
Copyright © 2024 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

echT PressScience

DOI: 10.32604/cmc.2024.054473

ARTICLE

Dynamical Artificial Bee Colony for Energy-Efficient Unrelated Parallel
Machine Scheduling with Additional Resources and Maintenance

Yizhuo Zhu1, Shaosi He2 and Deming Lei2,*

1School of Science, Hong Kong University of Science and Technology, Hong Kong, 999077, China
2School of Automation, Wuhan University of Technology, Wuhan, 430070, China

*Corresponding Author: Deming Lei. Email: deminglei11@163.om

Received: 29 May 2024 Accepted: 23 August 2024 Published: 15 October 2024

ABSTRACT

Unrelated parallel machine scheduling problem (UPMSP) is a typical scheduling one and UPMSP with various real-
life constraints such as additional resources has been widely studied; however, UPMSP with additional resources,
maintenance, and energy-related objectives is seldom investigated. The Artificial Bee Colony (ABC) algorithm
has been successfully applied to various production scheduling problems and demonstrates potential search
advantages in solving UPMSP with additional resources, among other factors. In this study, an energy-efficient
UPMSP with additional resources and maintenance is considered. A dynamical artificial bee colony (DABC)
algorithm is presented to minimize makespan and total energy consumption simultaneously. Three heuristics
are applied to produce the initial population. Employed bee swarm and onlooker bee swarm are constructed.
Computing resources are shifted from the dominated solutions to non-dominated solutions in each swarm when
the given condition is met. Dynamical employed bee phase is implemented by computing resource shifting and
solution migration. Computing resource shifting and feedback are used to construct dynamical onlooker bee phase.
Computational experiments are conducted on 300 instances from the literature and three comparative algorithms
and ABC are compared after parameter settings of all algorithms are given. The computational results demonstrate
that the new strategies of DABC are effective and that DABC has promising advantages in solving the considered
UPMSP.

KEYWORDS
Artificial bee colony; parallel machine scheduling; energy; additional resource

1 Introduction

Scheduling problems and algorithms have been extensively utilized in manufacturing and service
industries to enhance production efficiency. As a typical scheduling problem, parallel machine schedul-
ing problem (PMSP) extensively exists in many processes of manufacturing and service including
production lines, hospital management systems, computer systems and shipping docks [1,2]. In
unrelated parallel machine scheduling (UPMSP), the processing time of a job depends on its assigned
machine. UPMSP with various conditions and constraints such as additional resources, maintenance
and energy have been well studied and a number of results were obtained in the past decade [3–5].

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2024.054473
https://www.techscience.com/doi/10.32604/cmc.2024.054473
mailto:deminglei11@163.om


844 CMC, 2024, vol.81, no.1

There are many works on unrelated parallel machine scheduling problems with additional
resources (UPMSPR). Ventura et al. [6] proved that the problem with one single type of additional
resources is equivalent to the asymmetric assignment problem. Zheng et al. [7] reported a two-
stage adaptive fruit fly optimization algorithm (FOA) with a heuristic and knowledge-guided search.
Fanjul-Peyro et al. [8] presented two integer linear programming models and three matheuristics.
Fleszar et al. [9] gave an efficient mixed-integer linear programming (MILP) model for a lower
bound. Zheng et al. [10] proposed a collaborative multi-objective FOA to minimize carbon emissions.
Villa et al. [11] developed several heuristics based on resource constraints and assignment rules.
Afzalirad et al. [12] presented an integer mathematical programming model and two genetic algorithms
for the problem with eligibility restrictions. Vallada et al. [13] applied an enriched scatter search and
an enriched iterated greedy with a best-known heuristic and a repair mechanism.

UPMSPR with at least two real-life constraints is also studied, which are non-zero arbitrary
release dates and sequence-dependent setup times (SDST) [14], processing resources, setup resources
and shared resources [15], and additional resources in processing and setup [16]. Pinar et al. [17]
proposed three heuristics and greedy randomized adaptive search procedures for UPMSP with setup
times, and additional limited resources in setup.

Preventive maintenance (PM) is often applied to prevent potential failures and serious accidents
in parallel machines and UPMSP with PM is frequently addressed. Some real-life constraints such
as aging effects [18], multi-resources PM planning [19], deteriorating [20] and SDST [21] are included
into UPMSP with PM. Various meta-heuristics including genetic algorithm [20], novel imperialist
competitive algorithm (NICA) with an estimation of distribution algorithm [22], a differentiated
shuffled frog-leaping algorithm [23], iterated algorithm [24], artificial bee colony (ABC [25]) and
adaptive ABC [26].

The increasing environmental and energy pressures result in the increasing attention to energy
saving or energy efficiency in manufacturing industries. In recent years, UPMSP with energy has
received some attention. Che et al. [27] presented an improved continuous-time MILP model and a
two-stage heuristic for UPMSP under time-of-use (TOU) electricity price. Cota et al. [28] proposed a
MILP model and a novel math-heuristic algorithm for UPMSP with makespan and total consumption
of electricity. Abikarram et al. [29] developed a mathematical optimization model and some analyses
for UPMSP with energy cost. Zhang et al. [30] provided a new heuristic evolutionary algorithm to
solve UPMSP with tool changes, makespan and total energy consumption. Wang et al. [31] applied
a modified artificial immune algorithm to deal with UPMSP with energy, auxiliary resource shared
among machines. For UPMSP with TOU electricity tariffs, Saberi-Aliabad et al. [32] presented a
MILP model and a number of dominance rules and valid inequalities and Pei et al. [33] proposed
an approximate algorithm after the problem is transformed into single machine problems with TOU
electricity price. Zhang et al. [34] developed a combinatorial evolutionary algorithm (CEA) for
UPMSP with setup times, limited worker resources and learning effect.

As stated above, UPMSPR, UPMSP with PM and UPMSP with energy have attracted attention
and have been addressed using metaheuristics like ABC, NICA and FOA etc.; moreover, UPMSP
with at least two real-life constraints is often studied [14–17,22–24]; however, UPMSP with additional
resources, maintenance and energy is hardly investigated. In many unrelated parallel machine produc-
tion processes, additional resources and maintenance often exist simultaneously and energy efficiency
is important for production with the increasing pressures of environmental protection and energy price.
The consideration of these things can result in a high application value of the obtained schedule, so it
is essential to solve energy-efficient UPMSP with additional resources and PM.



CMC, 2024, vol.81, no.1 845

It also can be found that ABC is an effective method to solve UPMSPR and UPMSP with PM.
As a meta-heuristic inspired by the intelligent foraging behavior of honeybee swarm, ABC has some
features such as simplicity and ease of implementation, and it has been successfully applied to deal with
various production scheduling problems [35–39] and notable advantages of ABC in solving UPMSP
[36–40] are proved by computational results. The energy-efficient UPMSP with additional resources
and PM is an extended version of the UPMSP. It is still composed of the same sub-problems as UPMSP
[36–40]. ABC has some particular features. It also has successfully applied to hand various UPMSP.
There are close relations between UPMSP and its extended version. These three things reveal that ABC
has potential optimization advantages in solving energy-efficient UPMSP with additional resources
and PM, which is why ABC is chosen.

In this study, energy consumption, additional resources and PM are integrated into UPMSP and
an effective way is provided for the problem by adding some new dynamical optimization mechanisms
into ABC. The main contributions are summarized as follows. (1) Energy-efficient UPMSP with PM
and additional resources is considered. (2) The dynamical artificial bee colony (DABC) is presented
to minimize makespan and total energy consumption. Three heuristics are used in the initialization.
Employed bee swarm and onlooker bee swarm are constructed and computing resources are shifted
from the dominated solutions to non-dominated solutions in each swarm when the given condition is
met. The dynamical employed bee phase is implemented by computing resource shifting and solution
migration. The Dynamical onlooker bee phase involves computing resource shifting and feedback.
This phase is applied to dynamically select search operators based on global and neighborhood
searches. (3) Many experiments are conducted. The computational results demonstrate that new
strategies of DABC are effective and that DABC has promising advantages in solving the considered
UPMSP.

The remainder of the paper is organized as follows. Problem description is given in Section 2.
Section 3 shows DABC for the considered problem. Section 4 gives numerical experiments on DABC
and Section 5 shows the conclusions and some topics of future research are provided.

2 Problem Description

Energy-efficient UPMSP with additional resources and PM is composed of n jobs J1, J2, · · · , Jn

and m unrelated parallel machines M1, M2, · · · , Mm. Each job can be processed on any one of m
machines. pki is processing time of job Ji on machine Mk. An additional renewable resource is needed
for each job. For job Ji processed on Mk, it needs rki units of the additional resource. At most Rmax units
of additional resources can be used at any time.

PM is considered. There is a time interval between two consecutive PMs, during which jobs are
processed. For Mk, uk is the length of the interval, wk denotes the duration of PM, and the start time
of the g − th PM is g × uk

Machine Mk has three modes: processing mode, idle mode and PM mode. ek, iek and pek indicate
the energy consumption per unit time when Mk is in processing mode, idle mode and PM mode,
respectively.

