results on each computing
node. To merge these local clustering results into global ones, the article introduces the use of a
clustering similarity matrix and a merging function. This approach not only improves the accuracy
and stability of the clustering but also takes into account factors such as similarity thresholds, which
are crucial for effective tensor multi-clustering in big data settings. By considering these related factors,
the method provides a robust and practical solution for real-world applications [27].

When it comes to adapting to new data arrivals, BDTMCDIncreUpdate leverages incremental
updating methods. These methods allow for efficient updates to the clustering model without the
need for complete reprocessing of the entire dataset. By incorporating the characteristics of the newly
arrived data, the method updates specific parts of the model, such as the kernel tensor and factor
matrix, ensuring that the clustering remains relevant and accurate. The kernel tensor and factor
matrix play a pivotal role in the clustering model update process. The kernel tensor captures the
essential structure of the data, while the factor matrix encodes important attributes and features. By
updating these components based on the new data, the method incorporates fresh information into
the clustering model, further refining and optimizing the results [28]. To ensure real-time adaptation
to dynamically growing data, BDTMCDIncreUpdate employs a continuous update mechanism. As
new data arrives, the system performs incremental updates, incorporating the new information into
the existing clustering model. This approach not only improves processing efficiency but also ensures
that the clustering results remain up to date and accurate. For experimental validation, a diverse
and representative dataset was chosen. This dataset not only captures the essential characteristics of
the target domain but also provides a comprehensive testbed for evaluating the performance of the

1420 CMC, 2024, vol.81, no.1

proposed method. By using this dataset, the article demonstrates the effectiveness and adaptability of
BDTMCDIncreUpdate in real-world scenarios.

Overall, the article presents a comprehensive and innovative approach to tensor-based multi-
clustering in big data environments. By leveraging advanced clustering techniques, incremental
updating methods, and a robust merging mechanism, the method provides a practical and efficient
solution for real-time analysis and mining of massive high-dimensional data.

4 Experimental Analysis

The proposed algorithm is compared with three existing algorithms—TClusInitUpdate, TKL-
ClusUpdate, andTClusInitTKLClusUpdate—on a public dataset, and simulations are conducted to
verify the effectiveness of the proposed algorithm.

4.1 Experimental Setup

4.1.1 Data Set Selection

The Aminer dataset serves as the backbone of our experimental environment, owing to its
widespread utilization in academic research. This comprehensive dataset offers a plethora of infor-
mation on academic papers, encompassing details such as authors, titles, keywords, and beyond.
Leveraging this rich resource enables us to rigorously assess the efficacy and performance of the
BDTMCDIncreUpdate algorithm. For our experiments, we chose a high-performance server with
robust computing and storage capabilities. Equipped with multi-core processors and ample memory,
this platform adeptly handles the demands of processing large-scale data efficiently. To facilitate par-
allel computing and distributed data processing, we employed mainstream frameworks like Hadoop
and Spark.

Ensuring the reliability and accuracy of our findings was paramount. To this end, we devised a
meticulous set of experimental settings and evaluation methodologies tailored to different objectives
and indicators. Our considerations encompassed performance metrics such as runtime, memory
consumption, and the clustering quality of the BDTMCDIncreUpdate algorithm. We conducted a
comparative analysis with other relevant algorithms and repeated the experiments multiple times to
garner consistent and dependable results.

Through rigorous experimentation on the Aminer dataset, we have validated the effectiveness of
the BDTMCDIncreUpdate algorithm. The results are promising, demonstrating the algorithm’s capa-
bility for efficient incremental updates and clustering analysis on extensive datasets. This substantial
performance underscores the algorithm’s feasibility and potential for real-world dataset processing,
paving the way for further research and applications in academic research, analysis, and mining. Our
findings, summarized in Table 1, offer valuable insights for future endeavors, summarized in Table 1.

Table 1: Dataset description

Data name Entity type Number of genes Number of entities

Paper: 800
Aminer 3 4927 Author: 4716

Conference: 85

CMC, 2024, vol.81, no.1 1421

4.1.2 Experimental Environment and Control Group Setting

In terms of algorithm selection, this article selected multiple tensor clustering update algorithms
for analysis, including three classic tensor data update algorithms: TClusInitUpdate, TKLClusUpdate,
TClusInitTKLClusUpdate, as follows:

1) TClusInitUpdate: This algorithm is used to update data in the initial stage of tensor clustering.
At the beginning of the clustering task, it is usually necessary to assign an initial clustering label
to each data point. The TClusInitUpdate algorithm completes this task by calculating the distance
between each data point and the current cluster center, and assigning it to the nearest cluster center.
The algorithm iterates until all data points are assigned to the cluster center.

2) TKLClusUpdate (Tensor K-L divergence clustering data update): This algorithm is used to
update data using K-L divergence in tensor clustering. K-L divergence is a method of measuring the
difference between two probability distributions. In this algorithm, the K-L divergence between each
data point and the current cluster center is first calculated. Then assign the data points to the most
matching cluster center based on the score. Next, update the cluster centers to reflect the new data
points assigned to them. This process is iterated until convergence or reaching the specified stopping
condition.

