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ABSTRACT

With the rapid advancement of cloud computing technology, reversible data hiding algorithms in encrypted images
(RDH-EI) have developed into an important field of study concentrated on safeguarding privacy in distributed
cloud environments. However, existing algorithms often suffer from low embedding capacities and are inadequate
for complex data access scenarios. To address these challenges, this paper proposes a novel reversible data hiding
algorithm in encrypted images based on adaptive median edge detection (AMED) and ciphertext-policy attribute-
based encryption (CP-ABE). This proposed algorithm enhances the conventional median edge detection (MED)
by incorporating dynamic variables to improve pixel prediction accuracy. The carrier image is subsequently
reconstructed using the Huffman coding technique. Encrypted image generation is then achieved by encrypting the
image based on system user attributes and data access rights, with the hierarchical embedding of the group’s secret
data seamlessly integrated during the encryption process using the CP-ABE scheme. Ultimately, the encrypted
image is transmitted to the data hider, enabling independent embedding of the secret data and resulting in the
creation of the marked encrypted image. This approach allows only the receiver to extract the authorized group’s
secret data, thereby enabling fine-grained, controlled access. Test results indicate that, in contrast to current
algorithms, the method introduced here considerably improves the embedding rate while preserving lossless image
recovery. Specifically, the average maximum embedding rates for the (3, 4)-threshold and (6, 6)-threshold schemes
reach 5.7853 bits per pixel (bpp) and 7.7781 bpp, respectively, across the BOSSbase, BOW-2, and USD databases.
Furthermore, the algorithm facilitates permission-granting and joint-decryption capabilities. Additionally, this
paper conducts a comprehensive examination of the algorithm’s robustness using metrics such as image correlation,
information entropy, and number of pixel change rate (NPCR), confirming its high level of security. Overall, the
algorithm can be applied in a multi-user and multi-level cloud service environment to realize the secure storage of
carrier images and secret data.
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1 Introduction

With the advancement of cloud service technology and mobile communication terminal capabil-
ities, a significant volume of multimedia data—such as images and videos—is transmitted to cloud
hosting services for archiving through the Industrial Internet of Things (IIoT) [1]. The process not
only complicates the management of ciphertext data in the cloud but also heightens the security risks
associated with users’ private information. To enhance data storage security in cloud environments and
facilitate the authentication and management of ciphertext data, reversible data hiding algorithms in
encrypted images (RDH-EI) have garnered substantial attention and development [2,3]. This approach
allows for the integration of private information, including confidential details, verification digits,
and hash values, into images, thereby ensuring the safety of both the carrier data and the hidden
confidential data. The recipient can completely restore the image and effectively retrieve the hidden
information.

The transfer of data within cloud service settings is intricate and varied, and existing RDH-
EI algorithms can be categorized as either designed for individual users or aimed at multiple users,
based on the specific application contexts. The initial single-user RDH-EI approach was introduced
by Puech et al. [4] in 2008, which modifies the standard deviation of pixel values to embed data
in the encrypted image. These single-user oriented algorithms are further categorized into three
subgroups: vacating room after encryption (VRAE) [5,6], vacating room before encryption (VRBE)
[7], and vacating room in encryption (VRIE) [8]. Although VRAE techniques [9] frequently employ
simple encryption algorithms for image encryption to preserve pixel relationships, Qu et al. [10] have
shown that lightweight encryption methods are susceptible to attacks that only require ciphertext.
To address these vulnerabilities, Ren et al. [11] proposed the RDH-EI algorithm, which utilizes the
Paillier homomorphic encryption scheme. The entropy of the ciphertext information is closer to
the theoretical maximum compared to lightweight cryptographic schemes, significantly enhancing
security. Wang et al. [12] developed a high-security image encryption method that employs a dynamic
confusion strategy combined with RNA operations, demonstrating strong disorder in the ciphertext
across various aspects, including the histogram. Additionally, Gao et al. [13] introduced a more secure
encryption approach utilizing chaos theory and neural networks, achieving near-zero correlation of
the ciphertext in different directions. Mansouri et al. [14] presented a hybrid security system based on
DNA permutation and diffusion, which opens promising research avenues for enhancing the security
of RDH-EI algorithms and effectively resists attacks such as histogram analysis and differential
attacks. Furthermore, Wang and his team proposed two image encryption algorithms [15,16] grounded
in chaotic systems, where the 2D hyperchaotic map exhibits very high complexity. Subsequently,
Wang et al. also introduced a novel method [17] for analyzing extreme multistability within these
systems. However, the embedding rate of VRAE-type algorithms is constrained by the information
entropy of the ciphertext. Conversely, VRBE-type methods explicitly exploit the relationships among
original image pixels to fully utilize image texture features and identify additional redundant space for
embedding secret data [18]. The algorithm devised by Wang et al. [19] processes carrier images using
adaptive Huffman coding and compresses the most significant bit (MSB) of image pixels to create
embeddable space. Bencherqui et al. [20] proposed a compression-encryption scheme that integrates
various elements, including chaotic systems, providing usable embedding space for the RDH-EI
scheme. Gao et al. [21] proposed a high-security chaotic encryption method targeting critical com-
ponents of plaintext, with the ciphertext histogram exhibiting a uniform distribution, thus providing
guidance for enhancing the security of RDH-EI algorithms in distributed settings. An additional
method introduced by Wang et al. [22] identifies the pixel groups with the highest compression rates
as suitable segments for embedding, aiming to improve the quality of image restoration. Moreover,
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Zhang et al. [23] developed an algorithm that employs pixel-weighted prediction techniques after
segmenting the image to reduce distortion during the image restoration process. Nonetheless, these
algorithms face restrictions due to image texture features. VRIE algorithms identify redundant space
during carrier image encryption to facilitate embedding [8,24]. In 2020, Ke et al. [24] introduced the
RDH-EI algorithm with complete separability, leveraging difference expansion (DE) for successful
secret data embedding. The algorithm proposed by Wu et al. [8] achieves the embedding of secret
data by establishing a mapping relationship between random numbers in the encryption process and
the secret data. While these algorithms support covert communication through information hiding,
traditional single data hider RDH-EI algorithms are inadequate for multi-user data storage needs and
may not recover images fully in scenarios where a single cloud-managed marked encrypted image is
corrupted, limiting their utility in IIoT applications. Consequently, multi-user oriented reversible data
hiding schemes have been proposed [25–29] to address these challenges.

In distributed cloud environments, ensuring the security of data communication and storage
among multiple users is crucial. In 2020, Chen et al. [25] proposed an algorithm that allocates
secret shares to multiple data hiders for independent embedding, which demonstrates strong fault
tolerance characteristics. Zhao et al. [26] created an algorithm to hide communication between
transmitters and receivers in collaborative data exchanges, improving the sophistication of RDH-
EI methods. Xiong et al. [27] discussed the conventional use cases for these types of algorithms. As
depicted in Fig. 1a, the image owner encrypts or preprocesses the image before handing it over to the
administrator. The administrator then segments the image, generates multiple sub-secret images, and
forwards them to individual data hiders. This algorithm enables the data concealers to autonomously
insert hidden information. After accumulating a sufficient quantity of marked encrypted images, the
recipient decrypts them, retrieves the hidden information, and reconstructs the image. Subsequently,
numerous RDH-EI algorithms suitable for this scenario started to emerge.

Hua et al. [28] introduced an RDH-EI method that utilizes feedback secret sharing to boost
embedding capacity. Expanding on this research, Hua et al. [29] presented an additional algorithm that
relies on matrix secret sharing, achieving effective ciphertext diffusion while preserving a high embed-
ding rate, with information entropy nearing its theoretical peak. This method further strengthens the
protection offered by current algorithms. In 2023, Yu et al. [30] integrated hybrid coding techniques
into a secret sharing-based RDH-EI scheme, achieving an average embedding rate of 4.0531 bits per
pixel (bpp). Hua et al. [31] introduced a preprocessing-free matrix secret sharing technique, enabling
the RDH-EI scheme algorithm to circumvent the intricate process of handling overflow pixels. These
advancements have enabled multiple data hiders to independently embed data. However, within most
enterprise units in cloud service environments, users possess varying levels of access rights to enterprise
data, particularly concerning sensitive internal information, which we refer to as “group’s secret data,”
alongside other confidential data stored by users. Traditional data hiding algorithms based on secret
sharing struggle to effectively address specific access policy dilemmas in such scenarios. As illustrated
in Fig. 1b, there are primarily two issues: Problem 1 involves allowing high-level users to access low-
level secret data while restricting low-level users from accessing high-level secret data, meaning that
users should only be able to access data for which they are authorized. Problem 2 permits several
low-level users to jointly access high-level confidential data that a single low-level user cannot access,
provided certain threshold conditions are met. Traditional algorithms [25–29] do not offer solutions
to these problems. In a multi-user environment, the only approach is to attempt to address these
issues through key distribution methods. While this approach ensures data security, it significantly
increases the number of keys required and consequently complicates key management. Furthermore,
traditional algorithms lack the ability to differentiate between levels of data, resulting in all secrets
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being embedded by data hiders at the same level. This limitation is unsuitable for complex cloud service
environments with multi-level user access requirements.