The mathematical mode of the problem is shown below:

Cmax = max
{
Cj |j = 1, 2, · · · , n

}
(1)

TEC =
m∑

k=1

n∑
i=1

∫ Cmax

0

wikt × ekdt +
m∑

k=1

(iek × ipk + pek × tpk) (2)



846 CMC, 2024, vol.81, no.1

s.t.
m∑

k=1

n∑
l=1

xikl = 1 ∀i (3)

n∑
i=1

xikl ≤ 1 ∀k, l (4)

bk,1 = 0 ∀k (5)

zklg ×
(

bk,l+1 − bk,l −
n∑

l=1

pik × xikl

)
= 0 ∀g (6)

(
1 − zklg

) × (
bk,l+1 − guk

) = 0 ∀g (7)

m∑
k=1

n∑
i=1

∑
l

rkixiklwikt ≤ Rmax ∀t (8)

bi =
m∑

k=1

n∑
l=1

bkl × xikl ∀i (9)

Ci = bi +
m∑

k=1

n∑
l=1

pik × xikl ∀i (10)

xikl ∈ {0, 1} ∀k, l (11)

where Ci indicates completion time of job Ji and Cmax is maximum completion time of all jobs, wikt is
1 if job Ji is processed on Mk at time t and 0 otherwise. xikl is 1 if Ji is processed on position l on Mk

and 0 otherwise. zklg is 1 if bk,l +
n∑

l=1

pik × xikl ≤ guk and 0 otherwise, bk,l is beginning time of job on

position l of machine Mk, ipk, tpk are the total idle time and total maintenance duration, respectively.
TEC denotes total energy consumption.

Eqs. (1) and (2) are about objectives. Constraint (3) indicates that job Ji is just needed to be assign
to one machine. Constraint (4) denotes that at most one job is assigned to one position of one machine.
Constraints ((6), (7)) are about PM. Constraint (8) is related one on additional resource. The last two
constraints are about beginning time and completion time of job Ji.

For energy-efficient UPMSP with Cmax and TEC, z � x means that z dominates x and defined
below:

Cz
max ≤ Cx

max, TECz ≤ TECx, at least one of Cz
max < Cx

max, TECz < TECx exists. When z � x,
x � z are not met, z, x are non-dominated each other. Cx

max and TECx are makespan and total energy
consumption of x.

An illustrative example with 2 machines and 8 jobs is given, the matrix of processing time and
matrix of additional resource are provided in Eqs. (12) and (13), e1 = 2, e2 = 3, iek = 1, pek = 5,
uk = 24, wk = 3.

(pki)m×n =
(

5 6 6 5 2 4 4 6
3 3 4 4 4 5 3 3

)
(12)

(rki)m×n =
(

5 7 7 3 3 7 6 5
3 4 5 8 4 3 3 2

)
(13)



CMC, 2024, vol.81, no.1 847

Fig. 1 shows a schedule, in which 6 (7) as an example indicates job J6 with r16 of 7.

Figure 1: A schedule of example

3 DABC for Energy-Efficient UPMSP with Additional Resource and PM

Dynamical optimization mechanisms such as feedback and competition have been success-
fully used in ABC to adjust dynamically search operators or search behaviors [41–45]. The search
advantages of dynamical mechanisms are tested and proved. In this study, dynamical optimization
mechanism is implemented by computing resource shifting, solution migration and feedback.

3.1 Initialization

Lei et al. [26] proposed a two-string representation. For energy-efficient UPMSP with n jobs, m
machines, Rmax units of additional resource and PM, its solution consists of a machine assignment
string

[
Mh1

, Mh2
, · · · , Mhn

]
and a scheduling string [θ1, θ2, · · · , θn], where Mhi is the assigned machine

for job Ji and θi is real number.

The decoding procedure is described as follows:

(1) Obtain job permutation [π1, π2, · · · , πn] by sorting all jobs in ascending order of θi.

(2) Start with π1, for each job πi, assign it to its machine Mhπi
according to the first string, decide

if job πi can be inserted into idle period and deal with PM as done in paper [16].

For the example in Section 2, a solution consists of [M2, M2, M1, M1, M2, M1, M2, M1] and
[0.1, 0.3, 0.7, 0.57, 0.62, 0.23, 0.85, 0.41 , the obtained job permutation is [1, 3, 7, 5, 6, 2, 8, 4], when J6 is
allocated on M1, if no additional resource constraint is considered, J6 can be processed between [6,10],
however, the sum of the additional resource is 11, the additional resource constraint is violated, so J6

is processed on [10,14]. For J4, if it is processed directly after J8, C4 = 25 > u1, so PM is first executed
and then J4 is processed. The obtained schedule is shown in Fig. 1.

β initial solutions are produced by heuristics. Heuristic 1 is used to produce solution x1 and
described as follows. For each Ji, min {pki, 1 ≤ k ≤ m} is decided, a machine Mhπi

with phii = min {pki}
and the smallest phii ×ehi are chosen; then a scheduling string is randomly generated. Heuristic 2 is used
for solution x2 and shown below. For each job Ji, compute min {pki × ek, 1 ≤ k ≤ m} and then select
Mhπi

with the smallest phii and phii×ehi = min {pki × ek}. The scheduling string of x2 is also stochastically
generated.



848 CMC, 2024, vol.81, no.1

Heuristic 3 is used for each of β −2 solutions: randomly produce a scheduling string, for each job
Ji, if rand < 0.5, then decide a machine Mhπi

as done in heuristic 1 for each Ji; else determine a machine
Mhπi

as done in heuristic 2 for each Ji. Where rand is random number following uniform distribution
on [0, 1].

N − β initial solutions are stochastically gotten. Employed bee swarm EB consists of ran-
domly chosen N/2 solutions from P and onlooker bee swarm OB is composed of the remained N/2
solutions.

3.2 Dynamically Employed Bee Phase

Six neighborhood structures are used. N1 is used to move a randomly chosen job Ji on a machine
with the biggest completion time to a machine Mk with the smallest pki × ek. N2 is similar with N1, Ji is
moved to Mk with the smallest pki in N2. N3 is shown below. Decide max

{
phii × ehi , 1 ≤ i ≤ n

}
and a job

Jj with phj j ×ehj = max
{
phii × ehi

}
and move Jj to a machine Mk with pkj ×ek = min

{
plj × el, 1 ≤ l ≤ m

}
.

N4 is adopted to exchange a randomly selected job on a machine Mk with the biggest completion time
and a randomly chosen job on a stochastically decided Ml, l �= k.N5 is shown below. Randomly choose
Mk and swap two randomly selected jobs Ji, Jj on Mk, that is, θi, θj are exchanged. N6 is described as
follows. Randomly decide a machine Mk and two randomly selected jobs Ji, Jj on Mk, then insert θi

into position j on scheduling string.

Algorithm 1 describes the detailed steps of dynamical employed bee phase, where cni and rankxi

indicate the number of searches on a generation and rank of xi decided by non-dominated sorting [46],
Ng (x) is the set of neighborhood solutions of x produced by Ng. The set Ω is used to store historical
optimization data. When Ω is updated with x, x is added into Ω and all solutions of Ω are compared
and all dominated ones are removed.

Algorithm 1: Dynamical employed bee phase
1: for each xi ∈ EB do
2: for g = 1 to cni do
3: execute global search between xi and y ∈ EB
4: perform neighborhood search NS1 on xi

5: end for
6: let cni = 1 if cni = 0 or cni > 1
7: end for
8: apply non-dominated sorting on all solutions of EB
9: for each xi ∈ EB do

10: if It ≤ traili, rankxi > 1 then
11: randomly choose solution xj ∈ EB with rankxj = 1, cnj = cnj + 1, cni = 0
12: end if
13: if triali ≥ 2 × It and rankxi > 1 then
14: replace xi with a randomly produced solution and let triali = 0
15: end if
16: end for
17: if each xi with rankxi = 1 meets It ≤ traili then
18: decide a solution xj with the smallest trialj, execute NS2 on xj, implement solution migration

from OB to EB
19: end if



CMC, 2024, vol.81, no.1 849

Global search between xi, y is shown below. Execute two-point crossover on machine assignment
strings of xi and a randomly chosen y ∈ EB, and obtain a new one z, if z � xi or z, xi are non-dominated
each other, then let traili = 0, xi is used to renew Ω and z substitutes for xi; otherwise, traili = traili +1,
perform two-point crossover on scheduling strings of xi and a randomly selected y ∈ EB, obtain a new
one z and update xi, traili and Ω according to the above condition.

Neighborhood search NS1 on xi is described as follows. Randomly decide Ng, produce z ∈ Ng (xi),
update xi, traili and Ω in terms of conditions of global search.

Solution migration is described below. Define Δ = {
xi ∈ EB

∣∣rankxi = 1, It ≤ traili

}
, then perform

non-dominated sorting on OB, sort all solutions of OB in the ascending order of rank, for some
solutions with same rank, sort them in the ascending order of traili, select the first |Δ| solutions, for
each chosen solution xi, a multiple neighborhood search is applied and let traili = 0.

For solution xi, multiple neighborhood search is executed below. Let g = 1, repeat the following
steps until g = 7: produce a solution z ∈ Ng (xi), if z � xi or z, xi are non-dominated each other, then
z substitutes for xi and let g = 7; otherwise g = g + 1.

Neighborhood search NS2 on xi is shown as follows. (1) Select the machine Mk with the biggest
completion time and randomly choose a job Ji assigned to Mk, Then, repeat the following steps: insert
Ji into each possible position on Mk and obtain a solution z until z � xi. (2) Determine a machine
Mk with the biggest energy consumption and randomly select a job Ji on Mk, repeat the following
steps: move Ji to Ml, l �= k and obtain a solution z until z � xi. In NS2, if z � xi is not met, then
traili = traili + 1; else traili = 0.