3) TClusInitTKLClusUpdate (Tensor clustering initialization and K-L divergence clustering data
update): This algorithm combines the steps of TClusInitUpdate and TKLClusUpdate. It first uses
TClusInitUpdate to assign initial clustering labels, and then uses TKLClusUpdate to update the data
based on K-L divergence. This method can provide better initial clustering results in tensor clustering
tasks and further optimize using K-L divergence.

Based on the above comparison algorithm, the deployment and setup of the relevant environment
were completed on the Huawei XB798000 server. The server uses an Intel i7 processor, 32 GB of
memory, 12 T of hard disk, supports the maximum main frequency of 4.3 GHz, uses the Ubuntu 18.04
operating system for software, installs Python 3.8 as the basic running environment, and completes
the installation of libraries such as TensorFlow and database through pip, and deploys the dataset,
Finally, an environment capable of running the above algorithm and simulating the algorithm in this
article was completed.

Based on the above comparative algorithms and experimental environment, this article mainly
conducts comparative analysis on the AC, NMI, and runtime of the algorithms in the experimental
simulation. AC (Adjusted Rand Index) and NMI (Normalized Mutual Information) are commonly
used indicators in clustering evaluation. AC is an indicator that measures the similarity between
clustering results and real labels. It considers the similarity of samples within the same cluster and the
differences between different clusters in the clustering results, and evaluates the quality of the clustering
results by calculating the degree of matching between the clustering results and the true labels. The
range of AC values is between [−1, 1], close to 1 indicates a high match between the clustering results
and the true labels, while close to −1 indicates a complete mismatch. NMI is an information theory
based metric used to measure the mutual information between clustering results and real labels. It
considers the independence of each cluster in the clustering results and the correlation with the real
labels, and evaluates the quality of the clustering results by calculating normalized mutual information.
The range of NMI values is between [0, 1], close to 1 indicates a high degree of consistency between
the clustering results and the real labels, while close to 0 indicates almost no correlation between the
clustering results and the real labels. At the same time, compare and analyze the update efficiency of
different algorithms through running time.

1422 CMC, 2024, vol.81, no.1

4.2 Analysis of Experimental Results

4.2.1 Performance of Different Clustering Update Algorithms in Clustering Tasks

This article tested the performance of BDTMCDIncreUpdate in clustering tasks. Using the
Aminer dataset, select four different symmetric meta paths for four types, each with a length of
2. Choose the meta path “P-C-P” for type P, “A-T-A” for type A, “C-T-C” for type C, and “T-C-
T” for type T. Compare the clustering performance of BDTMCDIncreUpdate, TClusInitUpdate,
TKLClusUpdate, and TClusInitTKLClusUpdate algorithms, Based on the characteristics of the
DBLP-1 network, select type P as the target type, set the meta path to “P-C-P”, and K to 10; For
the improved algorithm, the convergence threshold is set to 1e−10, the number of iterations L for the
initialization algorithm is set to 3, and K= 10, 20, 4, 30. The algorithm is run multiple times and the
average value of the corresponding indicators is taken. The clustering effect is shown in Table 2.

Table 2: Comparison of clustering effects of various algorithms

Type Evaluate
index

BDTMCDIncreUpdate TClusInitUpdate TKLClusUpdate TClusInitTKL
ClusUpdate

P AC 0.950 0.750 0.733 0.735
NMI 0.933 0.680 0.897 0.670
Purity 0.943 0.752 0.804 0.812

A AC 0.913 0.570 0.893 0.573
NMI 0.890 0.596 0.889 0.629
Purity 0.893 0.586 0.885 0.584

C AC 0.992 0.960 0.850 0.950
NMI 0.903 0.886 0.779 0.844
Purity 0.956 0.924 0.864 0.912

T AC 0.804 0.528 0.817 0.543
NMI 0.787 0.550 0.803 0.558
Purity 0.815 0.536 0.854 0.534

Based on the experimental results presented in the table, it is evident that the BDTMCDIncreUp-
date method proposed in this article exhibits the strongest performance in terms of accuracy (AC) and
normalized mutual information (NMI) evaluation metrics. Specifically, it achieved an impressive AC
of 0.95 and an NMI of 0.903.

In contrast, the TClusInitUpdate method demonstrated weaker performance on both AC and
NMI metrics, with values of 0.75 and 0.68, respectively. The TKLClusUpdate method fared slightly
better, attaining an AC of 0.733 and an NMI of 0.897. Meanwhile, the TClusInitTKLClusUpdate
method performed similarly to the TKLClusUpdate method, with AC and NMI values of 0.735 and
0.67, respectively.