(a) Traditional application scenario (b) Application scenarios for multi-level data access
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Figure 1: Application scenarios of RDH-EI algorithms

To address the challenges associated with complex multi-user access permissions, this paper
proposes an RDH-EI method based on adaptive median edge detection (AMED) and ciphertext-
policy attribute-based encryption (CP-ABE). We innovatively incorporate dynamic variables into the
median edge detection (MED) predictor [32], proposing an AMED pixel prediction technique that
offers improved accuracy. The algorithm encodes identical most significant bits (MSBs) between the
predicted and target pixels, introducing random noise for image reconstruction and thereby producing
a transitional image. User attributes and data access rights are leveraged to construct a robust access
control framework. The transitional image is encrypted based on these user attributes, with varying lev-
els of the group’s secret data embedded during the encryption process. This results in the production of
an encrypted image that is distributed to the data hider. The data hider can then independently embed
the secret data, resulting in a marked encrypted image. Upon decryption using the corresponding key,
the receiver is able to extract the authorized secret data and the group’s concealed information, thus
recovering the original image. Moreover, the receiver can grant access rights to others or collaboratively
access the highest tier of the group’s secret data based on the established access control structure, and
the algorithm effectively prevents unauthorized access. Experimental results demonstrate a significant
enhancement in embedding capacity compared to existing algorithms [5,7,27–30]. Furthermore, this
algorithm preserves the disaster-tolerant features inherent to the CP-ABE framework, enabling multi-
level secure storage of carrier images and embedded information under secure multi-party conditions.
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The key contributions of this paper include:

1. This paper presents the advanced AMED method, offering improved prediction precision
compared to current MED prediction techniques [33]. By integrating dynamic variables, this method
addresses the constraints of fixed predictors, effectively utilizing local texture features of pixel blocks
for accurate predictions. As a result, we implement this technique to enlarge the embedding space.

2. Within the framework of attribute-based encryption, we creatively embed group’s secret data
according to access levels. The embedded group’s secret data can only be extracted by users with the
appropriate access rights, thus safeguarding data privacy. This algorithm is designed to be applicable
within multi-level cloud service environments.

3. The proposed algorithm employs threshold characteristics to facilitate collaborative decryption.
By appropriately partitioning user attributes, it effectively prevents unauthorized access. Furthermore,
by utilizing a private key inheritance technique, the algorithm enables existing users to delegate part
of their data access privileges to new users, thereby enhancing the flexibility of access control.

The structure of this paper is arranged as follows: Section 2 explores the theoretical foundations
pertinent to the discussed algorithm; Section 3 outlines the specific implementation steps of the
algorithm; Section 4 details the experimental procedure and results analysis; and finally, Section 5
wraps up with a conclusion and a perspective on future developments.

2 Preliminaries
2.1 Median Edge Detection

Pixel forecasting methods can rely on existing pixel values or other available data to estimate
the value of the intended pixel. When the estimated value is similar to the intended pixel, pixel
data can be compressed and stored utilizing encoding methods, resulting in additional space for
embedding a significant amount of secret information. The median edge detector (MED), introduced
by Li et al. [32], has gained widespread acclaim in numerous data hiding algorithms, attributable
to its superior prediction accuracy and applicability [33]. This predictor exploits local pixel change
characteristics for prediction. Specifically, it utilizes the surrounding three pixel values of the intended
pixel y(a, b) to predict its value, as illustrated in Fig. 2, thus deriving the estimated value py(a, b).
Eq. (1) delineates the precise computation process for the predicted pixel value.

py(i, j)

=
⎧⎨⎩

max(y(a − 1, b), y(a, b − 1)), if y(a − 1, b − 1) ≤ min(y(a − 1, b), y(a, b − 1))

min(y(a − 1, b), y(a, b − 1)), if y(a − 1, b − 1) ≥ max(y(a − 1, b), y(a, b − 1))

y(a − 1, b) + y(a, b − 1) − y(a − 1, b − 1), otherwise
(1)

y(a-1, b-1) y(a-1, b)

y(a, b)y(a, b-1)

Figure 2: Chunking before pixel prediction

Li et al. [6] developed an RDH-EI method that minimizes image distortion using the MED pixel
prediction technique to embed secret data by intelligently extending the prediction error post-image
prediction. This algorithm boasts an embedding capacity of up to 6.5 × 104 bits while ensuring superior
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image quality upon recovery. Building on this success, Gao et al. [34] presented a scheme tailored
for cloud environments leveraging MED technology, achieving a maximum embedding capacity of
906,494 bits. These algorithms collectively underscore the remarkable predictive efficiency of the MED
technology. These algorithms rely solely on the correlation of local pixels to identify redundant space
for embedding, overlooking the fact that each pixel block possesses unique texture characteristics. If
the predictor can autonomously adjust to changes in pixel textures to enhance prediction accuracy,
it can uncover more redundant space for embedding. To address this issue, the Adaptive Median
Edge Detector (AMED) prediction method, presented in this paper’s algorithm, incorporates dynamic
variables based on the MED prediction technique. This strategy removes the limitations of static
predictors, notably improving pixel estimation precision and thereby increasing the embedding rate
of the algorithm. When employing the AMED predictor, the cover image I is initially divided into T
× T-sized blocks, which are then expanded as follows:

Step 1: If the block includes the pixel y(1, 1), no extension is performed.

Step 2: In the scenario where the pixel block lacks the x(1, 1) but includes y(1, b0) where b0 > 1, a
set of random values is added to the adjacent side, enlarging it to a dimension of T × (T + 1).

Step 3: If the segment does not include image pixel y(1, 1) while comprising y(a0, 1) where a0 > 1,
a set of random values is added above, increasing it to a block of dimensions (T + 1) × T .

For alternative scenarios: a set of random values is appended to the side and on top of the leftover
pixel blocks, correspondingly enlarging them to a pixel block of dimensions (T + 1) × (T + 1).

The pixel y(a, b) of the i-th block is estimated utilizing the AMED to derive the estimated value
py(a, b) illustrated in Eq. (2). First, we set the initial values for the dynamic variables combinations p1,
p2, and p3 for prediction. The dynamic variables stay constant during the estimation of pixels within
the same block.

py(i, j)

=
⎧⎨⎩

max (y (a − 1, b), y (a, b − 1)) + p1, if y (a − 1, b − 1) ≤ min (y (a − 1, b), y (a, b − 1))

min (y (a − 1, b), y (a, b − 1)) + p2, if y (a − 1, b − 1) ≥ max (y (a − 1, b), y (a, b − 1))

y (a − 1, b) + y (a, b − 1) − y (a − 1, b − 1) + p3, otherwise
(2)

We estimate the values of every pixel inside the same block, enabling the predictor to engage in
adaptive training customized for different situations. Based on the specific data embedding method,
we calculate the embedding capacity of the pixel block to determine load(i). We then iterate through
all possible combinations of dynamic variables values, repeating the prediction process to compute
load(i). When this value reaches its maximum, we record the corresponding dynamic variables values
at that moment. The predicted value py(a, b) p1, p2, p3 at this point is taken as the final predicted value. A
comparative analysis of the AMED technique against the traditional MED technique is presented in
Table 1. Assuming the data volume of the predicted image is n, it is evident that the AMED technique
demonstrates greater practicality while maintaining the same computational complexity of O(n).
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Table 1: Comparison results of AMED and MED techniques

Feature MED technique AMED technique

Adaptability Fixed predictor, lacks adaptability Highly adaptable, self-adjusting
Texture utilization Does not fully exploit local texture

characteristics
Maximizes the use of local
texture features

Computational complexity O(n) O(n)
Runtime Relatively short Self-adjusting, at least twice that

of the MED technique
Embedding capacity
improvement

Moderate effectiveness Significant effectiveness

Generalization Widely used in traditional
RDH-EI algorithms

Meets the needs of new RDH-EI
algorithms requiring high
prediction accuracy

2.2 BSW Ciphertext-Policy Attribute-Based Encryption

Traditional RDH-EI algorithms face several challenges, particularly the increased burden of key
management when attempting to implement multi-level data access via key distribution. In contrast,
ABE technology emphasizes user attribute requirements over user identities and numbers within a
group. This approach effectively reduces the total number of keys needed, simplifies management,
and mitigates the risk of information leaks associated with improper key distribution. Additionally,
ABE provides flexibility and enables fine-grained data access control, making it particularly suitable
for various applications in multi-level cloud service environments.

In a study by Bethencourt et al. [35], the CP-ABE scheme was introduced to empower data
owners to establish highly adaptable access policies, assign different access permissions based on user
attributes, and enable fine-grained access control, playing a crucial role in safeguarding data security
and privacy. The CP-ABE scheme encompasses five key algorithms:

Setup: Given a security parameter κ, this algorithm generates public parameters PK and master
key MK.

Encrypt(PK, M, A) →CT : Using public parameters PK, plaintext M, and an attribute-based
access structure A as inputs, this algorithm produces ciphertext CT .

KeyGen(MK, PK, S) →SK: By taking master key MK and attribute set S as inputs, this algorithm
generates user private key SK.

Decrypt(PK, CT , SK) →M: With public parameters PK, ciphertext CT , and private key SK as
inputs, this algorithm decrypts the ciphertext and outputs plaintext M if S satisfies A.

Delegate(SK, S̃)→S̃K: With private key SK corresponding to attribute set S and an attribute set
S̃ as inputs, this algorithm produces a private key S̃K corresponding to attribute set S̃.