In dynamical employed bee phase, some dominated solutions with rankxi > 1 have cni = 0, and
their computing resources are reallocated to non-dominated solutions with rankxi = 1. As a result,
cni for some solutions exceed 1 and cni of other solutions are 0. This indicates that the search times
for solutions are dynamically adjusted based on solution quality. Additionally, solution migration is
triggered when all non-dominated solutions satisfy It ≤ traili. In this case, some best solutions of
OB are moved to EB and solutions of EB are dynamically adjusted when the given condition is met,
Therefore, dynamic adjustment is applied in both scenarios.

3.3 Dynamical Onlooker Bee Phase

Four search operators SO1 − SO4 are given. SO1 is described below. For a solution 0, select a Ng

according to an adaptive process and produce a solution z ∈ Ng (xi), if z � xi, then xi is used to update
Ω and z substitutes for xi; if z, xi are non-dominated each other, then z is applied to renew Ω; if xi � z,
then randomly select y ∈ EB, multiple neighborhood search acts on y and xi is replaced with y.

Adaptive process is depicted below. Choose a neighborhood structure by roulette selection based
on Pseg; if rand > Q, then randomly choose a neighborhood structure; suppose Na is chosen, produce
a new solution z ∈ Na (xi), if z � xi, then counta = counta + 2; if z, xi are non-dominated each other,
then counta = counta + 1, where Q is threshold.

SO2 is shown as follows. For a solution xi ∈ OB, let α = 0, execute variable neighborhood descent
(VND) shown in Algorithm 2, if α = 0, then perform multiple neighborhood search on xi.

SO3 is done in the following way. For a solution xi ∈ OB, randomly choose y ∈ EB, perform
global search between xi, y as done in Lines 3–7 of Algorithm 1; then execute multiple neighborhood
search on xi. SO4 has the same steps as SO3; however, y ∈ Ω in SO4.



850 CMC, 2024, vol.81, no.1

Algorithm 2: VND
1: let g = 1
2: for l = 1 to R do
3: produce a solution z ∈ Ng (xi)

4: if z � xi or z, xi are non-dominated each other then
5: α = α + 1 , update with Ω with xi and replace xi with z, traili = 0, g = 1
6: else
7: traili = traili + 1, g = g + 1
8: end if
9: end for

In SO1 − SO4, when multiple neighborhood search acts on xi, for each z, if xi cannot be replaced
with z, then traili = traili + 1; otherwise, traili = 0.

Algorithm 3: Dynamical onlooker bee phase on gen > 2
1: perform non-dominated sorting on OB
2: compute Evogen−1

OB

3: if each xi ∈ OB with rankxi = 1 meets It ≤ traili then
4: randomly choose one of SO3 and SO4 and randomly select a y
5: for each solution xl ∈ OB do
6: if rankxl

> 1 and xl � y then
7: stochastically a solution xj ∈ OB with rankxj = 1 and perform the chosen operator on

xj ∈ OB
8: else
9: execute the chosen operator on xl ∈ OB

10: end if
11: end for
12: else
13: decide a search operator by feedback for each xi ∈ OB
14: end if

In SO1, an adaptive process is adopted to select neighborhood structure adaptively, SO2 is an
adaptive combination of VND and multiple neighborhood search, SO3, SO3 are combination of global
search and multiple neighborhood search.

In onlooker bee phase, for each Ng, set initial countg = 1 and define selection probability Pseg.

Pseg = countg/
∑6

l=1
countl (14)

Algorithm 3 describes dynamical onlooker bee phase on generation gen, where if SO3 is chosen in
Line 4, then y ∈ EB is randomly decided; if SO4 is selected, then y ∈ Ω is chosen randomly, in Lines
7, 9, when the chosen operator is executed, the decided y in Line 4 is directly used, Evogen

OB denotes the
evolution quality.

Evogen
OB =

∑
xi∈OB

newgen
xi

(15)

where newgen
xi

is defined below. For xi when an operator SOl acts on xi on generation, gen if new solution
z � xi, then newgen

xi
= newgen

xi
+ 2; if z, xi are non-dominated each other, newgen

xi
= newgen

xi
+ 1.



CMC, 2024, vol.81, no.1 851

Feedback is dynamical process used in control. In this study, feedback is applied to decide one of
SO1 − SO4 dynamically, for each xi ∈ OB, on generation gen, if Evogen−1

OB < Evogen−2
OB , then random select

one operator of SO1, SO2 and perform the chosen operator on xi ∈ OB; otherwise, execute the chosen
operator on generation gen − 1 on xi ∈ OB.

In dynamical onlooker bee phase, for each xl, if rankxl
> 1 and xl � y, then computing resource of

xl is shifted to non-dominated solution xj ∈ OB, feedback is used to dynamical decide search operator
by selecting a new one if Evogen−1

OB < Evogen−2
OB or using search operator of generation gen − 1, that is,

search operator on generation gen is decided or affected by evolution on the previous two generations,
obviously, computing resource and search operator are dynamically adjusted.

Algorithm 4: DABC
1: produce initial population P ∪ Ω using heuristics and random way
2: decide EB, OB, gen = 1
3: while stopping condition is not met do
4: execute dynamical employed bee phase
5: if gen ≤ 2, then

for each solution xi ∈ OB do
execute the randomly chosen operator from SO1, SO2

end for
else

perform Algorithm 3
end if

6: apply scout phase
7: gen = gen + 1
8: end while
9: output the non-dominated solutions in P ∪ Ω

In Algorithm 1, the search operator is combination of global search and neighborhood search
NS1, in Algorithm 3, SO3, SO4 are composed of global search and multiple neighborhood search,
SO1, SO2 are neighborhood search-based operator; moreover, these operators are dynamically selected
by feedback, these operators can be useful to make good balance between exploration and exploitation.

3.4 Algorithm Description

The detailed steps of DABC are shown in Algorithm 4.

Scout phase is described as follows. For each solution xi ∈ P, if traili ≥ Limit, then xi is used to
update Ω and then replaced with a randomly produced solution and traili = 0.

Unlike the previous ABC [36–40], DABC has the following new features. (1) The initial population
is produced by three heuristics. (2) Dynamical employed bee phase is implemented by using computing
resource shifting and solution migration. (3) Four search operators are used and dynamical onlooker
bee phase is performed by applying computing resource shifting and feedback. The above dynamical
optimization mechanisms such as solution migration and feedback can decide the number of searches
and adjust solutions of swarms and search operator dynamically, as a result, search efficiency can be
improved. On the other hand, many new things are required to be implemented when DABC is used,
this may be a disadvantage of DABC.



852 CMC, 2024, vol.81, no.1

4 Computational Experiments

Extensive experiments are conducted to test the performance of DABC for energy-efficient
UPMSP with additional resource and PM. All experiments are implemented by using Microsoft Visual
C++ 2019 and run on 8.0 G Random Access Memory 2.30 GHz Central Processing Unit Personal
Computer.

4.1 Test Instances, Metrics and Comparative Algorithms

Fanjul-Peyro et al. [8] provided 300 instances, which can be divided into 30 types and the size
of each type is depicted as n × m, n ∈ {8, 12, 16, 20, 25, 30, 50, 150, 250, 350} and m ∈ {2, 4, 6}. For
each type n × m, five ways are used for generating pki and two ways are applied for rki, 10 instances
n × m × 1, · · · , n × m × 10 are generated. Fanjul-Peyro et al. [8] described seven ways for pki, rki and
the related data can be obtained directly from http://soa.iti.es/problem-instances (accessed on 24 May
2024). Rmax = 5m. We generate PM data as follows, wk is integer selected from the same interval as pki,
uk = round

(
wk + 3.5 × maxi=1,2,··· ,n {pki}

)
. Where round (x) is an integer being closet to x.

Metric C [47] is used to compare the approximate Pareto optimal set respectively obtained by
algorithms.

C (L, B) = |{b ∈ B : ∃h ∈ L, h � b}|
|B| (16)

Metric ρ is the ratio of |{x ∈ Ωl |x ∈ Ω∗ }| to |Ω∗| [48], where Ωl is non-dominated set of Algorithm
l, the reference set Ω∗ consists of the non-dominated solutions in the union of non-dominated sets of
all algorithms.

Metric DIR [49] is used to measure the convergence performance by computing the distance of the
non-dominated set �l relative to a reference set �∗.

DIR (Ωl) = 1
|Ω∗|

∑
y∈Ω∗

min
{
σxy|x ∈ Ωl

}
0 (17)

where σxy is the distance between a solution x and a reference solution y in the normalized objective
space.

Lei et al. [23] proposed NICA for multi-objective UPMSP with PM. Shahidi-Zadeh et al. [3]
presented a multi-objective harmony search (MOHS) for UPMSP. Zhang et al. [34] developed CEA for
energy-efficient UPMSP with makespan and total energy consumption. These algorithms can be used
to solve energy-efficient UPMSP with additional resource and PM after related steps on additional
resource and PM are added into decoding procedure; moreover, they have promising advantages in
solving UPMSP, so they are chosen as comparative algorithms.

ABC is used to show the effect of new strategies of DABC. ABC is constructed as follows: in
employed bee phase, Lines 1–10 with cni = 1 for each xi ∈ P of Algorithm 1 are executed; in onlooker
bee phase, a solution xi ∈ P is selected by binary tournament and the above Lines 1–10 are executed,
scout phase of DABC is adopted in ABC.

4.2 Parameter Settings

DABC has following parameters: N, It, β, R, Q, Limit and stopping condition. Stopping condition
is first decided independently as done in [18], we found by experiments that DABC converges well when

http://soa.iti.es/problem-instances


CMC, 2024, vol.81, no.1 853

0.3n s CPU time reaches. We also obtained that when 0.3n s CPU time is applied, all comparative
algorithms also converge fully, so stopping condition is set as 0.3n s CPU time for all algorithms.

