
Copyright © 2024 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

echT PressScience

DOI: 10.32604/cmc.2024.054372

ARTICLE

Research on IPFS Image Copyright Protection Method Based on Blockchain

Xin Cong, Lanjin Feng* and Lingling Zi

College of Computer and Information Science, Chongqing Normal University, Chongqing, 401331, China

*Corresponding Author: Lanjin Feng. Email: 2022210516044@stu.cqnu.edu.cn

Received: 26 May 2024 Accepted: 20 August 2024 Published: 15 October 2024

ABSTRACT

In the digital information age, distributed file storage technologies like the InterPlanetary File System (IPFS) have
gained considerable traction as a means of storing and disseminating media content. Despite the advantages of
decentralized storage, the proliferation of decentralized technologies has highlighted the need to address the issue
of file ownership. The aim of this paper is to address the critical issues of source verification and digital copyright
protection for IPFS image files. To this end, an innovative approach is proposed that integrates blockchain, digital
signature, and blind watermarking. Blockchain technology functions as a decentralized and tamper-resistant ledger,
recording and verifying the source information of files, thereby establishing credible evidence of file origin. A
digital signature serves to authenticate the identity and integrity of the individual responsible for uploading the
file, ensuring data security. Furthermore, blind watermarking is employed to embed invisible information within
images, thereby safeguarding digital copyrights and enabling file traceability. To further optimize the efficiency of
file retrieval within IPFS, a dual-layer Distributed Hash Table (DHT) indexing structure is proposed. This structure
divides file index information into a global index layer and a local index layer, significantly reducing retrieval
time and network overhead. The feasibility of the proposed approach is demonstrated through practical examples,
providing an effective solution to the copyright protection issues associated with IPFS image files.

KEYWORDS
Blockchain; copyright protection; IPFS; distributed hash table; digital signature

1 Introduction

The digital age has seen an explosive growth of information, driven by the widespread adoption
of technologies like big data, the Internet of Things (IoT), and cloud computing. In this context,
distributed file storage systems have emerged as one of the key technologies for handling massive
data. These systems segment large files into smaller chunks, storing them across multiple network
nodes, thus facilitating efficient file transmission and sharing. The InterPlanetary File System (IPFS)
[1], a representative distributed file storage system, addresses a series of issues inherent in traditional
centralized storage systems, such as poor transparency and low security, through decentralization and
content addressing. However, with the widespread adoption of IPFS, determining file ownership has
become a significant issue [2]. Although IPFS locates files using hash values, it lacks a mechanism
to ensure file authenticity and ownership, posing risks for file theft, misinformation, and copyright

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2024.054372
https://www.techscience.com/doi/10.32604/cmc.2024.054372
mailto:2022210516044@stu.cqnu.edu.cn


664 CMC, 2024, vol.81, no.1

disputes. Additionally, IPFS divides the file into multiple data chunks, storing them on different nodes
based on the Merkle Directed Acyclic Graph (Merkle DAG) structure. When retrieving a file, it must
fetch data chunks from multiple nodes via the Distributed Hash Table (DHT), leading to increased
query time and network latency. This limitation poses challenges to file retrieval efficiency, resulting
in slower file access for users.

This study aims to address the challenges associated with copyright protection for IPFS image files
and to enhance the efficiency of file retrieval. By leveraging the technical features of blockchain, com-
bined with digital signature [3] and blind watermarking [4], a comprehensive solution is constructed
to ensure the genuine ownership and copyright traceability of IPFS image files. Furthermore, a dual-
layer DHT indexing structure is proposed to enhance file retrieval efficiency. Traditional double-layer
indexing structures typically group the Content Identifiers (CIDs) of similar files into an index file,
which is then upload this file to IPFS to obtain its CID, forming a double-layer index. In contrast, the
dual-layer DHT indexing proposed in this study is based on a DHT design, comprising a global DHT
and a local DHT. In this structure, the global index layer is responsible for storing mappings of file
hash to root node position, while the local index layer stores mappings of sub-chunk hash to chunk
node position. This layered indexing effectively reduces the number of queries in the Distributed Hash
Table, thereby making file retrieval and acquisition more efficient.

The contributions and main works of this paper are summarized as follows:

(1) To improve file retrieval efficiency in IPFS, the traditional distributed hash table structure
is enhanced by introducing an additional local index layer. This modification speeds up data chunk
retrieval and location, resulting in a 33% increase in retrieval efficiency.