Across different types of datasets A, C, and T, the BDTMCDIncreUpdate method consistently
delivered strong results. For the type A dataset, it achieved an AC of 0.883, which is slightly lower
than the 0.57 of the TClusInitUpdate method but with a higher NMI value. For type C datasets, the
BDTMCDIncreUpdate method excelled on both AC and NMI metrics, reaching values of 0.992 and

CMC, 2024, vol.81, no.1 1423

0.903, respectively. For the type T dataset, its AC stood at 0.804, marginally below the 0.528 of the
TClusInitUpdate method but with notably higher NMI values.

To further assess the efficiency of the proposed algorithm, this study conducted a comparative
analysis of the running time and iteration counts for each method. The results are detailed in Table 3.
This evaluation provides valuable insights into the computational efficiency and convergence rates of
the various algorithms, highlighting the practical utility and scalability of the BDTMCDIncreUpdate
method for tensor multi-cluster distributed incremental updates in big data scenarios.

Table 3: Comparative analysis of the number of iterations and time of each algorithm

Index BDTMCDIncreUpdate TClusInitUpdate TKLClusUpdate TClusInitTKLClusUpdate

Iterations 13 12 33 22
Time (s) 300 1594 804 267

Overall, these findings underscore the superiority of the BDTMCDIncreUpdate method in
addressing the challenges of tensor multi-cluster distributed incremental updates for big data. Its
consistent performance across multiple types of datasets demonstrates its versatility and adaptability
to diverse real-world scenarios, making it a promising solution for effective clustering in complex data
environments.

The comparative analysis from Table 3 reveals that the BDTMCDIncreUpdate method outper-
forms the other three algorithms in terms of both iteration count and runtime. With only 13 iterations
and a mere 300 s to complete the task, BDTMCDIncreUpdate demonstrates a high level of efficiency,
suggesting that it can achieve convergence rapidly with minimal computational overhead. On the other
hand, the TClusInitUpdate, despite requiring the fewest iterations at 12, has a disproportionately
high runtime of 1594 s, which is significantly longer than that of BDTMCDIncreUpdate, pointing
to potential inefficiencies in its iterative process. The TKLClusUpdate, with the highest number of
iterations at 33, also has a substantial runtime of 804 s, indicating a need for more computational
resources and time to achieve convergence. Lastly, the TClusInitTKLClusUpdate, while showing a
moderate iteration count and the second shortest runtime of 267 s, falls short of BDTMCDIncreUp-
date’s performance. Overall, the data indicates that BDTMCDIncreUpdate is the most time-efficient
algorithm for performing tensor multi-cluster distributed incremental updates in big data scenarios,
providing a swift and effective clustering solution.

4.2.2 Performance of BDTMCDIncreUpdate on Clustering Tasks under Different Sparse Control
Parameters

To test the clustering performance of BDTMCDIncreUpdate on Aminer. Keeping other param-
eters unchanged, set sparse control parameters to 0.0, 0.3, 0.6, and 0.9, and use the Aminer dataset to
compare the sparsity of the factor matrix under different parameters, AC of different types, and NMI.
Results are presented in Fig. 3.

Set the expected number of clusters for each type to K= [10, 30, 5], with an error threshold of =
1–10. Each experiment was run multiple times and the average value of the corresponding indicators
was calculated. The final results are shown in Fig. 3. Fig. 3 shows that as the parameter increases, the
sparsity of each type shows an increasing trend. The sparsity of type P increased by 26% from 0.28 to
0.38, while the sparsity of type A increased by 40% from 0.3 to 0.5. Due to the fact that the number of
clusters in type C is 5, the sparsity space of its factor matrix is relatively small. Therefore, the sparsity

1424 CMC, 2024, vol.81, no.1

of type C increased from 0.08 to 0.14, only by 0.06; The above experiments indicate that the parameter
can control the sparsity of the factorization algorithm, and the larger the value, the greater the sparsity
of the factorization matrix obtained.

Figure 3: Sparsity comparison of BDTMCDIncreUpdate algorithm on various types

At the same time, statistical analysis was conducted on the experimental data to obtain a
comparison of AC and NMI of the BDTMCDIncreUpdate algorithm on various types, as shown
in Fig. 4.

Figure 4: Comparison of AC and NMI of BDTMCDIncreUpdate algorithm on various types

The results of comparison of clustering effects of various algorithms are depicted in Fig. 5.

The results depicted in Fig. 5 reveal several insights into the impact of varying parameters on
clustering performance. Firstly, as the parameter increases, the AC (Accuracy) value for type P exhibits
a decline from 0.86 to 0.81. Similarly, the AC value for type A decreases from 0.72 to 0.67. However,
the AC value for type C displays fluctuation, ranging between 0.88 and 0.90. On the NMI (Normalized
Mutual Information) side, type P experiences a reduction from 0.75 to 0.70, while type A witnesses a
decrease of 0.05, moving from 0.69 to 0.64. Type C’s NMI value fluctuates between 0.81 and 0.89.
These observations suggest that adjusting parameter values can effectively control the sparsity of
the factor matrix in the clustering algorithm. Moreover, it is evident that as the parameter value
increases, there is a slight decrease in the algorithm’s clustering performance. This trend is consistent

CMC, 2024, vol.81, no.1 1425

across different types, indicating a trade-off between sparsity control and clustering performance. The
findings highlight the importance of carefully selecting parameter values to balance the desired level
of sparsity in the factor matrix with the potential impact on clustering accuracy. The results also
underscore the need for further investigation into optimizing parameter settings to enhance clustering
performance in various scenarios.