The most crucial aspect of this process is the encryption of data using the access control tree and
the allocation strategy of user attributes. We illustrate this concept by constructing an access control
tree T, as shown in Fig. 3. Each leaf node x has a threshold (rx, nx), and the number of child nodes kx

satisfies 0 < kx ≤ nx. Next, we assign a polynomial qx to each node x, with the degree of qx set to rx

− 1. We initialize qx1(0) = s, where s is a random number in the field Zp, and the other coefficients of
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the polynomial qx are also chosen randomly. Following a breadth-first traversal, we assign the value of
qx(0) for all non-leaf nodes x as qparent(x)(index(x)), where parent(x) refers to the parent node of x in tree
T, and index(x) denotes the number of child indices of node x, with 0 < index(x) ≤ kparent(x). When x is
a leaf node, we set qx = qparent(x)(index(x)). This process allows us to obtain a corresponding polynomial
qy for each attribute value y. During the attribute encryption procedure, based on the attributes held
by the encryptor, we can select qy to participate in the Encrypt (PK, M, A) process, resulting in the
generation of ciphertext. The decryption process can then be controlled according to the attribute set of
the decryptor and the threshold characteristics of tree T. The algorithm proposed in this paper utilizes
the BSW CP-ABE scheme to embed data within the non-leaf nodes at various levels of the tree T. This
strategy effectively establishes access levels for the embedded data, thereby enhancing the management
of complex data access permissions and expanding the application scope of the existing reversible
data hiding in encrypted images (RDH-EI) algorithm. By leveraging the threshold characteristics and
private key inheritance of the CP-ABE scheme, the proposed algorithm supports both joint decryption
and permission-granting functions. Through careful distribution of attributes, it effectively mitigates
the risk of unauthorized access.

2
2

2
2

2
2

2
3

x1

y1 x2

x3 x4

y3 y4y2 y5 y6

lacihcr areih
esaerced

Figure 3: An example of an access control structure

3 The Presented Algorithm

In this research, a novel RDH-EI method is introduced, utilizing the inherent relationship among
pixels and the encryption characteristics of attribute encryption to attain a substantial embedding
capacity and layered data embedding. The framework of the method is depicted in Fig. 4, where
the image creator produces a transitional image IR by predicting and encoding the source image I
through the AMED approach and Huffman coding, followed by encryption via attribute encryption.
During the encryption process, the algorithm selects embedding locations for the group’s secret data
based on the access control structure A, which contains user attributes. The resulting encrypted image
IE, after embedding, is then transmitted to the data hider. The data hider embeds the secret data to
produce the marked encrypted image IM, from which an authorized receiver can extract the secret
data matching their access permissions and recover the image. Furthermore, the system employs key
inheritance and threshold properties to facilitate permission granting and joint decryption functions.
This design enables multiple users to simultaneously access a broader array of the group’s secret data
by providing their respective private keys for decryption.
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Figure 4: Flowchart of the proposed algorithm

3.1 AMED Forecasting and Re-Encoding

3.1.1 Segmented Pixel Forecasting

In order to optimize the use of pixel correlation for high-capacity embedding, we directly
implement pixel estimation on raw images. First, the original image I , which has a size of M × N,
is segmented into sections of size T × T , which results in a total of TM × TN sections, where T ≥ 3.
The values of TM and TN are established by a specific formula detailed below:{

TM = M ÷ T
TN = N ÷ T (3)

Following the procedure described in Section 2.1, we adjust the pixel blocks to fit the AMED
prediction requirements. The pixel at position y(a, b) within the i-th block is estimated with the AMED
to determine the forecasted value py(a, b) as indicated in Eq. (2). At the start, the initial values for the
dynamic variables p1, p2, and p3 are established, with the experimental phase setting these values to 0.
The y(a, b) is transformed into an 8-bit binary string, according to Eq. (4).

yi (a, b) =
⌊

mod
(
y (a, b), 29−i

)
28−i

⌋
, i = 1, 2, . . . , 8 (4)

In this context, yi(i, j) symbolizes the value derived from the k-th bit, beginning from the highest
bit, with yi(a, b) belonging to the set {0, 1}. Likewise, the transformation of forecasted pixel values
results in pyi(a, b), where i ranges from 1 to 8. By conducting a bit-by-bit comparison of yi(a, b) with
pyi(a, b), starting from the most significant bit (MSB), we identify the span of matching sequential bits
up to the first differing bit. This recorded value is denoted as u(a, b) and can take on values from 0 to
8, indicating the number of consecutive matching bits between yi(a, b) and pyi(a, b). If we consider the
specified pixel y(a, b) = 172 and the forecasted value py(a, b) = 161, after converting them to binary
strings (yi = {1 0 1 0 1 1 0 0} and pyi = {1 0 1 0 0 0 0 1}), a bitwise comparison reveals the first four bits
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to be identical, with the fifth bit differing, leading to a result of u = 4. Subsequently, the top five bits
of the specified pixel are replaced numerically, enabling the insertion of confidential information, as
depicted in Fig. 5 below.

y=172
py=161

yi : 1 0 1 0 1 1 0 0
pyi : 1 0 1 0 0 0 0 1

u(label)=4

Same bits Ignored bits

Different bit

Figure 5: Example of a pixel tag

The AMED forecasting is carried out for each pixel in the pixel grid, excluding the first row and
column. As a result, (T − 1)2 labeling values are derived, enabling the development of a complete
labeling chart for the entire pixel grid.

3.1.2 Summation of Load Space by Regions

To compress the labeled values u, we utilize Huffman coding, incorporating nine distinct cases
of u that correspond to nine unique Huffman codes. Each specific value of u is assigned a particular
Huffman code for efficient encoding. In this encoding scheme, shorter codes are designated for labels
that occur with higher frequency, while longer codes are allocated to those with lower probabilities.
The set of Huffman codes employed includes {00, 01, 100, 101, 1100, 1101, 1110, 11110, 11111}, where
“00” represents the most frequently occurring label and “11111” indicates the rarest.

Using the label u = 4 as a case study, through the prediction process, we determine the top 5 bits
from the selected pixel to facilitate embedding secret data by replacing these bits. However, it’s essential
to remember the label u with the designated encoding “00”. This consideration enables us to calculate
the data storage potential for one pixel having the label number of 4: load(a, b) = 4 + 1 − 2 = 3. We
can utilize Eq. (5) to calculate the storage capability of every image element.

load (a, b) =
{

u + 1 − long (code (y (a, b))), u �= 8
u − long (code (y (a, b))), u = 8 (5)

Subsequently, the storage capability of all image elements within the section is calculated and
summed up to yield the section’s total load capacity, represented as load(i). In the course of predicting
image elements using fixed dynamic variables p1 = p10, p2 = p20, and p3 = p30, the load capacity
loadp10, p20, p30(i) of the block is ascertained. Through adaptive training, the optimal parameter com-
bination is determined by iteratively exploring all possible values of p1, p2, and p3 within specified
ranges. With the parameter space set to 23 for this algorithm (−3 ≤ pi ≤ 4), there exist 24 potential
combinations (3 × 8 = 24) yielding 24 distinct values for loadp1, p2, p3(i). When this data reaches its peak
value, we document the related dynamic variables configurations, denoted as p1 = p1n, p2 = p2n, and p3

= p3n. Subsequently, we designate the pixel label values at this juncture as the definitive labels for the
image elements within the block.

Using a similar approach, we adaptively predict all pixel blocks of the original image, yielding
labels for all pixels, which we denote as dataset W . We record the best set of dynamic variables that
maximizes the capacity utilization.
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3.1.3 Re-Encoding

We begin by using 3 bits to denote the chunking parameter T and 20 bits to specify the image
size L. Subsequently, 32 × TN × TM bits are allocated to store the dynamic variables ADV. The
Huffman encoding rule (HER) is represented with 32 bits, and the width W is converted into a binary
sequence WB, whose length WT is recorded using 22 bits. Finally, L, WT , T , ADV, HER, and WB are
sequentially concatenated with the top and side pixel values of the source image to form the boundary
data O.

Next, the boundary data O is embedded as follows: the first 8(M × N − 1) bits replace the top
and side pixel values of the image. The remaining boundary data is embedded through bit substitution
based on pixel labels, utilizing the (u + 1) most significant bits of the untouched pixels. The insertion
procedure is mathematically expressed as:

y′
e (i, j) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ye (i, j) mod27−u +

u∑
l=0

(
sl × 27−l

)
, 0 ≤ u ≤ 6

8∑
l=1

(
sl × 28−l

)
, 7 ≤ u ≤ 8

(6)

Here, xe’(i, j) indicates the pixel intensity after the data has been embedded, sl signifies the
supplementary data that can be inserted within the present pixel, and l serves as an abbreviation for
the storage potential of an individual pixel. After the integration of all boundary data, we generate
arbitrary noise which is then inserted into the leftover spaces subsequent to the boundary data,
according to Eq. (6). This process results in the creation of the image IR.

3.2 Encryption of Carrier Data and Insertion of the Group’s Secret Data

We categorize the pixels in the image into distinct parts: Section A, which holds data L and WT ;
Section B, which includes the residual boundary data; and Section C, which covers all additional pixels.
Selective encryption is then applied to Section B based on user attributes.