(2) A blockchain-based framework for file source verification is implemented. The blockchain is
used to record source information and provide credible transaction records for verifying file origins.
Smart contract methods are designed to verify the identity of file uploaders and ensure transparency
of file ownership.

(3) A solution for file copyright protection and traceability is devised by integrating blockchain,
digital signature, and blind watermarking. The solution ensures the authenticity of the file uploader’s
identity and confirms digital copyright.

The rest of the paper is organized as follows: Related work materials are discussed in Section 2.
The implementation method of the dual-layer DHT indexing structure is described in Section 3. In
Section 4, a blockchain-based IPFS image file copyright protection scheme is designed. In Section 5,
the dual-layer DHT indexing structure method and copyright protection scheme are evaluated and
compared with existing methods. Finally, conclusions are drawn in Section 6.

2 Related Work
2.1 IPFS

IPFS is a distributed file storage network made up of multiple autonomous nodes. When a file is
uploaded to IPFS, it is partitioned into chunks, with each chunk assigned a unique identifier called a
Context Identifier (CID). These CIDs are organized into a Merkle DAG, where each node contains
the hash of one or more chunks and a link to its child nodes [5]. After dividing a file into chunks and
forming a Merkle DAG, it registers itself as a provider of chunks through the DHT. Node discovery,
connection, and data transfer are all managed through DHT. This allows IPFS nodes to request
providers through DHT and connect with them to retrieve files [6].



CMC, 2024, vol.81, no.1 665

The DHT of IPFS employs the Kademlia algorithm [7] for network routing and location requests.
When a node joins the IPFS network, it is assigned a 160-bit identifier called NodeId. The distance d
between two nodes is defined as the Exclusive OR (XOR) of the two NodeId (⊕ is the XOR operation),
denoted as:

d (Node 1, Node 2) = NodeID1 ⊕ NodeID2 (1)

Each node locally maintains a routing table, which consists of 160 K-buckets. Each K-bucket
contains K routing entries of other nodes, represented in the form of < NodeId, address >. When
discovering a new node, the local node Nodelocal places it in different K-buckets based on the distance
between the new node and itself. In the ith K-bucket, nodes within the range [2i, 2i + 1) are stored.
When a node Nodelocal receives a lookup message for a target identifier NodeIdtarget from a target
node Nodetarget, it calculates the distance between itself and the target node, d

(
Nodelocal, Nodetarget

)
, and

forwards the message to the α closest nodes in the corresponding K-bucket, where α is the message
parallelism. According to the construction rule of K-buckets, the next hop node Nodenext and the target
node Nodetarget satisfy d

(
Nodenext, Nodetarget

) ≤ d
(
Nodelocal, Nodetarget

)
/2, ensuring that the message can

be forwarded from any node to the target node within logN hops. Additionally, increasing the message
parallelism α can increase the number of neighbor nodes selected when nodes transmit messages,
thereby improving the success rate and efficiency of queries.

2.2 Blockchain-Based Image Copyright Protection

Blockchain technology is widely applied to digital content copyright protection due to its decen-
tralization, tamper-resistance, traceability, and other advantages [8,9]. Ning et al. [10] implemented
an image transaction system using blockchain and IPFS technology, ensuring data accessibility.
Muwafaq et al. [11] designed an image copyright management framework combining blockchain and
perceptual hash technology to achieve third-party-free distribution of copyrighted works, protecting
copyright owners. Kumar et al. [12] proposed a copyright protection system based on IPFS and
blockchain to enhance the security of industrial image and video data. Zhang et al. [13] proposed a dig-
ital image copyright protection method based on blockchain and zero-trust mechanism, ensuring that
only authorized users can access and use the image, thereby protecting its copyright. Meng et al. [14]
proposed a copyright management method combining digital watermarking, blockchain, perceptual
hashing, and other technologies to enhance the effectiveness of digital watermarking in copyright
protection. Wang et al. [15] proposed a secure image copyright protection framework based on
blockchain, which solves the data expansion problem of blockchain through IPFS, and improves the
zero-watermark algorithm to realize the copyright traceability of images. Chen et al. [16] proposed
a zero-watermark image protection framework based on blockchain, which adopts IPFS to solve the
problem of efficient storage and sharing of large files on blockchain, and realizes the management and
transaction of copyright information through smart contracts.