An empirical method was used to determine the settings for other parameters by using the instance
50×20×5. Table 1 shows the levels of each parameter. The orthogonal array L27

(
36

)
is tested. DABC

with each combination runs 10 times on the chosen instance.

Table 1: Parameters and their levels

Parameters Factor level

1 2 3

β 5 10 15
N 80 100 120
It 3 5 7
R 8 10 12
Q 0.25 0.3 0.35
Limit 8 10 12

Fig. 2 shows the results of ρ and S/N ratio, which is defined as −10 × log10

(
ρ2

)
. It can be

found from Fig. 2 that DABC with following combination N = 100, It = 5, β = 10, R = 10, Q =
0.3, Limit = 10 produces better results than DABC with other combinations, moreover, we tested the
above combination on all instances, the results reveal that the above combination is still effective, so
the above parameter settings are adopted.

Figure 2: Main effect plot for mean and S/N ratio

ABC has N = 100, Limit = 10 and the above stopping condition.

Parameter settings of three comparative algorithms are directly selected from References [3,23,34]
except that the stopping condition. To compare fairly, all algorithms should be stopped under the same
condition, so MOHS, CEA and NICA are given the same stopping condition as DABC. We conducted
experiments on other parameters of comparative algorithms, the experimental results show that each
comparative algorithm with parameter settings from [3,23,34] can produce better results than the same
algorithm with other parameter settings, so the original parameter settings are still used.



854 CMC, 2024, vol.81, no.1

4.3 Results and Discussions

DABC, its three comparative algorithms and ABC are compared. Each algorithm randomly runs
10 times for each instance. Tables 2–9 describe the corresponding results of five algorithms. D, A, N,
M, C denote DABC, ABC, NICA, MOHS and CEA. Fig. 3 shows the distribution of non-dominated
solutions obtained by all algorithms.

Table 2: Results of all algorithms on metric C

Type C (D, C) C (C, D) C (D, N) C (N, D) C (D, M) C (M, D) C (D, A) C (A, D)

8 × 2 0.000 0.000 0.000 0.000 0.0 0.000 1.000 0.000
0.000 0.000 0.000 0.000 0.625 0.000 0.800 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
10 10 10 10 10 10 10 10

8 × 4 0.000 0.000 0.769 0.000 1.000 0.000 1.000 0.000
0.000 0.000 0.091 0.000 1.000 0.000 1.000 0.000
0.308 0.250 0.000 0.000 0.000 0.000 0.667 0.000
10 5 10 4 10 3 10 0

8 × 6 0.000 0.000 0.000 0.000 1.000 0.000 1.000 0.000
0.000 0.000 0.333 0.000 1.000 0.000 1.000 0.000
0.810 0.231 0.900 0.357 1.000 0.000 0.667 0.000
10 5 10 3 10 0 10 0

12 × 2 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000
0.400 0.000 0.000 0.000 0.750 0.000 0.600 0.000
0.500 0.333 0.333 0.333 1.000 0.100 0.778 0.182
10 6 10 7 10 2 10 1

12 × 4 0.429 0.000 0.333 0.000 1.000 0.000 1.000 0.000
0.600 0.067 0.267 0.250 1.000 0.000 1.000 0.000
0.471 0.235 0.500 0.500 1.000 0.000 0.500 0.273
10 1 10 1 10 0 10 0

12 × 6 0.600 0.000 0.875 0.000 1.000 0.000 1.000 0.000
0.722 0.111 0.917 0.077 1.000 0.000 1.000 0.000
0.556 0.444 0.500 0.333 0.818 0.161 0.667 0.065
10 1 10 0 10 0 10 0

16 × 2 0.909 0.000 1.000 0.000 1.000 0.000 1.000 0.000
0.900 0.182 0.222 0.222 1.000 0.000 1.000 0.000
0.800 0.600 0.500 0.875 0.500 0.000 0.778 0.333
10 0 9 2 10 0 10 0

16 × 4 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
0.625 0.143 0.000 0.000 1.000 0.000 1.000 0.000
0.600 0.400 0.580 0.538 0.750 0.000 0.500 0.000
10 1 10 1 10 0 10 0



CMC, 2024, vol.81, no.1 855

Table 3: Results of all algorithms on metric C

Type C (D, C) C (C, D) C (D, N) C (N, D) C (D, M) C (M, D) C (D, A) C (A, D)

16 × 6 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
0.684 0.188 0.571 0.000 1.000 0.000 1.000 0.000
0.444 0.400 0.438 0.412 0.917 0.118 0.667 0.176
10 0 10 1 10 0 10 1

20 × 2 1.000 0.000 0.857 0.000 1.000 0.000 1.000 0.000
0.750 0.000 0.700 0.200 1.000 0.000 1.000 0.000
0.500 0.400 0.500 0.286 0.857 0.100 0.500 0.500
10 0 10 1 10 0 10 1

20 × 4 0.857 0.000 0.857 0.000 1.000 0.000 1.000 0.000
0.600 0.000 0.500 0.250 1.000 0.000 1.000 0.000
0.500 0.500 0.800 0.375 0.500 0.000 0.750 0.000
10 2 10 0 10 0 10 0

20 × 6 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
0.474 0.200 0.000 0.000 1.000 0.000 1.000 0.000
0.800 0.333 0.312 0.308 0.833 0.000 0.250 0.167
10 1 10 1 10 0 10 0

25 × 2 1.000 0.000 0.333 0.000 1.000 0.000 1.000 0.000
0.818 0.143 0.556 0.244 1.000 0.000 0.667 0.000
0.500 0.250 0.500 0.500 0.857 0.000 0.357 0.286
10 0 10 1 10 0 10 0

25 × 4 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
0.800 0.000 0.500 0.000 1.000 0.000 1.000 0.000
0.692 0.273 0.500 0.500 0.000 0.000 0.231 0.000
10 0 10 1 10 1 10 0

25 × 6 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
0.833 0.200 0.667 0.000 1.000 0.000 1.000 0.000
0.500 0.500 0.400 0.333 0.923 0.000 0.429 0.238
10 1 10 0 10 0 10 0

30 × 2 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
0.688 0.105 0.500 0.000 1.000 0.000 1.000 0.000
0.850 0.670 0.100 0.500 0.857 0.105 0.538 0.533
10 1 9 1 10 0 10 1



856 CMC, 2024, vol.81, no.1

Table 4: Results of all algorithms on metric C

Type C (D, C) C (C, D) C (D, N) C (N, D) C (D, M) C (M, D) C (D, A) C (A, D)

30 × 4 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
0.571 0.286 0.750 0.333 1.000 0.000 0.333 0.250
10 0 10 0 10 0 10 0

30 × 6 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
0.667 0.000 0.667 0.000 1.000 0.000 1.000 0.000
0.571 0.429 0.538 0.286 1.000 0.000 1.000 0.000
10 0 10 0 10 0 10 0

50 × 10 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
0.667 0.000 0.667 0.000 1.000 0.000 1.000 0.000
0.600 0.333 0.333 0.333 1.000 0.000 0.462 0.333
10 0 10 1 10 0 10 0

50 × 20 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
0.500 0.000 0.500 0.000 1.000 0.000 1.000 0.000
0.625 0.273 0.000 0.500 0.818 0.000 0.500 0.500
10 0 9 1 10 0 10 1

50 × 30 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
0.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
0.611 0.400 0.462 0.294 1.000 0.000 0.500 0.375
10 2 10 1 10 0 10 0

150 × 10 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
0.400 0.000 0.333 0.000 1.000 0.000 1.000 0.000
0.000 0.167 0.000 0.750 0.500 0.000 0.000 0.091
9 1 7 3 10 0 9 1

150 × 20 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
0.333 0.421 0.000 0.000 1.000 0.000 0.000 1.000
9 1 10 1 10 0 9 1

150 × 30 1.000 0.000 1.000 0.000 10.000 0.000 1.000 0.000
0.500 0.000 0.750 0.000 10.000 0.000 1.000 0.000
0.167 0.462 0.000 0.000 0.000 0.000 0.000 0.105
9 3 10 2 10 1 9 1



CMC, 2024, vol.81, no.1 857

Table 5: Results of all algorithms on metric C

Type C (D, C) C (C, D) C (D, N) C (N, D) C (D, M) C (M, D) C (D, A) C (A, D)

250 × 10 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
0.571 0.000 0.600 0.000 1.000 0.000 1.000 0.000
0.400 0.556 0.000 0.000 0.000 0.000 0.000 0.400
9 2 10 1 10 1 9 2

250 × 20 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
0.833 0.000 0.667 0.000 1.000 0.000 1.000 0.000
0.429 0.667 0.200 0.556 0.333 0.000 0.000 0.028
8 3 7 4 10 0 9 2

250 × 30 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
0.500 0.000 1.000 0.000 1.000 0.000 1.000 0.000
0.222 0.467 0.200 0.333 1.000 0.000 0.615 0.786
7 3 9 1 10 0 9 1

350 × 10 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
0.750 0.000 0.778 0.111 1.000 0.000 1.000 0.000
0.250 0.750 0.000 0.333 1.000 0.000 0.000 0.000
8 2 9 1 10 0 10 2

350 × 20 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
0.750 0.000 0.333 0.000 1.000 0.000 1.000 0.000
0.125 0.625 0.182 0.500 1.000 0.000 0.000 0.000
6 4 5 5 10 0 10 2