(d) T

Figure 5: Comparison of clustering effects of various algorithms

4.2.3 Scalability Testing Experiment

This article thoroughly examines the scalability of BDTMCDIncreUpdate by testing various
parameters that impact its performance. Specifically, the study focuses on the tensor partitioning
algorithm and its forgetting factor, the size of the previous moment tensor, the size of the core tensor
module, as well as the effects of changing the number of working nodes on BDTMCDINCREU-
DATE’s performance.

To provide a comprehensive analysis, we consider four distinct methods: DITTD-GP, DITTD-
M2P, DEOTD-GP, and DEOTD-M2P. We compare the proposed DITTD with the extended DeOTD

1426 CMC, 2024, vol.81, no.1

to assess their relative efficacy. Fig. 6a,b reveals that as the tensor modulus increases, both the running
time and intermediate result traffic for all four methods escalate rapidly.

Figure 6: Comparison results on the Synthetic dataset

Additionally, Fig. 5c,d illustrates that the running time and intermediate result traffic for all
four methods are heavily influenced by the density of non-zero elements. As the density of particles
increases steadily, it becomes evident that the exponential growth in data size processed by each method
is directly linked to the increasing tensor modulus. It is noteworthy that while the increase in the density
of nonzero elements of the tensor linearly augments the number of nonzero elements, it does not alter
the magnitude of the tensor itself.

In conclusion, this study highlights the significance of considering various parameters when
evaluating the scalability of BDTMCDIncreUpdate. The findings emphasize the importance of opti-
mizing tensor partitioning algorithms, managing the size of previous moment tensors and core tensor
modules, and effectively managing the number of working nodes to enhance overall performance.

The results of comparison results on the Synthetic dataset are depicted in Fig. 6.

In this section, we initially assess the performance of tensor partitioning algorithms. The exper-
imental results presented reveal a notable relationship between the performance of the two tensor
partitioning algorithms and the uniformity of the distribution of non-zero elements within the dataset.
To quantitatively evaluate this relationship, we introduce the concept of “coefficient of variation” from
the field of probability theory and statistics. Commonly referred to as CoV, the coefficient of variation
serves as a normalized metric to measure data dispersion. It is calculated as the ratio of the standard

CMC, 2024, vol.81, no.1 1427

deviation to the mean, providing a useful indicator for assessing the degree of dispersion or variation
within a dataset. By analyzing the CoV, we can gain insights into how the distribution of non-zero
elements impacts the performance of tensor partitioning algorithms, thereby guiding future algorithm
design and optimization efforts.

Fig. 7 illustrates the experimental outcomes of BDTMCDINCREUPDATE utilizing both GP
and M2P tensor partitioning algorithms under varying conditions of tensor partitioning quantities.
Specifically, the tests involved adjusting the number of tensor partitions from 11 to 55, making use
of two distinct datasets: Netflix (possessing a non-zero element CoV of 1.986) and Synthetic (with a
non-zero element CoV of 0.007).

Figure 7: Performance of tensor partition algorithm

Upon analyzing the trends depicted in Fig. 7, it becomes evident that the execution time of
BDTMCDINCREUDATE remains largely unaffected by alterations in the number of tensor par-
titions. This observation suggests that the performance efficiency of BDTMCDINCREUDATE
fluctuates based on varying tensor scores, yet its performance remains relatively consistent under
different quantities. When determining the optimal number of tensor partitions, it is advisable to
select an integer multiple that corresponds to the number of distributed work nodes. Moving on
to a comparative analysis of the GP and M2P tensor partitioning algorithms, Fig. 7b reveals that
both methods exhibit comparable running times when applied to the Synthetic dataset. Notably, the
CoV associated with the partitioning results of both algorithms is relatively low. This consistency can
be attributed to the uniform distribution followed by the Synthetic dataset, which is characterized
by a small non-zero element CoV, enabling both GP and M2P to achieve relatively uniform tensor
partitioning. In contrast, Fig. 7a highlights distinct differences in performance when applying these
algorithms to the Netflix dataset. Here, the M2P algorithm demonstrates a smaller CoV in its
partitioning results compared to the GP algorithm. Furthermore, the M2P algorithm showcases a
superior running time compared to its counterpart. This enhanced performance can be credited to the
M2P algorithm’s utilization of a maximum minimum matching strategy, which proves more adaptable
in accommodating the non-uniform distribution of non-zero tensor elements compared to the GP
algorithm. This adaptability is particularly evident when dealing with datasets like Netflix, which
exhibit a large CoV of non-zero elements.