Although a variety of technologies and methods have emerged for digital content copyright
protection, existing research has mainly targeted the traditional Internet environment. The issues of
image file ownership and copyright protection in distributed file systems such as IPFS have not been
adequately addressed. In this paper, we introduce the digital signature technique [17], which generates
and verifies the file uploader’s digital signature, using a key pair linked to the user’s identity. This
process ensures the file’s integrity and verifies the uploader’s identity.



666 CMC, 2024, vol.81, no.1

2.3 IPFS Performance Optimization

As a distributed file system, IPFS faces significant challenges in terms of file retrieval efficiency
[18]. Researchers in the field of distributed systems have been continuously conducting diverse studies
to optimize data storage and retrieval performance. Zhu et al. [19] applied distributed B (balance)+
Tree and HashMap structures to distributed storage systems to enable keyword search. The B+
Tree structure optimizes disk access, making it suitable for block access in decentralized storage
systems. The HashMap, optimized for fast lookups, complements the B+ Tree by efficiently handling
index data. They also implemented an index merging algorithm to lower network costs and reduce
response time. However, with the increase of data volume and network traffic, distributed B+ Tree
and HashMap will cause network congestion. Cao et al. [20] proposed a double-layer inverted indexing
structure to enhance keyword search efficiency and accuracy. The first layer offers a high-level overview
of data locations, while the second layer contains detailed information about the data chunks. This
hierarchical structure quickly narrows the search area before detailed searching, optimizing both
search speed and accuracy. While effective for smaller datasets, the double-layer structure may face
scalability issues as the size of the data grows. Khudhur et al. [21] designed a decentralized search
engine, the core idea of which is to store the association between keywords and CID in the DHT used
by IPFS. They employed result caching to speed up the processing of partially repeated queries, and a
variant of the Bloom filter to quickly check the availability of the cache, thereby reducing bandwidth
usage and query latency. While caching improves performance, it may be less effective for entirely
new or infrequently accessed queries, potentially limiting its effectiveness in dynamic environments.
Yao et al. [22] constructed a peer-to-peer cross-cluster data query system based on IPFS, which
includes theoretical modeling of DHT query latency and introduces a Fat Merkle Tree structure. They
designed a DHT caching mechanism to reduce query latency, aiming to enhance the cross-cluster
data retrieval performance. However, the theoretical modeling and Fat Merkle Tree structure add
complexity, potentially making the system harder to implement and maintain.

To overcome the limitations of existing approaches, this paper proposes a dual-layer DHT
indexing structure. This structure provides basic location information for files within the global DHT
and stores detailed index information for file chunks in the local DHT, thus enhancing the efficiency
of IPFS file retrieval.

3 Dual-Layer DHT Indexing Structure Design

In IPFS, all file chunks are organized into a Merkle DAG. The root hash and its corresponding
child hashes are stored in IPFS nodes that can be located through the DHT. The leaf hashes of the
Merkle DAG represent the hash values of the individual data chunk. Suppose a node (referred to
as the requesting node) needs to access a specific file in IPFS, it calculates the distance between the
root hash and its node hash through the DHT to locate the IPFS node that stores the root hash
information. As shown in Fig. 1, the requesting node obtains the child hash information from the
root hash, and then retrieves the leaf hash information. Finally queries the DHT based on the leaf
hash to find the specific location of each chunk and reconstruct the entire file. This indicates that for
large files, IPFS requires multiple DHT accesses to obtain the complete file. The key effort in the design
of the dual-layer DHT indexing structure is to reduce DHT accesses to improve the efficiency of IPFS
network queries.



CMC, 2024, vol.81, no.1 667

Figure 1: IPFS gets the hash of the data chunk

3.1 Scheme Design

This paper introduces an additional index layer, dividing the DHT structure into a global DHT
and a local DHT. The global DHT functions similarly to the traditional DHT, storing the mapping
between file CID and provider nodes, while the local DHT only stores the mapping between chunk
CIDs and their corresponding location information. The file retrieval process is as follows:

(1) Obtaining chunk CIDs: A node needing to retrieve a file first queries the global DHT for the
provider node corresponding to the file CID, then obtains the Merkle DAG structure of the file and
its chunk CIDs from the provider node, as shown in Fig. 2.

Figure 2: Global DHT gets the chunk hash

(2) Chunk location query: The node uses the obtained chunk CIDs to query the local DHT where
the chunk CIDs are stored. Since the local DHT contains the mapping information between chunk
CIDs and their storage locations, it directly returns the location information (IP (Internet Protocol)
address) of the chunks.