Firstly, we establish the access control policy A by constructing the access structure tree T, which
is based on the authorization levels of legitimate users to access the data and their corresponding
attributes. Each non-leaf node x in the tree has an associated threshold (rx, nx), kx denotes the number
of children of node x (0 < kx ≤ nx). Each leaf node in tree T represents an attribute. The collective set
of attributes within the entire tree is denoted as Sa.

Before performing encryption, certain variables must be defined. Firstly, we establish the bilinear
group G0 of prime order p, where p = 730750818665451621361119245571504901405976 559617, and
g serves as the generator of G0. The bilinear mapping is constructed as follows: e : G0 × G0 → G1.

Lagrange coefficients are defined as �i, S (x) = ∏
j∈S, j �=i

x − j
i − j

, where i ∈ Zp, S is the set consisting of

the elements in Zp. The SHA-1 hash function used is H : {0, 1}∗ → G0.

Subsequently, we generate the system’s public parameters and master keys. A prime of order p is
chosen to form the bilinear group G0, with elements of order g. Parameters α and β are randomly

selected from Zp. The resulting public parameters are PK =
(
G0, g, h = gβ , f = g

1
β , e (g, g)

α

)
, and

the system’s master key is MK = (β, gα).

In the following steps, we encrypt the group’s secret data md = {0, 1}N using the group’s secret data
hiding key Kd. Each element is divided into segments of 159 bits, with a “0” padded at the beginning
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of each segment, forming the dataset M. Since elements in G0 are represented in 160-bit binary, we
proceed with this approach to facilitate calculations during subsequent embedding processes.

We select a polynomial qx for each node x in the access control tree T. The order of qx for each
node in T is set to dx = rx − 1, where rx is the threshold of node x.

For the root node R, we set qR(0) = s, where s is a random number from the domain Zp. The
polynomial for the root node is qR(z) = s + a1z + a2z 2+ a1z + . . . + arR−1z rR−1 mod p. From M, we
sequentially select nR−1 elements c1, c2, . . . , c rR−1 to embed into the polynomial coefficients:

qR (z) = s + c1z + c2z2 + c3z3 + . . . + crR−1zrR−1mod p (7)

This embedding phase includes data with the highest access level among the group’s secret data
(denoted as mr), requiring the highest permissions. The root node resides at the first level, its children at
the second level, and so on. The more layers in which the data is embedded, the higher the represented
access level becomes.

Next, the remaining group’s secret data is embedded into non-leaf nodes following a breadth-
first traversal order, excluding the root node. Taking node x as an example, when constructing its
corresponding polynomial qx, we set qx(0) = qparent(x)(index(x)). We select nx−1 elements cu+1, c u+2, . . . ,
c u+rx−1 from M in sequence and embed them to form the polynomial:

qx (z) = qparent(x) (index (x)) + c1z + c2z2 + c3z3 + . . . + crx−1zrx−1mod p (8)

For leaf nodes x, qx is set to qx = qparent(x)(index(x)) without polynomial construction. After
traversing access tree T, embedding secrets for all non-leaf nodes and constructing polynomials, we
use BL to record the length of section B in the image. BL is spliced with B and filled with random
numbers to ensure its length is a multiple of 159. This is divided into groups of 159, with each group
prefixed by a “0” bit to obtain dataset B2, denoted by elements B2i. Then, we encrypt B2i based on the
set Y , which contains all leaf nodes, to obtain:

CTi =
(

C̃i = B2ie (g, g)
αs , ∀yi ∈ Y : qyi

)
(9)

During the encryption process of each element in B2, we can embed multiple times to incorporate
more data. After encrypting all elements, we proceed with splicing to obtain:

CT =
(

Y C̃ = B2e (g, g)
αs , C = hs, ∀y ∈ Y : qy, Cy = gqy(0), C ′

y = H (att (y))
qy(0)

)
(10)

Here, att(y) denotes the attribute value for node y. CT is converted into binary data B3, from
which pixels are selected and stitched with transitional image IR parts A and C to match the size of
image IR. Remaining B3 pixels fill the expansion, resulting in encrypted image IE, which is then sent
to the data hider for embedding.

3.3 Secret Data Hiding

We first encrypt the secret data m = {0, 1}N using the message hiding key Ks to obtain the encrypted
data m’ = {0, 1}N. Next, we derive parameter L from the first line of the encrypted image, which
represents the size of the original image. We then extract partial boundary data from pixels IE(1, b)
and IE(a, 1). Thus, we obtain parameters WT , HER, T , ADV, and partial WB, alongside the section
C size from image IR.
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CL = MN − 8 ·
⌈

77 + 32 · TN · TM + WT
8

⌉
(11)

According to Eq. (4), we convert pixel values to 8-bit binary, based on the current segment of
WB and following HER, to obtain label values for some pixels in the image. From the higher (u +
1) bits of these pixel values, we extract boundary data, which includes the label values for the next
segment of pixels. Then, by using these newly derived label values, we repeat the process to extract new
boundary data iteratively, completing the cycle to obtain complete enclosed boundary data. Then, we
partition the image IEk into section A and C, and B3, substitute the partial pixel data of section C with
m’i bit by bit, finishing the incorporation process to yield the image IA. Subsequently, IA undergoes
dual encryption via scrambling and exclusive OR (XOR) operations to enhance security. Firstly, we
partition the image IA into pixel segments of dimensions T × T . Using the key Ke, we produce a
series of arbitrary numbers, which we subsequently arrange to obtain index vectors corresponding to
the pixel blocks. Next, we reorder these segments based on the index vectors to create the image IE’.
Subsequently, XOR encryption is applied: generating an M × N random matrix Pk based on the key
Ks, encrypting image IE’ by the Eq. (12), and finally obtaining the marked encrypted image IM.

IM (a, b) = P (a, b) ⊕ IE′
(a, b) (12)

where ⊕ denotes modulo 256 addition, and i, j are position indices with 1 < i ≤ M and 1 < j ≤ N.

3.4 Data Extraction and Image Recovery

3.4.1 Secret Data Extraction

When we, as the receiver, decrypt the marked encrypted image IM, we begin by reversing the
scrambling process and perform XOR decryption using the key Ks to recover the image IA. We then
repeat the processes used in the secret data insertion stage to retrieve both the boundary data O and
the data m’i. Ultimately, by decrypting m’i using the Ks, we obtain the mi.

3.4.2 Image Restoration

The receiver initially generates their private key SK based on their own attributes using the public
parameters PK and the system master key. MK Assuming the receiver’s attribute set is denoted by S,
where S ∈ Sa, they select r randomly from Zp. For each attribute j ∈ S, they select rj randomly from
Zp. This process generates the private key corresponding to the attribute set S:

SK =
(

D = g
α+r
β , ∀j ∈ S : Dj = gr · H (j)rj , D′

j = grj

)
(13)

Next, the receiver performs the secret data extraction phase on the marked encrypted image to
isolate section B3 from the image and obtain the ciphertext set CT . The image recovery process employs
a recursive algorithm, defined as DecryptNode(CT , SK, x), which executes the following operations
on all nodes x within the access control tree:

a) When x is a leaf node with attribute i = att(x): If i ∈ S, we define:

DecryptNode (CT , SKx, x) = e (Di, Cx)

e
(
D′

i, C ′
x

) = e
(
gr · H (i)ri , gqx(0)

)
e
(
gri , H (i)qx(0)

) = e (g, g)
r·qx(0) (14)

When the attribute corresponding to private key SK does not belong to the set of attributes in the
control structure (i.e., i ∈ S), the DecryptNode(CT , SK, x) algorithm outputs ⊥.
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b) When x is a non-leaf node: For all child nodes w of node x, call DecryptNode(CT , SK, x) and
store the result as Fw. Let Sx be any set of child nodes w of size kx satisfying Fw �= ⊥. We compute:

Fx =
∏
w∈Sx

F
�i, S′

x
(0)

w

=
∏
w∈Sx

(
e (g, g)

r·qparent(w)(index(w))
)�i, S′

x
(0)

=
∏
w∈Sx

e (g, g)
r·qx(i)·�i, S′

x
(0)

= e (g, g)
r·qx(0) (15)

where i = index(z) and S’x = {index(w):w∈Sx}.
DecryptNode(CT , SK, x) is a recursive algorithm that operates in the reverse order of breadth-

first traversal on all nodes of tree T. This approach allows us to obtain the root node’s FR value as
e (g, g)

rqR(0).

Finally, B2 is computed using the following equation:

C̃/(e (C, D)/A) = C̃
(e (hs, g(α+r)/β)/e (g, g)

rs
)

= B2 (16)

From BL in B2, extract section B. Concatenate parts A, B, and C of the image to obtain the
transitional image IR. Replace the initial horizontal and vertical lines of IR using those from the initial
image in boundary data O. Dynamic variables p1, p2, and p3 for pixel y’(a, b) are derived from dynamic
variables ADV in O. Beginning at IR(2, 2), perform AMED estimation for pixel y’(a, b) in a fixed
order to predict the intensity of py’(a, b). Using available u from boundary data, determine the pixel’s
load for recovering original pixel value, ensuring the predicted pixel matches the initial pixel’s upper u
MSB bits, with the opposite (u + 1)-th MSB position. The restoration procedure is as follows:

y′ (a, b) =

⎧⎪⎨⎪⎩
⌊

py (a, b)

28−u

⌋
× 28−u + bu+1 × 27−u + y′ (a, b) mod27−u, if 0 ≤ u ≤ 7

py′ (a, b), if u = 8

(17)

bu+1 =
{

0, pyu+1 (a, b) = 1
1, pyu+1 (a, b) = 0 (18)

Once all pixels have been successfully restored, the original image I is recovered.