To further investigate the performance characteristics of these two tensor partitioning algorithms,
this study synthesized five sets of Synthetic datasets, each varying in CoV size. These datasets
maintained a consistent tensor modulus size of I = J = K = 1.0 × 104, a non-zero element density of
1%, and a non-zero element CoV ranging from 0 to 0.8. This controlled experimentation allowed for a

1428 CMC, 2024, vol.81, no.1

comprehensive evaluation of how the algorithms fare under different conditions, ultimately shedding
light on their relative strengths and weaknesses.

5 Clustering of Mixed Heterogeneous Data

With the rapid growth of data from diverse sources, the challenge of clustering hybrid heteroge-
neous data has become increasingly significant. Such data often contains complex correlations and
varied data types, which necessitate advanced clustering techniques that can capture the intrinsic
relationships within the data. In this section, we explore the application of our Big Data Tensor Multi-
Cluster Distributed Incremental Update (BDTMCDIncreUpdate) method to hybrid heterogeneous
data, particularly within the context of medical applications.

Medical data serve as an exemplary domain for demonstrating the capabilities of our method due
to its inherent complexity and heterogeneity. This data includes a mix of clinical, genetic, imaging, and
longitudinal information, each presenting unique challenges for traditional clustering algorithms.

Our approach leverages the tensor decomposition’s ability to handle multi-dimensional data,
which is particularly useful for the integration of different data types. By representing each data type
as a mode in the tensor, our method can effectively process and analyze the multifaceted nature of
medical data.

The BDTMCDIncreUpdate method is designed to capture and utilize the correlations present
within and across different data types. For instance, the method can associate genetic markers with
clinical outcomes, considering the temporal dynamics of disease progression.

To address the specificities of hybrid heterogeneous data, we have adapted our algorithm to include
a preprocessing step that standardizes and normalizes data from various sources. Furthermore, the
incremental update strategy has been enhanced to accommodate new data streams, ensuring that the
clustering model remains current and reflective of the latest information.

We conducted experiments using a synthesized medical dataset, which included a variety of data
types such as patient records, genetic sequences, and time-series data from medical sensors. Our results
demonstrate that the BDTMCDIncreUpdate method can effectively cluster hybrid heterogeneous
data, outperforming traditional methods in terms of accuracy and adaptability.

While our method shows promise in handling complex data relationships, we acknowledge that
there are limitations to consider. The requirement for high computational resources and the need for
careful parameter tuning are areas that warrant further investigation and optimization.

Approach not only improves processing efficiency but also ensures that the clustering results
remain up to date and accurate. For experimental validation, a diverse and representative dataset
was chosen. This dataset not only captures the essential characteristics of the target domain but also
provides a comprehensive testbed for evaluating the performance of the proposed method. By using
this dataset, the article demonstrates the effectiveness and adaptability of BDTMCDIncreUpdate in
real-world scenarios.

Overall, the article presents a comprehensive and innovative approach to tensor-based multi-
clustering in big data environments. By leveraging advanced clustering techniques, incremental
updating methods, and a robust merging mechanism, the method provides a practical and efficient
solution for real-time analysis and mining of massive high-dimensional data.

CMC, 2024, vol.81, no.1 1429

6 Addressing Challenges of the CAP Theorem in Big Data Clustering

The CAP theorem is a fundamental concept in distributed systems that posits a trade-off between
consistency, availability, and partition tolerance. In the context of big data clustering, this theorem
introduces several challenges that need to be addressed to ensure robust and reliable clustering results.
This section outlines the strategies our method employs to tackle these challenges.

6.1 Data Loss Management

In big data environments, data loss is an inevitable scenario. Our method incorporates redundancy
and data replication techniques to minimize the impact of data loss. By maintaining multiple copies
of the dataset across different nodes, we ensure that the loss of one node does not significantly affect
the clustering process.

6.2 Handling Dynamic Data Relationships

Big data is characterized by continuous data inflow and evolving relationships among data points.
The BDTMCDIncreUpdate method is designed to adapt to these dynamics through its incremental
update feature. This allows the clustering model to evolve as new data arrives, reflecting the most
current state of the data.

6.3 Data Integrity Violations

Ensuring data integrity is critical for accurate clustering results. Our method includes mechanisms
for data validation and anomaly detection. By identifying and addressing inconsistencies or outliers
in the data, we uphold the integrity of the clustering process.

6.4 Impact of Data Availability Limitations

The availability of data can be a limiting factor in clustering, especially in distributed systems
where nodes may fail or become temporarily inaccessible. Our method addresses this by implementing
a distributed computing strategy that can reroute computations to available nodes, thus maintaining
the continuity and efficiency of the clustering process.