350 × 30 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
0.000 0.000 0.500 0.000 1.000 0.000 1.000 0.000
0.500 0.833 0.286 0.333 1.000 0.000 0.571 0.400
6 5 6 5 10 0 10 0

Table 6: Results of all algorithms on metric ρ

Type DABC CEA NICA MOHS ABC Instance DABC CEA NICA MOHS ABC

8 × 2 0.286 0.286 0.286 0.250 0.200 16 × 6 0.722 0.409 0.333 0.045 0.105
0.250 0.250 0.250 0.200 0.091 0.500 0.273 0.158 0.000 0.000
0.200 0.200 0.200 0.091 0.000 0.409 0.000 0.045 0.000 0.000
10,10 10 10 6 2 10,10 1 0 0 0

8 × 4 0.550 0.391 0.333 0.182 0.062 20 × 2 1.000 0.417 0.375 0.000 0.148
0.348 0.318 0.312 0.000 0.000 0.571 0.286 0.167 0.000 0.000
0.273 0.273 0.100 0.000 0.000 0.417 0.000 0.000 0.000 0.000
10,10 6 3 0 0 10,10 1 0 0 0

(Continued)



858 CMC, 2024, vol.81, no.1

Table 6 (continued)

Type DABC CEA NICA MOHS ABC Instance DABC CEA NICA MOHS ABC

8 × 6 0.750 0.476 0.333 0.000 0.048 20 × 4 0.692 0.400 0.286 0.000 0.400
0.375 0.364 0.250 0.000 0.000 0.615 0.222 0.154 0.000 0.000
0.333 0.200 0.000 0.000 0.000 0.381 0.000 0.000 0.000 0.000
10,10 5 1 0 0 10,10 0 0 0 1

12 × 2 0.500 0.393 0.333 0.250 0.214 20 × 6 1.000 0.400 0.333 0.000 0.097
0.333 0.250 0.250 0.000 0.111 0.556 0.258 0.182 0.000 0.000
0.214 0.214 0.059 0.000 0.000 0.444 0.000 0.000 0.000 0.000
10,10 6 5 2 1 10,10 0 0 0 0

12 × 4 0.647 0.375 0.273 0.000 0.083 25 × 2 1.000 0.333 0.300 0.000 0.286
0.529 0.267 0.133 0.000 0.000 0.556 0.312 0.167 0.000 0.000
0.364 0.206 0.071 0.000 0.000 0.333 0.000 0.000 0.000 0.000
10,10 1 0 0 0 10,10 1 0 0 0

12 × 6 0.686 0.385 0.250 0.029 0.000 25 × 4 1.000 0.400 0.400 0.000 0.200
0.556 0.333 0.111 0.000 0.000 0.700 0.222 0.200 0.000 0.000
0.385 0.250 0.000 0.000 0.000 0.400 0.000 0.000 0.000 0.000
10,10 1 0 0 0 10,10 0 0 0 0

16 × 2 0.800 0.500 0.500 0.111 0.143 25 × 6 0.800 0.400 0.333 0.000 0.250
0.556 0.231 0.214 0.000 0.000 0.650 0.091 0.067 0.000 0.000
0.333 0.000 0.000 0.000 0.000 0.360 0.000 0.000 0.000 0.000
10,10 1 0 0 0 10,10 0 0 0 0

16 × 4 1.000 0.364 0.333 0.000 0.111 30 × 2 1.000 0.444 0.333 0.000 0.250
1.000 0.364 0.333 0.000 0.111 1.000 0.444 0.333 0.000 0.250
0.333 0.000 0.000 0.000 0.000 0.417 0.000 0.000 0.000 0.000
10,10 1 0 0 0 10,10 1 0 0 0

Table 7: Results of all algorithms on metric ρ

Type DABC CEA NICA MOHS ABC Instance DABC CEA NICA MOHS ABC

30 × 4 1.000 0.333 0.444 0.000 0.167 150 × 30 1.000 0.273 0.364 0.000 0.250
0.556 0.111 0.222 0.000 0.000 0.577 0.154 0.250 0.000 0.000
0.444 0.000 0.000 0.000 0.000 0.250 0.000 0.000 0.000 0.000
10,10 0 1 0 0 10,10 1 2 0 1

30 × 6 0.800 0.500 0.500 0.000 0.000 250 × 10 1.000 0.500 0.357 0.000 0.100
0.500 0.333 0.200 0.000 0.000 0.500 0.000 0.154 0.000 0.000
0.400 0.000 0.000 0.000 0.000 0.214 0.000 0.000 0.000 0.000
10,10 1 2 0 0 10,8 3 1 0 0

50 × 10 0.714 0.500 0.400 0.000 0.286 250 × 20 1.000 0.667 0.333 0.000 0.333
0.667 0.167 0.286 0.000 0.000 0.600 0.171 0.059 0.000 0.000
0.286 0.000 0.000 0.000 0.000 0.188 0.000 0.000 0.000 0.000
10,10 1 0 1 1 10,8 2 2 0 2

(Continued)



CMC, 2024, vol.81, no.1 859

Table 7 (continued)

Type DABC CEA NICA MOHS ABC Instance DABC CEA NICA MOHS ABC

50 × 20 1.000 0.486 0.500 0.000 0.400 250 × 30 1.000 0.407 0.375 0.000 0.154
0.500 0.192 0.243 0.000 0.000 0.722 0.125 0.077 0.000 0.000
0.250 0.000 0.000 0.000 0.000 0.296 0.000 0.000 0.000 0.000
10,8 3 4 0 0 10,9 1 1 0 0

50 × 30 1.000 0.553 0.333 0.000 0.250 350 × 10 1.000 0.750 0.750 0.000 0.083
0.583 0.400 0.053 0.000 0.000 0.556 0.111 0.108 0.000 0.000
0.083 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
9,7 5 0 0 1 10,6 4 3 0 0

150 × 10 0.750 0.600 0.400 0.000 0.148 350 × 20 1.000 0.463 0.300 0.000 0.146
0.625 0.250 0.175 0.000 0.000 0.615 0.308 0.077 0.000 0.000
0.200 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
10,9 1 2 0 0 8,7 3 2 0 2

150
×
20

1.000 0.346 0.500 0.000 0.038 350 × 30 1.000 0.667 0.600 0.000 0.385
1.000 0.000 0.000 0.000 0.000 0.600 0.250 0.115 0.000 0.000
0.250 0.000 0.000 0.000 0.000 0.077 0.000 0.000 0.000 0.000
10,9 1 1 0 0 9,7 3 2 0 2

Table 8: Results of all algorithms on metric DIR

Type DABC CEA NICA MOHS ABC Instance DABC CEA NICA MOHS ABC

8 × 2 0.000 0.000 0.000 0.000 0.000 16 × 6 0.692 1.814 4.669 13.144 16.648
0.000 0.000 0.000 0.000 3.846 1.152 3.538 5.147 26.361 40.427
0.000 0.000 0.000 42.857 100.000 4.444 16.637 10.880 69.538 67.904
10,10 10 10 6 2 10,10 0 0 0 0

8 × 4 0.000 0.000 0.000 3.766 6.654 20 × 2 0.000 0.755 1.203 3.408 1.811
0.000 0.167 0.572 9.411 9.191 0.474 7.935 5.036 18.071 9.128
0.321 0.999 1.417 30.664 34.327 2.297 50.000 43.180 94.993 100.000
10,10 4 2 0 0 10,10 0 0 0 0

8 × 6 0.000 0.000 0.000 11.142 14.455 20 × 4 0.900 3.285 2.992 19.106 13.910
0.000 0.000 3.951 22.031 28.493 3.135 3.586 9.642 39.259 31.781
0.198 2.619 8.589 92.708 84.691 6.950 51.568 15.732 60.100 44.216
10,10 5 1 0 0 10,10 0 0 0 0

12 × 2 0.000 0.000 0.000 0.000 0.000 20 × 6 0.000 3.731 4.697 16.191 13.669
0.000 0.000 0.000 8.796 4.135 2.149 5.570 10.885 36.125 38.886
0.690 4.688 1.517 73.949 100.000 4.688 17.075 24.271 97.793 69.746
10,10 5 5 2 1 10,10 0 0 0 0

12 × 4 0.000 0.096 0.489 10.903 9.402 25 × 2 0.000 3.665 2.754 12.520 3.398
0.688 1.850 4.780 22.040 22.271 1.127 6.534 7.667 45.544 13.626
1.641 3.701 11.318 56.530 37.893 5.561 100.000 100.000 100.000 100.000
10,10 1 0 0 0 10,10 0 0 0 0

(Continued)



860 CMC, 2024, vol.81, no.1

Table 8 (continued)

Type DABC CEA NICA MOHS ABC Instance DABC CEA NICA MOHS ABC

12 × 6 0.000 0.000 1.737 9.992 18.410 25 × 4 0.000 6.657 1.215 32.039 25.712
0.787 3.535 9.426 22.824 34.006 2.768 20.957 15.231 58.581 55.415
3.119 9.156 19.697 60.749 84.707 7.135 94.664 93.887 100.000 100.000
10,10 1 0 0 0 10,10 0 0 0 0

16 × 2 0.228 0.429 0.657 6.583 2.310 25 × 6 0.000 2.743 3.121 14.836 13.859
2.990 5.416 3.720 13.469 11.005 1.605 9.131 10.827 76.045 75.346
29.537 41.479 41.776 55.219 42.501 4.835 18.484 55.152 98.989 88.533
10,9 1 0 0 0 10,10 0 0 0 0