3.4.3 Group’s Secret Data Extraction

We obtained CT in the previous step, from which we isolated the qy values corresponding to each
leaf node in tree T. Next, operations are carried out on the nodes in T in reverse breadth-first order.
For instance, consider non-leaf node y and its children xi, where y has ky children and its polynomial
qy of order dy = ry − 1 is assumed to be qy(z) = qy(0) + c1z + c2z2 + c3z3 + . . .+cry−1zry−1 mod p.
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Set zi denote the index value index(xi). It is known that node xi satisfies the polynomial:⎧⎪⎪⎪⎨⎪⎪⎪⎩
qx1 (0) = qy (z1) = qy (0) + c1z1 + c2z1

2 + c3z1
3 + . . . + cry−1z1

ry−1mod p
qx2 (0) = qy (z2) = qy (0) + c1z2 + c2z2

2 + c3z2
3 + . . . + cry−1z2

ry−1mod p
...
qxky (0) = qy

(
zky

) = qy (0) + c1zky
+ c2zky

2 + c3zky
3 + . . . + cry−1zky

ry−1mod p

(19)

We reconstruct the polynomial qy using Lagrange polynomials:

qy (z) =
t+ry∑
j=t

qxl
(0)

t+ry∏
l=t, l �=j

z − zl

zj − zl

mod p

= qy (0) + c1z + c2z2 + c3z3 + . . . + cry−1zry−1 mod p (20)

We extract the coefficients ci to retrieve encrypted secret data M. By performing these operations
on all non-leaf nodes and decrypting the extracted data using the key Kd, we obtain all the group’s
secret data that the receiver is authorized to access.

Based on the keys in possession, the recipient is able to independently perform secret data
acquisition, reconstruct images, and extract group’s secret data.

3.5 Joint Decryption and Permission Granting

The algorithm proposed in this paper, due to its threshold encryption and key inheritance
properties, features both joint decryption and permission granting functionalities.

3.5.1 Joint Decryption

Using the access control policy illustrated in Fig. 3 as a case study, consider User ID1 with attribute
value att(y2, y4), unable to extract the group’s secret data mdx3 from the root node x3. Similarly, User ID2

with attribute att(y3, y6) also lacks access to this data. However, users ID1 and ID2 can simultaneously
provide qy2(0) and qy3(0), thereby deriving the polynomial qx3(z) from Eq. (19) and extracting group’s
secret data mdx3 from the polynomial coefficients. To prevent unauthorized access, if users ID1 and ID2

are not permitted joint access to data in the root node x1, the attribute att(y2) is not assigned. Only with
the involvement of a third user possessing att(y2) during decryption can the threshold requirement be
met for successful data access. This mechanism allows the system to flexibly control user permissions
for data access, achieving fine-grained access control.

3.5.2 Permission Granting

The system supports users granting permissions to others, facilitating flexible sharing. This
involves a legitimate user generating a lower-permissioned private key to bestow upon a new user,
allowing access to lower-level group’s secret data.

For instance, User ID1, holding attribute set S and private key SK1 = (
D, ∀j ∈ S : Dj, D′

j

)
, intends

to grant User ID2 partial data access. Assuming the new user’s attribute set is S̃, where S̃ ⊆ S, we

select random numbers r̃ and r̃k

(
∀k ∈ S̃

)
to generate a new key SK2 for User ID2, granting access to

a specific level of group’s secret data:

SK2 =
(

D̃ = Df r̃, ∀k ∈ S̃ : D̃k = Dkgr̃H (k)
r̃k , D̃′

k = D′
kg

r̃k

)
(21)
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Taking the access control policy illustrated in Fig. 3 as an example, User ID1 possesses the attribute
set att(y1 − y6), which enables access to data embedded across all nodes in the tree T. A newly
introduced User ID2 is granted access to the group’s secret data in node x4. The attribute att(y4, y5) can
be selected from User ID1’s attribute set S, a new private key can be generated to authorize User ID2’s
access to the group’s secret data in node x4. The threshold nature of the attribute encryption scheme
provides the system with inherent disaster-tolerance properties. From Eqs. (10) and (19), the original
image remains recoverable even if Cy and C’y of certain nodes y in the ciphertext are lost. For instance,
in Fig. 3, if qy6 is lost, User ID1 can still accurately access the data embedded in node x4.

4 Experimental Investigations and Outcome Assessments

To assess the performance of the method and highlight improvements compared to current
approaches, we randomly chose 21,338 monochrome images from various datasets: BOSSBase [36],
BOWS-2 [37], and UCID [38], for comparative experiments. Some sample images used are depicted
in Fig. 6. Our assessment of the algorithm in this study covers three aspects: reversibility, embedding
capacity, and security. The experimental setup utilized an Intel® Core™ i7-13650HX CPU, 8 GB of
RAM, Windows 11 as the operating system, and MATLAB R2021a as the simulation platform.

(a) Airplane (b) Baboon (c) Jetplane

(d) Boat (e) Man (f) Tank

Figure 6: Some of the carrier images used in the experiment

4.1 Reversibility

In this study, we conducted an embedding simulation experiment using the Tank image with
our proposed algorithm, which is based on a (3, 4)-threshold and a three-layer access structure.
Fig. 7 illustrates the visuals produced throughout the experiment: Fig. 7a presents the source image,
while Fig. 7b displays the transitional image produced by pixel estimation and compression. Fig. 7c
illustrates the secured image infused with randomized group’s secret data, and Fig. 7d depicts the
labeled secured image created following the incorporation of the randomized group’s secret data, where
it is clear that no detectable details regarding the confidential information or the source image are
perceivable to the human eye. Finally, Fig. 7e displays the reconstructed image.
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(a) Original image (b) Transitional image (c) Encrypted image 

(d) Marked encrypted image (e) Recovered image

Figure 7: Visuals produced at different phases throughout the experiment

To evaluate the distortion in visual recovery caused by the algorithm, we measure the peak signal-
to-noise ratio (PSNR) for benchmarking purposes. PSNR quantifies the accuracy between the restored
visual and the source, reflecting the algorithm’s reversibility. Generally, when PSNR tends toward
infinity, it indicates nearly flawless restoration of the original image. The computation of PSNR is
performed using the formula below:

PSNR = 10 × log10

[
(2i − 1)

2

MSE

]
(22)

where i represents the image pixel depth of 8 bits, MSE can be obtained using the formula provided
below:

MSE = 1
N × M

N−1∑
a=0

M−1∑
b=0

[
Ta,b − T ′

a,b

]2
(23)

Here, Ta,b and T’a,b correspond to the pixels of the original and restored images, in that order, with
N and M representing the dimensions of the image.

Fig. 8 shows a comparison of the rate-distortion plots for different methods applied to the
Tank image. The method by Li et al. [6] induces image distortion due to insufficient utilization of
pixel correlation during image recovery, achieving a PSNR of only 54.51 dB at an embedding rate
of 0.25 bpp. Chen et al.’s algorithm [18], leveraging MSB correlation compression for embedding,
maintains a PSNR above 50 dB at embedding rates below 0.5 bpp; however, the PSNR decreases
rapidly beyond 0.5 bpp. This is attributed to embedding 3 bits of data with 7-bit matrix coding,
resulting in partial distortion during restoration. Zhang et al.’s algorithm [23] for image restoration,
utilizing the weight prediction technique, selectively handles pixels and lacks sufficient boundary data
to store prediction errors, limiting its reversibility. Ke et al.’s method [24] flips the least significant
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bit (LSB) during image recovery, leading to partial distortion in the recovered image. Xiong et al.’s
algorithm [27], which employs Lagrange interpolation for pixel recovery, is prone to bit flips and
image distortion. In contrast, our algorithm has been validated through Matlab simulations, achieving
infinitely high PSNR values. In our encrypted image processing approach, we encode the prediction
error using Huffman coding following the image prediction phase. This accurate decoding ensures
complete recovery of the target pixels via the AMED pixel prediction technique, thereby guaranteeing
full reversibility of the image recovery process. Additionally, the reliability of the decryption process
for attribute encryption further reinforces the reversibility of our proposed algorithm. Thus, when
contrasted with current algorithms, the method introduced in this study is the best for image quality
restoration, achieving a PSNR that approaches infinity, which enables complete lossless recovery of
the original image.

�

Figure 8: Plot of PSNR vs. embedding rate on tank image for this paper’s algorithm and existing
algorithms [6,18,23,24,27]

4.2 Embedding Capability

The volume of data embedded within an image functions as an essential criterion for evaluating
the performance of a data hiding method. We utilize the embedding rate (ER) as a metric to quantify
the mean quantity of data that can be incorporated into each pixel of a given image, defined by the
following equation:

ER = Total embedded bits
Total pixels in the encrypted image

(24)

If the data hider only allows the receiver to extract data without enabling them to recover
the carrier image, they can omit storing the information needed for image recovery during
the encryption phase. Referring to Eq. (10), we modify the scheme to involve only CT =(

Y , C̃ = B2e (g, g)
αs , ∀y ∈ Y : qy

)
in encryption while keeping the remaining operations unchanged.