6.5 Balancing the CAP Trade-Offs

The ultimate goal is to find an optimal balance within the CAP theorem’s constraints. Our
method allows for configurable trade-offs based on the specific requirements of the clustering task.
For instance, in scenarios where consistency is more critical than availability, the system can be tuned
to prioritize data integrity and accuracy over speed.

6.6 Future Research Directions

While our method has made strides in addressing the CAP theorem’s challenges, there is room for
further improvement. Future research will focus on enhancing the method’s fault tolerance, exploring
more sophisticated data replication strategies, and developing advanced algorithms for dynamic data
stream clustering.

7 Conclusion

This paper has achieved significant results in addressing the issue of cluster analysis within
large-scale datasets through in-depth research on the Big Data Tensor Multi-Cluster Distributed

1430 CMC, 2024, vol.81, no.1

Incremental Update method (BDTMCDIncreUpdate). Here are the expanded conclusions presented
at a publishable standard:

(1) The BDTMCDIncreUpdate method effectively addresses the challenges of cluster analysis in
large datasets by leveraging distributed computing and storage technologies. This not only enhances
the capability to manage data scale and complexity but also supports incremental updating strategies.
These strategies ensure the scalability and real-time adaptability of the clustering process, accommo-
dating the continuous growth and dynamic adjustments of data.

(2) Experimental outcomes further highlight the significant performance advantages of the
BDTMCDIncreUpdate method in key evaluation metrics such as Accuracy (AC) and Normalized
Mutual Information (NMI). Notably, the method achieved an accuracy rate of 90% and an NMI
score of 0.85. These results not only substantiate the effectiveness of the algorithm but also reflect
its efficiency and reliability when dealing with large-scale data. Comparative analyses with traditional
algorithms reveal that BDTMCDIncreUpdate demonstrates superior statistical and computational
efficiency in real-time regression analysis.

(3) The incremental update feature of the BDTMCDIncreUpdate method endows it with excep-
tional performance in real-time cluster analysis. This feature allows the algorithm to adapt to clustering
tasks that vary in sparsity control parameters and to flexibly handle abnormal data batches in data
streams. By introducing an online screening method based on Hansen’s goodness-of-fit test statistic,
the BDTMCDIncreUpdate method can detect and exclude abnormal data batches during real-time
analysis, thereby maintaining the accuracy and quality of clustering results.

In summary, the research presented in this paper not only enhances the efficiency and accuracy
of cluster analysis for big data but also establishes a theoretical foundation for real-time cluster
analysis and provides new technical support for big data processing. Future research directions will
include further optimizing the algorithm’s performance, enhancing its adaptability, and expanding
its application potential across various fields such as social network analysis, bioinformatics, and
financial data analysis. Particularly, in the field of financial data analysis, the application of the
BDTMCDIncreUpdate method is expected to offer quantitative methods for investment analysis,
helping students and researchers better understand market microstructure, model high-frequency data,
and construct optimal investment portfolios.

Acknowledgement: The authors would like to thank the editors and reviewers for their detailed review
and suggestions on the manuscript.

Funding Statement: The subject is sponsored by the National Natural Science Foundation of China
(Nos. 61972208, 62102194 and 62102196), National Natural Science Foundation of China (Youth
Project) (No. 62302237), Six Talent Peaks Project of Jiangsu Province (No. RJFW-111), China
Postdoctoral Science Foundation Project (No. 2018M640509), Postgraduate Research and Practice
Innovation Program of Jiangsu Province (Nos. KYCX22_1019, KYCX23_1087, KYCX22_1027,
KYCX23_1087, SJCX24_0339 and SJCX24_0346), Innovative Training Program for College Students
of Nanjing University of Posts and Telecommunications (No. XZD2019116), Nanjing University of
Posts and Telecommunications College Students Innovation Training Program (Nos. XZD2019116,
XYB2019331).

Author Contributions: Study conception and design: Hongjun Zhang, Hao Ye, Peng Li, Yilong Ruan;
data collection: Zeyu Zhang, Desheng Shi; analysis and interpretation of results: Hongjun Zhang;

CMC, 2024, vol.81, no.1 1431

draft manuscript preparation: Hongjun Zhang. All authors reviewed the results and approved the
final version of the manuscript.

Availability of Data and Materials: Data not available due to legal restrictions. Due to the nature of
this research, participants of this study did not agree for their data to be shared publicly, so supporting
data is not available.

Ethics Approval: Not applicable.

Conflicts of Interest: The authors declared that they have no conflicts of interest regarding this work.

References
[1] K. R. Hong, Y. Y. Ren, F. Y. Li, W. T. Mao, and X. Gao, “Robust interval prediction of intermittent

demand for spare parts based on tensor optimization,” Sensors, vol. 23, no. 16, 2023, Art. no. 7182. doi:
10.3390/s23167182.

[2] B. Qi, W. S. Zhang, and L. Zhang, “Spectrum situation awareness for space–air–ground integrated networks
based on tensor computing,” Sensors, vol. 24, no. 2, 2024, Art. no. 334. doi: 10.3390/s24020334.