16 × 4 0.000 0.000 2.784 29.208 20.496 30 × 2 0.000 1.537 3.318 10.886 2.907
1.086 5.178 6.996 39.978 41.635 0.777 21.111 23.611 34.565 12.180
2.976 19.988 13.023 94.391 61.735 5.557 62.865 50.000 96.825 72.055
10,10 1 0 0 0 10,10 0 0 0 0

Table 9: Results of all algorithms on metric DIR

Type DABC CEA NICA MOHS ABC Instance DABC CEA NICA MOHS ABC

30 × 4 0.000 4.078 9.050 20.873 12.064 150 × 30 0.000 3.147 1.818 33.880 22.208
2.778 22.912 29.358 40.732 55.556 0.371 21.324 10.409 73.530 52.304
7.843 100.000 47.900 91.081 100.000 14.916 68.540 55.243 97.673 100.000
10,10 0 0 0 0 10,9 1 0 0 0

30 × 6 0.855 3.125 2.595 28.402 21.317 250 × 10 0.000 3.631 4.444 38.044 30.896
3.852 12.425 15.976 83.571 61.155 1.498 12.070 10.196 86.830 90.751
8.897 58.935 30.844 97.913 83.508 38.541 89.377 98.177 99.780 99.237
10,10 0 0 0 0 10,7 3 3 0 0

50 × 10 0.000 6.373 1.899 40.233 26.576 250 × 20 0.000 4.809 5.845 48.209 41.680
3.630 18.084 16.317 70.903 53.464 0.524 23.026 14.444 89.536 93.734
24.515 31.599 47.880 98.895 99.434 33.232 95.257 97.190 97.930 99.700
10,10 0 0 0 0 10,9 1 1 0 0

50 × 20 0.000 4.856 3.696 22.677 30.675 250 × 30 0.000 0.000 0.000 52.845 27.228
2.206 8.892 13.516 61.503 55.940 0.233 22.886 18.901 84.399 77.308
6.178 98.308 92.308 100.000 100.000 38.460 68.485 63.845 98.585 100.000
10,10 0 0 0 0 10,7 3 3 0 0

50 × 30 0.000 0.000 5.420 22.854 25.063 350 × 10 0.000 3.469 4.549 43.642 35.814
1.145 15.143 15.545 66.273 80.504 1.049 11.522 8.607 86.296 95.444
25.644 100.000 78.571 98.730 100.000 58.968 73.077 96.254 99.267 99.037
10,9 1 1 0 0 10,6 4 3 0 0

150 × 10 0.786 6.443 4.808 38.625 47.939 350 × 20 0.000 0.000 3.398 60.513 44.489
5.818 18.276 8.589 70.293 77.728 2.099 19.703 38.876 83.983 95.917
37.183 47.245 33.333 93.330 99.688 100.000 92.726 59.979 99.409 99.494
10,9 1 1 0 0 9,8 2 2 1 1

(Continued)



CMC, 2024, vol.81, no.1 861

Table 9 (continued)

Type DABC CEA NICA MOHS ABC Instance DABC CEA NICA MOHS ABC

150 × 20 0.000 4.203 3.865 37.709 54.733 350 × 30 0.000 5.980 11.858 37.035 33.895
0.000 23.529 33.226 77.475 73.128 2.273 14.596 16.250 85.323 82.288
5.104 97.705 100.000 100.000 98.114 28.742 84.354 85.286 99.717 98.070
10,10 0 0 0 0 10,9 1 0 0 0

Figure 3: Distribution of non-dominated solutions of five algorithms

An effective way is applied to show results of five algorithms on 300 instances. In Tables 2–5,
for each type n × m, four groups of data are given, C (C, D) and C (D, C) are computed for each
instances, 10 C (C, D) are sorted in the ascending order, the first group is the smallest C (C, D) and its
corresponding C (D, C), the second is the fifth C (C, D) and its C (D, C), the third is the tenth C (C, D)

and its corresponding C (D, C), let α1 = α2 = 0, for C (C, D), C (D, C) of each instance of n × m, if
C (C, D) < C (D, C), then α1 = α1 + 1; if C (C, D) > C (D, C), then α2 = α2 + 1; if C (C, D) = C (D, C),
then α1 = α1 + 1, α2 = α2 + 1, the fourth group consists of α1, α2.

For type 16 × 6, 10 pairs of C (C, D), C (D, C) are listed below. (0.4, 0.6), (0.143, 0.824), (0.188,
0.684), (0.4, 0.444), (0, 0.125), (0, 0.857), (0.2, 0.333), (0, 1), (0.286, 0.7), (0.25, 0.273), obviously, α1 =
10, α2 = 0, which means that C (C, D) is less than C (D, C) on 10 instances.

The same way is used to decide four group for C (D, N) , C (N, D) and other columns, αi is defined
for the i − th column.

In Tables 6, 7, for each type n × m, 10 results are obtained and sorted in the descending order for
each algorithm, the first group of data is the smallest value, the second group is the fifth value and the
third group is the worst value, for each instance, a best value between DABC, ABC is decided, if ρ of
DABC is equal to the best value, α1 = α1 +1, if ρ of DABC is better than that of ABC, then α2 = α2 +1,
the first group is composed of α1, α2 for DABC, ABC. The way of α1 is used to decide α3, α4, α5, α6 for



862 CMC, 2024, vol.81, no.1

CEA, NICA, MOHS, ABC. Four groups of data for each type are decided for Tables 8, 9 in the same
way of Tables 6, 7, 10, DIR are sorted in the ascending order.

Table 10: Results to Wilcoxon-test

Wilcoxon-test C DIR ρ

Wilcoxon-test (DABC, CEA) 0.000 0.000 0.000
Wilcoxon-test (DABC, NICA) 0.000 0.000 0.000
Wilcoxon-test (DABC, MOHS) 0.000 0.000 0.000
Wilcoxon-test (DABC, ABC) 0.000 0.000 0.000

Table 10 gives the results of pair-sample Wilcoxon-test, in which Wilcoxon-test (A, B) means a
test conducted to judge whether Algorithm A gives a better sample mean than B and data on columns
2–4 are p-value. A significance level is 0.05. There is significant difference between A and B in the
statistical sense if the p-value is less than 0.05.

As shown in Tables 2–5, DABC obtains the smaller value of C (A, D) and C (D, A) on 294 instances,
ABC has the smaller value of C (A, D) and C (D, A) on 20 instances, and DABC generates smaller
C (A, D) than C (D, A) on 280 instances; moreover, C (D, A) is equal to 1 on at least 138 instances,
that is all solu-tions of ABC are dominated by non-dominated solutions of DABC on these instances.
DABC converge significantly better than ABC.

Tables 6, 7 show that ρ of DABC outperforms ABC on more than 280 instances, while ρ of ABC
is 0 on more than 177 instances, meaning ABC fails to contribute any members for the set Ω∗. Tables 8,
9 show that DABC obtains smaller DIR than ABC on most of instances. Table 10 and Fig. 3 also reveal
that performance differences between DABC and ABC are significant, obviously, the new strategies
have positive impact on the performance of DABC, so new strategies are effective.

Tables 2–5 show that DABC produces smaller C (C, D) than C (D, C) on 241 instances and obtains
C (D, C) of 1 on at least 31 instances. As shown in Tables 6 and 7, DABC outperforms CEA on 236
instances, with ρ greater than 0.6 on at least 71 instances, that is, members of reference set Ω∗ are mainly
produced by DABC. DABC also performs better than CEA on metric DIR because DABC gets better
DIR than CEA on 260 instances. The above analyses reveal that DABC provides better results than
CEA. Table 10 shows that the performance different between DABC and CEA are significant in the
statistical sense. It can be found from Fig. 3 that the obtained non-dominated solutions can dominate
most of solutions of other algorithms, thus, DABC performs better than CEA.

As listed in Tables 2–5, DABC has smaller C (N, D) than C (D, N) on more than 80% instances,
DABC gets bigger ρ than NICA on more than 250 instances, and obtains better DIR than NICA on
270 instances. There are notable performance differences between DABC and NICA; moreover, these
differences also can be found in Table 10 and Fig. 3. On the other hand, DABC performs better than
MOHS. C (D, M) is 1 on more than 190 instances and C (M, D) is 0 on 280 instances, that is, non-
dominated solutions of DABC do not dominate by any solutions of MOHS. The notable convergence
differences also can be seen from Fig. 3. ρ of MOHS is 0 on 276 instances and MOHS cannot provide
any members of Ω∗. Tables 8, 9 show the performance differences between DABC and MOHS on
metric DIR. The statistical results in Table 10 also reveals that the performance differences between
DABC, MOHS are significant.



CMC, 2024, vol.81, no.1 863

The above analyses reveal that DABC performs better than MOHS, NICA and CEA. In DABC,
three dynamical adjustment strategies are implemented, which are computing resource shifting,
feedback and solution migration. Computing resource shifting can lead to extensive usage of non-
dominated solutions, solution migration can increase the diversity of employed bee swarms and
feedback based on four operators can result in the dynamical adjustment of the search operators
according to search behavior. These strategies can effectively extend exploration ability, keep a high
diversity of population and lead to a low possibility of falling local optima, thus, DABC is a promising
method for energy-efficient UPMSP with additional resources and PM.

5 Conclusions

Additional resources, maintenance and energy are often considered in UPMSP; however, the
existing researches seldom deal with these three things together in UPMSP. In this study, energy-
efficient UPMSP with additional resources and PM is addressed, and a new algorithm called DABC is
proposed to minimize makespan and total energy consumption. In DABC, some dynamical optimiza-
tion mechanisms are implemented. The dynamic employed bee phase involves computing resource
shifting and solution migration. The dynamical onlooker bee phase is applied by computing resource
shifting and feedback. Extensive experiments are conducted on 300 instances. The computational
results show that the new strategies such as the dynamical employed bee phase are effective and DABC
can provide better results than its comparative algorithms.