This adjustment aims to reduce the system’s ciphertext storage cost and enhance the embedding rate.

The embedding of secret data occurs post reception of the encrypted image by the data hider,
achieved through replacing bits in the noisy regions of the image. The volume of embedded data
is linked to the storage capacity of the transitional image. Table 2 illustrates algorithmic storage
capacities across various images under T = 64 conditions. Here, image load capacity isn’t simply the
aggregate of pixel block capacities, as additional space is required to store boundary data essential for
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guaranteeing the method’s ability to completely restore the original image. Table 2 highlights varying
storage capacities among different visuals as a result of unique texture characteristics. Utilizing our
proposed algorithm, based on (3, 4)-threshold and a 3-layer access structure for image embedding,
demonstrates varied embedding rates across these images.

Table 2: ERs and other statistical values for various images

Images Overall storage (bits) Code size (bits) Extra bits (bits) Toal load (bits) ER (bpp)

Jetplane 1,590,321 792,651 653 797,017 5.2587
Man 5,622,829 3,118,402 2381 2,502,046 5.2483
Airplane 1,663,820 683,251 653 979,916 5.2732
Tiffany 1,537,779 785,567 653 751,559 5.2557
Baboon 1,085,666 796,502 653 288,511 5.2334
Tank 1,477,651 791,654 653 685,344 5.2523

To assess the general embedding ability of our algorithm, images in grayscale with dimensions
of 512 × 512 from the BOSSBase [36] and BOW-2 [37] collections, as well as 1338 monochrome
images from the USID [38] collection, and embedded randomly generated data into them. The findings
from the experiments are presented in Table 3. Under the 3-layer system access control structure, the
lowest embedding rate of our method based on (3, 4)-threshold surpasses 4.5 bpp. Based on (6, 6)-
threshold, the lowest ER is above 7.0 bpp, and the average rate is above 7.5 bpp. The algorithms exhibit
infinite PSNR, guaranteeing reversibility. Performance graphs illustrating ERs for the different image
collections are shown in Fig. 9.

Table 3: Comparison of ERs and PSNR of this paper’s algorithm on different database images

Datasets Setpoint Standards Ideal case Least case Mean

BOSSbase
(3, 4)

ER (bpp) 5.4692 4.9452 5.1025
PSNR ∞ ∞ ∞

(6, 6)
ER (bpp) 7.7633 7.7427 7.7485
PSNR ∞ ∞ ∞

BOW-2
(3, 4)

ER (bpp) 5.3965 4.9439 5.0893
PSNR ∞ ∞ ∞

(6, 6)
ER (bpp) 7.7602 7.4727 7.7480
PSNR ∞ ∞ ∞

USID
(3, 4)

ER (bpp) 5.7853 4.9405 5.1292
PSNR ∞ ∞ ∞

(6, 6)
ER (bpp) 7.7781 7.7425 7.7495
PSNR ∞ ∞ ∞
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(a) ERs of the algorithm in the BOSSbase database (b) ERs of the algorithm in the BOW-2 database

(c)ERs of the algorithm in the USID database

Figure 9: ERs of this paper’s algorithm on different database images

Next, we investigate how the threshold value of our algorithm influences the ER of images.
Table 4 demonstrates the comparison of ERs under different parameter conditions of our algorithm
based on 3-layer access structure, as applied to embedding experiments on Man images. Based on
the experimental outcomes, it becomes apparent that, given a constant cutoff value, reduced chunk
dimensions lead to elevated algorithm ERs. This outcome stems from AMED prediction being based
on texture features of various chunks, where smaller sizes enhance prediction accuracy. Additionally,
with a constant chunk size, increased values of r result in greater ERs while n remains unchanged.
Similarly, lower values of n result in higher embedding rates when r is constant. Our method attained
a peak ER of 7.0659 bpp during the test. For practical use, it is crucial to select the values of r and n
as closely as feasible to balance both robustness and a high ER.

To demonstrate the superiority of our algorithm in terms of embedding rate, we conducted
experiments using several commonly used images. We evaluated the maximum embedding rates
obtained by our method against current methods, as illustrated in Fig. 10. Puyang et al.’s algorithm
[5] successfully embeds data into the two-MSBs but achieves only an average embedding rate of
1.1106 bpp due to embedding location constraints. Panchikkil et al. [7] predict pixel directions
using snake scanning to select embeddable pixel blocks based on prediction errors, embedding secret
data into pixel MSBs. Their algorithm achieves an average embedding rate of 1.3505 bpp while
ensuring reversibility. In contrast, our algorithm achieves an average embedding rate of 7.7453 bpp
while maintaining reversibility. Xiong et al.’s algorithm [27] achieves the highest embedding rate of
3 bpp at a PSNR of 20 dB, whereas our algorithm achieves the highest average embedding rate
of 7.7781 bpp in experiments, approximately double that of Xiong et al.’s algorithm. Hua et al.’s
algorithms [28,29] utilize the correlation of residuals from the sub-secret image for embedding, but
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their embedding rates are limited by the use of single coding techniques. Yu et al.’s algorithm [30]
is enhanced by incorporating a hybrid coding technique, which improved the embedding rate to an
average of 3.21 bits per pixel under a (3, 4)-threshold. In contrast, our method increases the embedding
rate by approximately 1.93 bpp compared to Yu et al.’s algorithm. Therefore, compared to existing
algorithms, the method presented in this paper is the best in terms of embedding rate, significantly
outperforming existing algorithms under the same threshold conditions. Moreover, the embedding
rate of this algorithm, based on a (6, 6) threshold, exceeds 7 bpp, which is nearly twice that of existing
algorithms.

Table 4: ERs with varying algorithm parameters

Cutoff value r Share value n T = 512 T = 256 T = 128 T = 64 T = 32

2 2 5.66109 5.66208 5.66312 5.66426 5.66591

3
3 6.92188 6.92209 6.92231 6.92256 6.92291
4 5.01946 5.01978 5.02012 5.02049 5.02103

4
4 7.40388 7.40395 7.40402 7.40409 7.40420
5 5.75914 5.75929 5.75945 5.75963 5.75988

5
5 7.62652 7.62654 7.62657 7.62660 7.62664
6 6.21771 6.21780 6.21788 6.21798 6.21811
7 5.23632 5.23641 5.23651 5.23661 5.23677

6
6 7.74538 7.74539 7.74541 7.74542 7.74544
7 6.52603 6.52608 6.52613 6.52619 6.52627
8 5.63150 5.63156 5.63162 5.63169 5.63179

0.0
Tank

1.0

Baboon Man Average

Panchikkil et al.
2023

Proposed
(3, 4)-threshold

Proposed
(6, 6)-threshold

)ppb(
R

E

Test image index
AirplaneJetplaneTiffany

2.0

3.0

4.0
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Figure 10: Assessment of ERs between the proposed method and conventional methods [5,7,27–30]
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4.3 Running Time

The running speed of an algorithm can reflect its practicality to a certain extent. In this study, we
compared the running times of existing algorithms in a distributed environment with the algorithm
proposed in this paper. To ensure fair testing, we fixed the threshold to (4,4) and set the embedding
rate to 0.4 bpp. Using the proposed algorithm, which is based on a three-layer access structure, we
embedded random data into images of varying sizes and recorded the running times. The results
were compared with those of other algorithms under the same conditions, as shown in Table 5. The
results indicate that all algorithms completed their operations in less than 1.0 s. Notably, our algorithm
required less time to embed data compared to the other algorithms, demonstrating faster performance.
However, the time needed for image encryption and data processing by the receiver was slightly longer
than that of the other algorithms. This is due to our algorithm’s need to perform different operations
based on user attributes and data access levels during the encryption, decryption, and data extraction
processes, enabling fine-grained access control—a feature that other algorithms lack. In practice, cloud
servers typically have substantial computational capabilities, providing sufficient resources to support
the normal operation of the proposed method. To summarize, the method proposed by Hua et al. [31]
is the fastest for image encryption, while the algorithm by Chen et al. [9] excels in image recovery and
secret extraction. In contrast, the method presented in this paper offers the fastest data embedding
speed, facilitating user storage of secret data.

Table 5: Comparative data of key sensitivity testing

Image size Parties Running time

Chen et al. [9] Chen et al. [25] Hua et al. [31] Proposed

Image owner 0.0153 s 0.0154 s 0.0094 s 0.0449 s
512 × 384 Data hider 0.0124 s 0.0045 s 0.0320 s 0.0036 s

Receiver 0.0332 s 0.0469 s 0.1257 s 0.1569 s

Image owner 0.0211 s 0.0191 s 0.0130 s 0.0630 s
512 × 512 Data hider 0.0158 s 0.0067 s 0.0443 s 0.0047 s

Receiver 0.0434 s 0.0631 s 0.1779 s 0.2145 s

Image owner 0.0839 s 0.0759 s 0.0519 s 0.2396 s
1024 × 1024 Data hider 0.0630 s 0.0241 s 0.1695 s 0.0155 s

Receiver 0.1721 s 0.2510 s 0.7106 s 0.8551 s

4.4 Security

The security of the proposed method in this study is based on the principle that unauthorized
individuals are unable to derive any significant data from the marked image without possessing the
correct key. Furthermore, the algorithm effectively restricts legitimate users from accessing group
secret data beyond their authorized permissions.