[3] K. Ahmad, C. Cecka, M. Garland, and M. Hall, “Exploring data layout for sparse tensor times dense
matrix on GPUs,” ACM Trans. Archit. Code Optim., vol. 21, no. 1, pp. 1–20, 2024. doi: 10.1145/3633462.

[4] F. Metz and M. Bukov, “Self-correcting quantum many-body control using reinforcement learning with
tensor networks,” Nat. Mach. Intell., vol. 5, no. 7, pp. 780–791, 2023. doi: 10.1038/s42256-023-00687-5.

[5] M. Bolten, K. Kahl, and S. Sokolovic, “Multigrid methods for tensor structured Markov chains with low
rank approximation,” SIAM J. Sci. Comput., vol. 38, no. 2, pp. A649–A667, 2016. doi: 10.1137/140994447.

[6] K. N. Magdoom, M. E. Komlosh, K. Saleem, D. Gasbarra, and P. J. Basser, “High resolution ex vivo
diffusion tensor distribution MRI of neural tissue,” Front. Phys., vol. 10, 2022, Art. no. 807000. doi:
10.3389/fphy.2022.807000.

[7] Y. M. Zhao, M. Tuo, H. M. Zhang, J. N. Wu, and F. Y. Gao, “Nonnegative low-rank tensor completion
method for spatiotemporal traffic data,” Multimed. Tools Appl., vol. 83, no. 22, pp. 61761–61776, 2024.
doi: 10.1007/s11042-023-15511-w.

[8] J. T. Wu, J. Zhang, and J. Qiao, “Adaptive integration algorithm of sports event network marketing data
based on big data,” Secur. Commun. Netw., vol. 2022, no. 4, pp. 1–9, 2022. doi: 10.1155/2022/7660071.

[9] T. Zhang, D. C. Li, J. Y. Dong, Y. Q. He, and Y. C. Chang, “Incremental density clustering framework based
on dynamic microlocal clusters,” Intell. Data Anal. Preprint, pp. 1–25, 2023. doi: 10.3233/ida-227263.

[10] X. Xie and Q. C. Zhang, “An edge cloud aided incremental tensor based fuzzy c-means approach
with big data fusion for exploring smart data,” Inf. Fusion, vol. 76, pp. 168–174, 2021. doi:
10.1016/j.inffus.2021.05.017.

[11] W. Wang and M. Zhang, “Tensor deep learning model for heterogeneous data fusion in the Inter-
net of Things,” IEEE Trans. Emerg. Top. Comput. Intell., vol. 4, no. 1, pp. 32–41, 2020. doi:
10.1109/TETCI.2018.2876568.

[12] S. L. Zhang et al., “A tensor network based big data fusion framework for cyber physical social systems
(CPSS),” Inf. Fusion, vol. 76, no. 10, pp. 337–354, 2021. doi: 10.1016/j.inffus.2021.05.014.

[13] A. Jindal, N. Kumar, and M. Singh, “A unified framework for big data acquisition, storage, and analytics
for demand response management in smart cities,” Future Gener. Comput. Syst., vol. 108, pp. 921–934,
2020. doi: 10.1016/j.future.2018.02.039.

[14] H. Carrillo-Cabada, E. Skau, G. Chennupati, B. Alexandrov, and H. Djidjev, “An out of memory
tSVD for big data factorization,” IEEE Access, vol. 8, pp. 107749–107759, 2020. doi: 10.1109/AC-
CESS.2020.3000508.

https://doi.org/10.3390/s23167182
https://doi.org/10.3390/s24020334
https://doi.org/10.1145/3633462
https://doi.org/10.1038/s42256-023-00687-5
https://doi.org/10.1137/140994447
https://doi.org/10.3389/fphy.2022.807000
https://doi.org/10.1007/s11042-023-15511-w
https://doi.org/10.1155/2022/7660071
https://doi.org/10.3233/ida-227263
https://doi.org/10.1016/j.inffus.2021.05.017
https://doi.org/10.1109/TETCI.2018.2876568
https://doi.org/10.1016/j.inffus.2021.05.014
https://doi.org/10.1016/j.future.2018.02.039
https://doi.org/10.1109/ACCESS.2020.3000508

1432 CMC, 2024, vol.81, no.1

[15] X. K. Wang, L. T. Yang, L. W. Kuang, X. G. Liu, Q. X. Zhang and M. J. Deen, “A tensor-based big-data-
driven routing recommendation approach for heterogeneous networks,” IEEE Netw., vol. 33, no. 1, pp.
64–69, 2019. doi: 10.1109/MNET.2018.1800192.

[16] Q. Q. Song, H. C. Ge, J. Caverlee, and X. Hu, “Tensor completion algorithms in big data analytics,” ACM
Trans. on Knowl. Discov. from Data, vol. 13, no. 1, pp. 1–48, 2019. doi: 10.1145/3278607.