UPMSP with several real-life conditions and constraints has attracted some attention. We will
focus on UPMSP by involving additional resources, machine eligibility, and SDST, addressing these
problems through meta-heuristics combined with new optimization mechanisms such as reinforcement
learning and competition among sub-populations. We also handle distributed hybrid flow shop
scheduling problems with some practical constraints in the near future. Additionally, distributed
assembly scheduling problems involving transportation will be among our future research topics.

Acknowledgement: The authors would like to thank the editors and reviewers for their valuable work,
as well as the supervisor and family for their valuable support during the research process.

Funding Statement: This research was funded by the National Natural Science Foundation of China
(grant number 61573264).

Author Contributions: The authors confirm contribution to the paper as follows: study conception and
design: Deming Lei, Shaosi He; data collection: Yizhuo Zhu; analysis and interpretation of results:
Deming Lei, Shaosi He, Yizhuo Zhu; draft manuscript preparation: Deming Lei, Yizhuo Zhu, Shaosi
He. All authors reviewed the results and approved the final version of the manuscript.

Availability of Data and Materials: Data supporting this study are described in the first paragraph of
Section 4.1.

Ethics Approval: Not applicable.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.



864 CMC, 2024, vol.81, no.1

References
[1] T. C. E. Cheng and C. C. S. Sin, “A state-of-the-art review of parallel-machine scheduling research,” Eur.

J. Oper. Res., vol. 47, no. 3, pp. 271–292, 1990. doi: 10.1016/0377-2217(90)90215-W.
[2] E. Mokotoff, “Parallel machine scheduling problems: A survey,” Asia-Pacific. J. Oper. Res., vol. 18, pp.

193–242, 2011.
[3] B. Shahidi-Zadeh, R. Tavakkoli-Moghaddam, A. Taheri-Moghadam, and I. Rastgar, “Solving a bi-

objective unrelated parallel batch processing machines scheduling problem: A comparison study,” Comput.
Oper. Res., vol. 88, no. 6, pp. 71–90, 2017. doi: 10.1016/j.cor.2017.06.019.

[4] C. Wang, X. Li, and Y. Gao, “A novel collaborative evolutionary algorithm with two-population for multi-
objective flexible job shop scheduling,” Comput. Model. Eng. Sci., vol. 137, no. 2, pp. 1849–1870, 2023. doi:
10.32604/cmes.2023.028098.

[5] L. Wang and Y. Qi, “Scheduling an energy-aware parallel machine system with deteriorating and learning
effects considering multiple optimization objectives and stochastic processing time,” Comput. Model. Eng.
Sci., vol. 135, no. 1, pp. 325–339, 2023. doi: 10.32604/cmes.2022.019730.

[6] J. A. Ventura and D. Kim, “Parallel machine scheduling with earliness-tardiness penalties and
additional resource constraints,” Comput. Oper. Res., vol. 30, no. 13, pp. 1945–1958, 2003. doi:
10.1016/S0305-0548(02)00118-1.

[7] X. L. Zheng and L. Wang, “A two-stage adaptive fruit fly optimization algorithm for unrelated parallel
machine scheduling problem with additional resource constraints,” Expert. Syst. Appl., vol. 65, no. 9–12,
pp. 28–39, 2016. doi: 10.1016/j.eswa.2016.08.039.

[8] L. Fanjul-Peyro, F. Perea, and R. Ruiz, “Models and matheuristics for the unrelated parallel machine
scheduling problem with additional resources,” Eur. J. Oper. Res., vol. 260, no. 2, pp. 482–493, 2017. doi:
10.1016/j.ejor.2017.01.002.

[9] K. Fleszar and K. S. Hindi, “Algorithms for the unrelated parallel machine scheduling problem with a
resource constraint,” Eur. J. Oper. Res., vol. 271, no. 3, pp. 839–848, 2018. doi: 10.1016/j.ejor.2018.05.056.

[10] X. L. Zheng and L. Wang, “A collaborative multiobjective fruit fly optimization algorithm for the resource
constrained unrelated parallel machine green scheduling problem,” IEEE Trans. Syst. Man Cyber. Syst.,
vol. 48, no. 5, pp. 790–800, 2018. doi: 10.1109/TSMC.2016.2616347.

[11] F. Villa, E. Vallada, and L. Fanjul-Peyro, “Heuristic algorithms for the unrelated parallel machine
scheduling problem with one scarce additional resource,” Expert. Syst. Appl., vol. 93, pp. 28–38, 2018.
doi: 10.1016/j.eswa.2017.09.054.

[12] M. Afzalirad and M. Shafipour, “Design of an efficient genetic algorithm for resource-constrained
unrelated parallel machine scheduling with machine eligibility restrictions,” J. Intell. Manuf., vol. 29, no. 2,
pp. 423–437, 2018. doi: 10.1007/s10845-015-1117-6.

[13] E. Vallada, F. Villa, and L. Fanjul-Peyro, “Enriched metaheuristics for the resource unrelated parallel
machine scheduling problem,” Comput.Oper. Res., vol. 111, pp. 415–424, 2019.

[14] I. M. Al-Harkan and A. A. Qamhan, “Optimize unrelated parallel machine scheduling problems with
multiple limited additional resources, sequence-dependent setup times and release date constraints,” IEEE
Access, vol. 7, pp. 171533–171547, 2019. doi: 10.1109/ACCESS.2019.2955975.

[15] L. Fanjul-Peyro, “Models and an exact method for the unrelated parallel machine scheduling problem with
setups and resources,” Expert Syst. Appl. X , vol. 5, 2020, Art. no. 100022.

[16] A. Lopez-Esteve, F. Perea, and J. C. Yepes-Borrero, “GRASP algorithm for the unrelated parallel machines
scheduling problem with additional resources during processing and setups,” Int. J. Prod. Res., vol. 61, no.
17, pp. 6013–6029, 2023. doi: 10.1080/00207543.2022.2121869.

[17] Y. Pinar and T. Y. Seyda, “Constraint programming approach for multiresource-constrained unrelated
parallel machine scheduling problem with sequence-dependent setup times,” Int. J. Prod. Res., vol. 60, no.
7, pp. 2212–2229, 2022. doi: 10.1080/00207543.2021.1885068.

[18] D. L. Yang, T. C. E. Cheng, S. J. Yang, and C. J. Hsu, “Unrelated parallel machine scheduling with aging
effects and multi-maintenance activities,” Comput. Oper. Res., vol. 39, no. 7, pp. 1458–1464, 2012. doi:
10.1016/j.cor.2011.08.017.

https://doi.org/10.1016/0377-2217(90)90215-W
https://doi.org/10.1016/j.cor.2017.06.019
https://doi.org/10.32604/cmes.2023.028098
https://doi.org/10.32604/cmes.2022.019730
https://doi.org/10.1016/S0305-0548(02)00118-1
https://doi.org/10.1016/j.eswa.2016.08.039
https://doi.org/10.1016/j.ejor.2017.01.002
https://doi.org/10.1016/j.ejor.2018.05.056
https://doi.org/10.1109/TSMC.2016.2616347
https://doi.org/10.1016/j.eswa.2017.09.054
https://doi.org/10.1007/s10845-015-1117-6
https://doi.org/10.1109/ACCESS.2019.2955975
https://doi.org/10.1080/00207543.2022.2121869
https://doi.org/10.1080/00207543.2021.1885068
https://doi.org/10.1016/j.cor.2011.08.017


CMC, 2024, vol.81, no.1 865

[19] S. J. Wang and M. Liu, “Multi-objective optimization of parallel machine scheduling integrated with
multi-resources preventive maintenance planning,” J. Manuf. Syst., vol. 37, no. 7, pp. 182–192, 2015. doi:
10.1016/j.jmsy.2015.07.002.

[20] A. Gara-Ali, G. Finke, and G. Espinouse, “Parallel-machine scheduling with maintenance: Praising the
assignment problem,” Eur. J. Oper. Res., vol. 252, no. 1, pp. 90–97, 2016. doi: 10.1016/j.ejor.2015.12.047.

[21] O. Avalos-Rosales, F. Angel-Bello, A. lvarez, and Y. Cardona-Valds, “Including preventive maintenance
activities in an unrelated parallel machine environment with dependent setup times,” Comput. Ind. Eng.,
vol. 123, pp. 364–377, 2018. doi: 10.1016/j.cie.2018.07.006.

[22] M. Wang and G. H. Pan, “A novel imperialist competitive algorithm with multi-elite individuals guidance
for multi-object unrelated parallel machine scheduling problem,” IEEE Access, vol. 7, pp. 121223–121235,
2019. doi: 10.1109/ACCESS.2019.2937747.

[23] D. M. Lei and T. Yi, “A novel shuffled frog-leaping algorithm for unrelated parallel machine scheduling
with deteriorating maintenance and setup time,” Symmetry, vol. 13, no. 9, 2021, Art. no. 1574. doi:
10.3390/sym13091574.

[24] J. H. Pang, Y. C. Tsai, and F. D. Chou, “Feature-extraction-based iterated algorithm to solve the unrelated
parallel machine problem with periodic maintenance activities,” IEEE Access, vol. 9, pp. 139089–139108,
2021. doi: 10.1109/ACCESS.2021.3118986.