The legitimate key Ks is required for an authorized user to retrieve the confidential data m from
the encrypted image with markings, which is infeasible for attackers to extract correctly. Should an
adversary succeed in obtaining the encrypted message m’ from the image IM1, the fabricated key will
decrypt m’ and compare it with m bit by bit. If the values are identical, the outcome is recorded as 0; if
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not, it is recorded as 1. The results of the experiment are illustrated in Fig. 11a, where the probabilities
for both outcomes are 0.5 and are statistically uncorrelated. Once the decryption key Ks is furnished
by the recipient, the derived data corresponds to the initially embedded secret, as shown in Fig. 11b.
This confirms that the attacker is unable to extract meaningful information out of the marked image
without Ks. In this algorithm, the AES encryption scheme with a key length of 256 bits is utilized for
stream key encryption of images and data. When performing scrambling encryption on an image of
size M × N, the key space varies with the number of blocks TM × TN. If the access control structure
includes m attribute selections, the total key space reaches 2768+m × (BM × BN) !, effectively ensuring
data security and preventing unauthorized access by illicit users.

(a) Comparison experiment I of secret data (b)Comparison experiment II of secret data (c) Comparison experiment I of group’s secret data

(d) Comparison experiment II of
group’s secret data

(e) Comparison experiment III 
of group’s secret data

(f) Comparison experiment IV 
of group’s secret data

Figure 11: Experimental analysis of data retrieval compared to prior-integrated data

When two users decrypt jointly, more group’s secret data can be extracted. Now take the access
control structure shown in Fig. 3 as an example: the set of attributes corresponding to the private key
SK1 of User ID1 is att(y2, y4, y5); the set of attributes corresponding to the private key SK2 of User ID2

is att(y3, y6); and the set of attributes corresponding to the private key SK3 of User ID3 is att(y1 − y6).
Now, when User ID1 and ID2 perform joint decryption, they extract the group’s secret data embedded
in x2 from IM1, decrypt it with Ks, compare it with the group’s secret data before embedding, and the
results are shown in Fig. 11c; the two are identical. When they attempt to access the group’s secret data
embedded in node x1 by overstepping their authority, the group’s secret data is extracted and compared
with its state before embedding, as shown in Fig. 11d. It can be seen that no valid information about
the group’s secret data mdx1 can be extracted.

When User ID3 extracts the group’s secret data embedded in nodes x1 and x2 from IM1 respectively
and compares it with the pre-embedding state, the results are shown in Fig. 11e,f. User ID3 successfully
extracts the group’s secret data. The experiments demonstrate that authorized users in the system
can correctly extract the group’s secret data they are permitted to access, based on their private
keys, thereby achieving fine-grained access control. Additionally, the system effectively prevents
unauthorized access by appropriately partitioning attributes.

We conducted a sensitivity test on the algorithm’s keys, with the results shown in Table 6. Initially,
we used the key Kd1 to encrypt 2000 bits of data to be embedded, denoted as m1, resulting in m1’. We
then divided Kd1 into groups of 256 bits, randomly modifying the same number of bits within each
group before re-encrypting m1 to obtain m2’. By comparing m1’ and m2’ bit by bit, we calculated the
proportion of matching bits, which consistently hovered around 0.5. Next, we utilized key Ks1 and
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the modified Ks1 to encrypt image I 1 while embedding m1’, resulting in the encrypted images IM1 and
IM2. The PSNR values of both images were tested and found to be below 8 dB, indicating significant
discrepancies between them. This illustrates that the key possesses extremely high sensitivity during
the encryption process. Subsequently, we extracted and decrypted m1’ from IM1 using the modified
key Ks1, yielding m2. A bit-by-bit comparison between m1 and m2 revealed that only around 50% of the
bits matched. Furthermore, by decrypting IM1 with the modified Ks1, we obtained image I 2, and the
PSNR between I 1 and I 2 was again found to be below 10 dB, indicating that the modified key cannot
accurately restore the original image. Therefore, even minor changes in the key can lead to substantial
impacts on both the encryption and decryption processes. The high sensitivity of the key ensures the
security of the stored data.

Table 6: Comparative data of key sensitivity testing

Proportion of key modification
Proportion of same bits in secret PSNRs

m1’ and m2’ m1 and m2 IM1 and IM2 I 1 and I 2

2/256 0.5020 0.5039 7.74 dB 8.91 dB
4/256 0.4964 0.5016 7.71 dB 9.10 dB
8/256 0.5012 0.4932 7.71 dB 9.14 dB
16/256 0.4935 0.5041 7.66 dB 9.25 dB
32/256 0.5045 0.4991 7.64 dB 9.31 dB

To prevent adversaries from retrieving usable information from the encrypted image with mark-
ings, its digital attributes must be consistent with those of random noise. We conducted experimental
analysis from three fundamental angles: pixel arrangement, statistical dependencies, and informa-
tional entropy. The proposed algorithm, based on (3, 3)-threshold and 3-layer access structure, is
used to embed randomly generated group’s secret data and users’ secret data into the Tank image. We
examined the pixel distribution of relevant images in the experiment, with the results shown in Fig. 12.
Visual observation reveals that the pixel distributions of the transitional image, the encrypted image,
and the marked encrypted image are all uniform. To further analyze this, we conducted a chi-square
test to assess whether the histograms of these images follow a uniform distribution. We first repeated
the previous experiments to obtain more samples for testing, assuming that the tested images do not
differ from the ideal condition of a uniformly distributed grayscale image. The expected frequency for
each pixel value is 1/256. We then calculated the chi-square statistic using the Eq. (25).

χ 2 =
k∑

i=1

(Oi − Ei)
2

Ei

(25)

Here, Oi represents the observed frequency, and Ei denotes the expected frequency. Next, the
corresponding p-value is obtained based on the degrees of freedom of 255, as shown in Table 7. The p-
values for the tested images were all significantly greater than the critical value of the significance
level (0.05), leading us to not reject the null hypothesis. Therefore, we conclude that the pixels of
the transitional image, the encrypted image, and the marked encrypted image exhibit a uniform
distribution.
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(e)Histogram of the encrypted image (f)3D pixel distribution of 
the encrypted image

(g)Histogram of the marked encrypted image (h)3D pixel distribution of the 
marked encrypted image

(a)Histogram of the original image (b)3D pixel distribution of the original image (c)Histogram of the transitional image (d)3D pixel distribution of 
the transitional image

(i)Histogram of the original image (j)3D pixel distribution of the 
recovered image

Figure 12: Pixel distribution of images at each stage of the experiment

Table 7: Data results obtained from chi-square test

Image category Identifier Chi-squared statistic p-values

Transitional image
IR1 278.632 0.852
IR2 270.519 0.759
IR3 265.026 0.680

Encrypted image
IE1 292.549 0.947
IE2 273.533 0.797
IE3 280.472 0.869

Marked encrypted image
IM1 307.148 0.986
IM2 282.369 0.885
IM3 288.189 0.925

Next, we converted the marked encrypted images into a binary sequence, assuming that the image
can be considered random. We then conducted NIST tests to evaluate the randomness of this sequence,
with the experimental results outlined in Table 8. The p-values are all significantly greater than the
significance level of 0.05, leading us to accept the null hypothesis. We conclude that the ciphertext
demonstrates good randomness after passing the Frequency Test (FREQ), Block Frequency Test
(BFREQ), Runs Test (RUNS), and other tests.
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Table 8: Results of NIST statistical tests

Images
p-values

FREQ BFREQ RUNS LRN BMRT NOMT DFT OMT REXT

IR1 0.458 0.389 0.403 0.885 0.856 0.402 0.895 0.395 0.409
IR2 0.385 0.421 0.475 0.892 0.897 0.358 0.942 0.357 0.398
IR3 0.447 0.414 0.451 0.951 0.884 0.441 0.985 0.412 0.356
IE1 0.394 0.358 0.366 0.942 0.954 0.412 0.854 0.348 0.420
IE2 0.498 0.454 0.427 0.844 0.861 0.395 0.842 0.398 0.416
IE3 0.382 0.439 0.498 0.976 0.902 0.359 0.942 0.415 0.451
IM1 0.445 0.383 0.375 0.810 0.915 0.403 0.901 0.401 0.395
IM2 0.415 0.472 0.497 0.846 0.950 0.385 0.912 0.356 0.411
IM3 0.452 0.335 0.351 0.982 0.906 0.401 0.890 0.389 0.367

Next, we utilize a pixel association evaluation technique to randomly choose 20,000 adjacent pixel
pairs from both the source image and the annotated encrypted image. We calculate the correlation
coefficients along their horizontal, vertical, and diagonal directions using the Eq. (26) for correlation
coefficient rxy, with x and y denoting the adjacent pixel intensities in the test image.

rxy = cov (x, y)√
D (x)

√
D (y)

D (x) = 1
M − 1

M∑
a=1

(xa − E (x))
2

D (y) = 1
M − 1

M∑
a=1

(ya − E (y))
2

cov (x, y) = 1
M − 1

M∑
a=1

(xa − E (x)) (ya − E (y))

E (x) = 1
M

M∑
a=1

xa, E (y) = 1
M

M∑
a=1

ya (26)

Table 9 presents the outcomes of the correlation coefficient analysis obtained from the embedding
experiments conducted on Tank image. The marked encrypted images denote images encrypted with
distinct attribute sets. The analysis demonstrates that the original images display a high level of
correlation across multiple orientations, with an average coefficient of 0.9698, closely approaching
1. In contrast, the correlation values for the highlighted encrypted images tend towards zero. Fig. 13
presents a scatter plot comparing the correlation coefficients of the original image I to those of the
marked encrypted image IM. It demonstrates that most sampling points for the initial image group
closely along the line y = x, reflecting a high degree of correlation. Conversely, the scatter diagram
of correlation values for the highlighted image displays a consistent distribution, in line with the
quantitative and analytical properties of the noise-like monochromatic image. This result stems from
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the process of embedding confidential information into the image, which interferes with the pixel
correlations. Subsequently, the image undergoes encryption using a stream cipher, further reducing
the pixel correlation coefficient to nearly 0.