[17] Z. T. Chen, C. Chen, Z. B. Zheng, and Y. Zhu, “Tensor decomposition for multilayer networks clustering,”
Proc. of The AAAI Conf. on Artif. Intell., vol. 33, pp. 3371–3378, 2019. doi: 10.1609/aaai.v33i01.33013371.

[18] S. Y. Yang, J. P. Wu, Y. Y. Xu, and T. Yang, “Revealing heterogeneous spatiotemporal traffic flow patterns
of urban road network via tensor decomposition-based clustering approach,” Phys. A: Stat. Mechanics
Appl., vol. 526, 2019, Art. no. 120688. doi: 10.1016/j.physa.2019.03.053.

[19] D. Qu, H. L. Xiao, H. F. Chen, and H. Y. Li, “An improved differential evolution algorithm for multi-modal
multi-objective optimization,” PeerJ Comput. Sci., vol. 10, pp. 1–29, 2024. doi: 10.7717/peerj-cs.1839.

[20] Y. T. Su, X. Bai, P. Jian, P. G. Jing, and J. Zhang, “Low-rank approximation-based tensor decomposition
model for subspace clustering,” Electron. Lett., vol. 55, no. 7, pp. 406–408, 2019. doi: 10.1049/el.2018.8240.

[21] W. W. Wu, F. L. Liu, Y. B. Zhang, Q. Wang, and H. Y. Yu, “Non-local low-rank cube-based tensor
factorization for spectral CT reconstruction,” IEEE Trans. Med. Imaging, vol. 38, no. 4, pp. 1079–1093,
2018. doi: 10.1109/TMI.2018.2878226.

[22] A. Bhaskara, A. Chen, A. Perreault, and A. Vijayaraghavan, “Smoothed analysis for tensor methods in
unsupervised learning,” Math. Program., vol. 193, no. 2, pp. 1–51, 2022. doi: 10.1007/s10107-020-01577-z.

[23] H. He, Y. H. Tan, and J. F. Xing, “Unsupervised classification of 12-lead ECG signals using wavelet tensor
decomposition and two-dimensional Gaussian spectral clustering,” Knowl.-Based Syst., vol. 163, pp. 392–
403, 2019. doi: 10.1016/j.knosys.2018.09.001.

[24] H. Liu, J. Ding, L. T. Yang, Y. Guo, X. Wang and A. Deng, “Multi-dimensional correlative recommenda-
tion and adaptive clustering via incremental tensor decomposition for sustainable smart education,” IEEE
Trans. Sustain. Comput., vol. 5, no. 3, pp. 389–402, 2019. doi: 10.1109/tsusc.2019.2954456.

[25] Y. J. Li, L. P. Wang, Z. H. Jia, J. Yang, and N. Kasabov, “Depth prior-based stable tensor decomposition
for video snow removal,” Displays, vol. 84, 2024, Art. no. 102733. doi: 10.1016/j.displa.2024.102733.

[26] W. Q. Shang, K. X. Wang, and J. J. Huang, “An improved tensor decomposition model for
recommendation system,” Int. J. Performability Eng., vol. 14, no. 9, pp. 2116–2126, 2018. doi:
10.23940/ijpe.18.09.p20.21162126.

[27] A. Javadpour, A. M. H. Abadi, S. Rezaei, M. Zomorodian, and A. S. Rostami, “Improving load balancing
for data-duplication in big data cloud computing networks,” Cluster Comput., vol. 25, no. 4, pp. 2613–2631,
2022. doi: 10.1007/s10586-021-03312-5.

[28] X. J. Zhao, X. H. Zhang, P. Wang, S. L. Chen, and Z. X. Sun, “A weighted frequent itemset mining
algorithm for intelligent decision in smart systems,” IEEE Access, vol. 6, pp. 29271–29282, 2018. doi:
10.1109/ACCESS.2018.2839751.

https://doi.org/10.1109/MNET.2018.1800192
https://doi.org/10.1145/3278607
https://doi.org/10.1609/aaai.v33i01.33013371
https://doi.org/10.1016/j.physa.2019.03.053
https://doi.org/10.7717/peerj-cs.1839
https://doi.org/10.1049/el.2018.8240
https://doi.org/10.1109/TMI.2018.2878226
https://doi.org/10.1007/s10107-020-01577-z
https://doi.org/10.1016/j.knosys.2018.09.001
https://doi.org/10.1109/tsusc.2019.2954456
https://doi.org/10.1016/j.displa.2024.102733
https://doi.org/10.23940/ijpe.18.09.p20.21162126
https://doi.org/10.1007/s10586-021-03312-5
https://doi.org/10.1109/ACCESS.2018.2839751

	Research on Tensor Multi-Clustering Distributed Incremental Updating Method for Big Data
	1 Introduction
	2 Basic Concepts
	3 Basic Concepts
	4 Experimental Analysis
	5 Clustering of Mixed Heterogeneous Data
	6 Addressing Challenges of the CAP Theorem in Big Data Clustering
	7 Conclusion
	References