[25] D. M. Lei and M. Y. Liu, “An artificial bee colony with division for distributed unrelated parallel machine
scheduling with preventive maintenance,” Comput. Ind. Eng., vol. 141, no. 6, 2020, Art. no. 106320. doi:
10.1016/j.cie.2020.106320.

[26] D. M. Lei and S. S. He, “An adaptive artificial bee colony for unrelated parallel machine scheduling with
additional resource and maintenance,” Expert. Syst. Appl., vol. 205, no. 2, 2022, Art. no. 117577. doi:
10.1016/j.eswa.2022.117577.

[27] A. Che, S. B. H. Zhang, and X. Q. Wu, “Energy-conscious unrelated parallel machine schedul-
ing under time-of-use electricity tariffs,” J. Clean. Prod., vol. 156, no. 2, pp. 688–697, 2017. doi:
10.1016/j.jclepro.2017.04.018.

[28] L. P. Cota, V. N. Coelho, F. G. Guimaraes, and M. J. F. Souza, “Bi-criteria formulation for green scheduling
with unrelated parallel machines with sequence-dependent setup times,” Int. Trans. Oper. Res., vol. 28, no.
2, pp. 996–1017, 2021. doi: 10.1111/itor.12566.

[29] J. B. Abikarram, K. McConky, and R. Proano, “Energy cost minimization for unrelated parallel machine
scheduling under real time and demand charge pricing,” J. Clean. Prod., vol. 208, no. 1, pp. 232–242, 2019.
doi: 10.1016/j.jclepro.2018.10.048.

[30] L. K. Zhang, Q. W. Deng, G. L. Gong, and W. W. Han, “A new unrelated parallel machine scheduling
problem with tool changes to minimise the total energy consumption,” Int. J. Prod. Res., vol. 58, no. 22,
pp. 6826–6845, 2020. doi: 10.1080/00207543.2019.1685708.

[31] Z. Wang and T. Y. Liu, “A novel multi-objective scheduling method for energy based unrelated paral-
lel machines with auxiliary resource constraints,” IEEE Access, vol. 7, pp. 168688–168699, 2019. doi:
10.1109/ACCESS.2019.2954601.

[32] H. Saberi-Aliabad, M. Reisi-Nafchi, and G. Moslehi, “Energy-efficient scheduling in an unrelated parallel-
machine environment under time-of-use electricity tariffs,” J. Clean. Prod., vol. 249, no. 2, 2020, Art. no.
119393. doi: 10.1016/j.jclepro.2019.119393.

[33] Z. Pei, M. Z. Wan, Z. Z. Jiang, Z. T. Wang, and X. Dai, “An approximation algorithm for unrelated parallel
machine scheduling under TOU electricity tariffs,” IEEE Trans. Auto. Sci. Eng., vol. 18, no. 2, pp. 743–756,
2020. doi: 10.1109/TASE.2020.2995078.

[34] L. K. Zhang, Q. W. Deng, R. H. Lin, G. L. Gong, and W. W. Han, “A combinatorial evolutionary algorithm
for unrelated parallel machine scheduling problem with sequence and machine-dependent setup times,
limited worker resources and learning effect,” Expert. Syst. Appl., vol. 175, 2021, Art. no. 114843. doi:
10.1016/j.eswa.2021.114843.

https://doi.org/10.1016/j.jmsy.2015.07.002
https://doi.org/10.1016/j.ejor.2015.12.047
https://doi.org/10.1016/j.cie.2018.07.006
https://doi.org/10.1109/ACCESS.2019.2937747
https://doi.org/10.3390/sym13091574
https://doi.org/10.1109/ACCESS.2021.3118986
https://doi.org/10.1016/j.cie.2020.106320
https://doi.org/10.1016/j.eswa.2022.117577
https://doi.org/10.1016/j.jclepro.2017.04.018
https://doi.org/10.1111/itor.12566
https://doi.org/10.1016/j.jclepro.2018.10.048
https://doi.org/10.1080/00207543.2019.1685708
https://doi.org/10.1109/ACCESS.2019.2954601
https://doi.org/10.1016/j.jclepro.2019.119393
https://doi.org/10.1109/TASE.2020.2995078
https://doi.org/10.1016/j.eswa.2021.114843


866 CMC, 2024, vol.81, no.1

[35] J. Q. Li, Q. K. Pan, and K. Z. Gao, “Pareto-based discrete artificial bee colony algorithm for multi-objective
flexible job shop scheduling problem,” Int. J. Adv. Manuf. Techno., vol. 55, no. 9-12, pp. 1159–1169, 2011.
doi: 10.1007/s00170-010-3140-2.

[36] K. C. Ying and S. W. Lin, “Unrelated parallel machine scheduling with sequence and machine-dependent
setup times and due date constraints,” Int. J. Innov. Comput., vol. 8, pp. 3279–3297, 2012.

[37] K. C. Ying and S. W. Lin, “ABC-based manufacturing scheduling for unrelated parallel machines with
machine-dependent and job sequence-dependent setup times,” Comput. Oper. Res., vol. 51, no. 5, pp. 172–
181, 2014. doi: 10.1016/j.cor.2014.05.013.

[38] E. Caniyilmaz, B. Benli, and M. S. Ilkay, “An artificial bee colony algorithm approach for unrelated parallel
machine scheduling with processing set restrictions, job sequence-dependent setup times, and due date,” Int.
J. Adv. Manuf. Technol., vol. 77, no. 9–12, pp. 2105–2115, 2015. doi: 10.1007/s00170-014-6614-9.

[39] S. J. Lu, X. B. Liu, J. Pei, M. T. Thai, and P. M. Pardalos, “A hybrid ABC-TS algorithm for the unrelated
parallel-batching machines scheduling problem with deteriorating jobs and maintenance activity,” Appl.
Soft Comput., vol. 66, no. 2, pp. 168–182, 2018. doi: 10.1016/j.asoc.2018.02.018.

[40] D. M. Lei, Y. Yuan, and J. C. Cai, “An improved artificial bee colony for multi-objective distributed
unrelated parallel machine scheduling,” Int. J. Prod. Res., vol. 59, no. 17, pp. 5259–5271, 2020. doi:
10.1080/00207543.2020.1775911.

[41] J. Q. Li and Y. Q. Han, “A hybrid multi-objective artificial bee colony algorithm for flexible task
scheduling problems in cloud computing system,” Cluster Comput., vol. 23, no. 4, pp. 2483–2499, 2020.
doi: 10.1007/s10586-019-03022-z.

[42] T. Meng and Q. K. Pan, “A distributed heterogeneous permutation flowshop scheduling problem with lot-
streaming and carryover sequence-dependent setup time,” Swarm Evol. Comput., vol. 60, no. 9, 2021, Art.
no. 100804. doi: 10.1016/j.swevo.2020.100804.

[43] D. W. Gong, Y. Y. Han, and J. Y. Sun, “A novel hybrid multi-objective artificial bee colony algorithm for
blocking lot-streaming flow shop scheduling problems,” Knowl-Based Syst., vol. 148, pp. 115–130, 2018.

[44] J. Wang, D. M. Lei, and J. C. Cai, “An adaptive artificial bee colony with reinforcement learning for
distributed three-stage assembly scheduling with maintenance,” Appl. Soft Comput., vol. 117, no. 2, 2022,
Art. no. 108371. doi: 10.1016/j.asoc.2021.108371.

[45] J. Wang, H. T. Tang, and D. M. Lei, “A feedback-based artificial bee colony algorithm for energy-efficient
flexible flow shop scheduling problem with batch processing machines,” Appl. Soft Comput., vol. 153, no.
1, 2024, Art. no. 111254. doi: 10.1016/j.asoc.2024.111254.

[46] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm:
NSGA-II,” IEEE Trans. Evolu. Comput., vol. 6, no. 2, pp. 182–197, 2002. doi: 10.1109/4235.996017.

[47] E. Zitzler and L. Thiele, “Multi-objective evolutionary algorithms: A comparative case study and
the strength Pareto approach,” IEEE Trans. Evolu. Comput., vol. 3, no. 4, pp. 257–271, 1999. doi:
10.1109/4235.797969.

[48] D. M. Lei, “Pareto archive particle swarm optimization for multi-objective fuzzy job shop scheduling
problems,” Int. J. Adv. Manuf. Tech., vol. 37, no. 1–2, pp. 157–165, 2008. doi: 10.1007/s00170-007-0945-8.

[49] J. D. Knowles and D. W. Corne, “On metrics for comparing nondominated sets,” in Proc. ICAIS, New
York, NY, USA, 2002, pp. 711–716.

https://doi.org/10.1007/s00170-010-3140-2
https://doi.org/10.1016/j.cor.2014.05.013
https://doi.org/10.1007/s00170-014-6614-9
https://doi.org/10.1016/j.asoc.2018.02.018
https://doi.org/10.1080/00207543.2020.1775911
https://doi.org/10.1007/s10586-019-03022-z
https://doi.org/10.1016/j.swevo.2020.100804
https://doi.org/10.1016/j.asoc.2021.108371
https://doi.org/10.1016/j.asoc.2024.111254
https://doi.org/10.1109/4235.996017
https://doi.org/10.1109/4235.797969
https://doi.org/10.1007/s00170-007-0945-8

	Dynamical Artificial Bee Colony for Energy-Efficient Unrelated Parallel Machine Scheduling with Additional Resources and Maintenance
	1 Introduction
	2 Problem Description
	3 DABC for Energy-Efficient UPMSP with Additional Resource and PM
	4 Computational Experiments
	5 Conclusions
	References