Table 9: Correlation coefficients of the images at each stage of the experiment

Orientation Original
image

Transitional
image

Encrypted
image

Marked
image I

Marked
image II

Average of the
marked images

Diagonal 0.9549 0.0021 0.0013 0.0019 0.0024 0.0019
Vertical 0.9842 0.0011 0.0024 0.0024 0.0021 0.0023
Horizontal 0.9704 0.0019 0.0017 0.0023 0.0022 0.0021
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Figure 13: Scatter chart depicting the correlation metrics of evaluation images

The entropy of an image indicates the evenness of its pixel intensity distribution. Greater entropy
signifies enhanced resistance to statistical attacks. It is determined through the following formula:

H = −
N∑

i=1

Pr (σi) log Pr (σi) (27)

where N is the number of pixel values, and σ i and Pr(σ i) represent the i-th pixel value and its probability
of occurrence, respectively.

In an 8-bit grayscale image, where pixel intensities σ i range from [1, 255], the entropy achieves its
peak value (H = 8) if each pixel intensity occurs with a probability of 1/256. We evaluated the total
information entropy for the test images, as detailed in Table 10. The mean entropy for the labeled
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encrypted images was 7.9914, which is close to the theoretical maximum value. We then randomly
selected pixel blocks of various sizes from these images to perform a local information entropy test.
The results, as shown in Table 11, indicate that the entropy of the marked encrypted images is close to
8. This suggests an almost even spread of pixel intensities, which helps protect the image from statistical
attacks, guaranteeing strong security for hidden data.

Table 10: Information entropy of images at various stages during the experiment

Cover image Source image Transitional
image

Encrypted
image

Marked
image I

Marked
image II

Average of the
marked images

Tank 7.4395 7.9432 7.9911 7.9918 7.9917 7.9912
Goldhill 7.4845 7.9625 7.9904 7.9917 7.9915 7.9916
Man 7.3124 7.9595 7.9920 7.9915 7.9919 7.9917
Baboon 7.3652 7.9756 7.9913 7.9913 7.9913 7.9913

Table 11: Outcomes of the local data randomness assessment

Cover image Block size Source image Transitional
image

Encrypted
image

Marked
image I

Marked
image II

Tank
32 7.1578 7.8934 7.9914 7.9901 7.9896
64 7.2596 7.9166 7.9912 7.9920 7.9965
128 7.3552 7.9369 7.9909 7.9911 7.9923

Baboon
32 6.8539 7.9532 7.9905 7.9902 7.9885
64 6.9452 7.9642 7.9908 7.9908 7.9905
128 7.0325 7.9650 7.9911 7.9911 7.9912

Man
32 6.6512 7.9156 7.9910 7.9890 7.9908
64 6.8526 7.9358 7.9912 7.9896 7.9911
128 6.9523 7.9452 7.9913 7.9910 7.9916

Goldhill
32 7.3151 7.9386 7.9911 7.9905 7.9896
64 7.4158 7.9468 7.9915 7.9909 7.9901
128 7.4579 7.9525 7.9916 7.9914 7.9906

We use the number of pixel change rate (NPCR) and the uniform average change intensity (UACI)
[39] to evaluate the resistance of the proposed algorithm against differential attacks. NPCR denotes
the rate of pixels at the same location between images that undergo a change. The closer the value
is to 100%, the greater the difference between images and the more secure the algorithm is. UACI
denotes the average of the pixel differences between two images. An encryption algorithm with good
resistance to differential attacks has an optimal NPCR of 99.609% and an optimal UACI of 33.464%
[39]. We use this paper’s algorithm based on (4, 5)-threshold and 3-layer access structure to embed
three sets of random data into the randomly selected experimental images under the condition of T
= 32. We denoted the resulting marked encrypted images as IM1, IM2, and IM3, and assessed their
performance using NPCR and UACI metrics. Furthermore, to validate the algorithm’s resistance to
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chosen-plaintext attacks, we used various key combinations to embed two sets of random data into
images where all pixel values are zero. The resulting additional encrypted images are categorized as
IM4i and IM5i, as shown in Fig. 14. All these images exhibit a high degree of chaos. We then tested the
NPCR and UACI values between these images and the marked encrypted images generated from other
images in the database to determine if there were any significant statistical similarities. A high degree
of similarity could potentially expose vulnerabilities that attackers might exploit. As presented in
Table 12, the NPCR and UACI values for both experiments were found to be approximately 99.609%
and 33.464%, respectively. These results suggest that the algorithm is effective at resisting differential
attacks and demonstrates a certain degree of robustness against chosen-plaintext attacks. This is due
to the fact that the algorithm employs different operations such as coding techniques, scrambling and
XOR encryption, which makes the algorithm of this paper a large uncertain system with high security.

Figure 14: Mark encrypted images generated from the all-zero image

Table 12: Results of the differential attack resistance test

Images NPCR (%) UACI (%)

IM1 IM2 IM3 IM41 IM51 IM1 IM2 IM3 IM41 IM51

Tank 99.561 99.449 99.622 99.645 99.668 33.531 33.698 33.560 33.535 33.846
Tiffany 99.524 99.767 99.642 99.627 99.542 33.252 33.524 33.748 33.445 33.754
Baboon 99.553 99.545 99.640 99.537 99.525 33.341 33.524 33.647 33.295 33.385
Crowd 99.463 99.568 99.673 99.739 99.664 33.240 33.637 33.431 33.735 33.724
Sailboat 99.543 99.453 99.641 99.642 99.643 33.644 33.275 33.370 33.496 33.545
Man 99.540 99.636 99.776 99.317 99.477 33.149 33.441 33.547 33.575 33.524
Pens 99.562 99.637 99.781 99.733 99.441 33.244 33.845 33.389 33.343 33.835
Airplane 99.623 99.628 99.627 99.663 99.505 33.311 33.175 33.636 33.524 33.675
Jetplane 99.771 99.627 99.541 99.322 99.622 33.644 33.244 33.845 33.301 33.227
Aerial 99.873 99.619 99.732 99.521 99.824 33.524 33.294 33.845 33.409 33.644

Based on the experimental results, we conducted a comprehensive comparison between existing
algorithms and our proposed algorithm, with the findings summarized in Table 13. The proposed
algorithm effectively addresses the limitations of the existing algorithms, significantly enhancing the
suitability of the RDH-EI algorithm for multi-user cloud services.
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Table 13: Comprehensive comparison between existing algorithms and the proposed algorithm

RDH-EI algorithms Major limitations Advantages of the proposed
algorithm

Puech et al. [4] and
Chen et al. [9]

Low security High security achieved through
BSW encryption, scrambling,
and XOR encryption

Li et al. [6] and Gao et al. [34] Low prediction accuracy High prediction accuracy
Chen et al. [18], Zhang et al. [23]
and Ke et al. [24]

Distortion present in recovered
images

Lossless image recovery

Puyang et al. [5],
Panchikkil et al. [7],
Hua et al. [28,29] and
Yu et al. [30]

Low embedding rate High embedding rate

Chen et al. [25], Zhao et al. [26],
Xiong et al. [27] and
Hua et al. [31]

Inability to adapt to complex
multi-access level data
management scenarios

Enables fine-grained access
control to data

5 Conclusions

To address the issues of constrained embedding capacity and ineffective performance in intricate
data retrieval situations encountered by current RDH-EI techniques, we introduce a novel data hiding
method based on an innovative prediction method and ciphertext-policy attribute-based encryption,
which allows for multi-level embedding of secret data. Our cutting-edge AMED pixel forecasting
method demonstrates exceptional accuracy in predictions and is enhanced by Huffman coding for
image preprocessing. During image encryption, we embed hierarchical group’s secret data based on
user attributes and access levels, resulting in marked encrypted images. Recipients can then extract
the corresponding levels of group secret data from these images to recover the original images. The
algorithm supports permission granting and joint decryption among users. Experimental results
demonstrate that our algorithm achieves full reversibility and significantly improved embedding rates
compared to existing approaches. Additionally, by leveraging the threshold properties of attribute
encryption, our algorithm shows resilience against data loss and exhibits robust resistance to dif-
ferential attacks and other statistical attack methods, ensuring a high level of security. Nonetheless,
our method exhibits marginally reduced speed compared to current techniques regarding image
processing and secret extraction, highlighting the necessity for additional research. Future work will
focus on developing RDH-EI algorithms based on color images to enhance both embedding rates and
processing speeds, while also meeting the security requirements of multi-user environments in cloud
services.
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