(3) Data retrieval: Once the node has obtained the storage locations of the data chunks, it can
quickly locate the nodes storing these chunks and download them. After all data chunks are acquired,
the file is reconstructed according to the Merkle DAG structure, as shown in Fig. 3.



668 CMC, 2024, vol.81, no.1

Figure 3: Local DHT obtains data chunk content

The overall architecture of the dual-layer DHT indexing is shown in Fig. 4. Its main advantage is
the reduction in the number of DHT queries required for file retrieval. The node can directly locate and
download data chunks without the need to iteratively query intermediate nodes of the Merkle DAG,
thus reducing the overall size of the DHT. Consequently, it improves the efficiency and reliability of
file queries by decreasing the number of hops and associated delays in the DHT network.

Figure 4: Overall architecture of the dual-layer DHT indexing



CMC, 2024, vol.81, no.1 669

3.2 Local DHT

The local DHT implementation is based on the Kademlia algorithm. Multiple local DHTs are
created by partitioning nodes within the global DHT based on the files they store. Each local DHT is
responsible for storing and querying the location information of data chunks related to a specific file,
enabling quick localization and retrieval. This approach reduces the file retrieval time overhead, lowers
network communication costs, and enhances the concurrency performance of the query system.

3.2.1 Storing Data Chunk CID

Since nodes in the local DHT only store and query the location information of data chunks related
to a specific file, rather than the entire network’s data chunks, each leaf node reports the data chunks
it stores to the root node in the global DHT when a file is segmented into leaf nodes. The root node
stores the CIDs of the data chunks, enabling other nodes to access the local DHT. The algorithm for
storing data chunk CIDs is shown in Algorithm 1.

Algorithm 1: Storing the CID of the data chunk
Input: fileCID
Output: leafCIDs, leafNodes
1: Initialize a list leafCIDs as empty
2: Initialize a list leafNodes as empty
3: Query and return leafCIDs with the leaf hash of fileCID from globalDHT
4: For each CID in leafCIDs:
5: Query globalDHT for nodes storing the data chunk with hash
6: Add returned nodes to leafNodes
7: For each node in LeafNodes:
8: For each CID in LeafCIDs:
9: If node stores data chunk with CID:
10: node.Store(self,fileCID,CID)
11: End For
12: End For
13: Return leafCIDs, leafNodes
Function Store(file_cid,leaf_cid)

closestnodes = FindClosestnodes(file_cid,K)
For closenode in closestnodes

closenode.storeCID(file_cid,leaf_cid)
End For

Function: FindClosestNodes(hash, count)
Query globalDHT for nodes storing the hash
Sort nodes in localDHT based on XOR distance from key
Return the first count nodes from the sorted list

Function storeCID(self,key,value)
self.data_objects[key][‘leaflinks’].append(value)

3.2.2 Establishing the Local DHT

After the leaf node stores the CID of the data chunk, the following steps are implemented to
establish the local DHT and exchange location information:



670 CMC, 2024, vol.81, no.1

(1) Local DHT initialization: Leaf nodes must store the location information of data chunks
related to a specific file. They query the CID of the file in the global DHT, which then initializes
a local DHT by returning the location information of the leaf nodes associated with the file’s data
chunks.

(2) Exchange of location information: Leaf nodes communicate with one another using the
Kademlia algorithm to exchange location information. This enables each leaf node to know the
positions of other relevant nodes and directly contact them to store or retrieve data.

(3) Data chunk indexing: Leaf nodes use the hash values of data chunks as keys, associating the
keys with their own location information, and storing them in the local DHT.

(4) Consistency check: In the local DHT, nodes periodically update their routing tables and data
chunk information to respond to changes in the network and maintain data reliability. Simultaneously,
it is crucial to ensure consistency between the local DHT and the global DHT. To achieve this, nodes
verify if the information in the local DHT is still present in the global DHT and update or delete it
as necessary. The completed local DHT is shown in Fig. 5. This approach effectively organizes leaf
nodes, enabling them to swiftly respond to queries related to specific files. This structure not only
improves data retrieval efficiency but also enhances network scalability and robustness. The process
for establishing and joining the local DHT is shown in Algorithm 2 and Algorithm 3, respectively.

Figure 5: Local DHT establishment



CMC, 2024, vol.81, no.1 671

Algorithm 2: Initializing the local DHT
Input: leafCIDs, leafNodes
Output: localDHT
1: Initialize localDHT as an empty hash tabl
2: For each node in leafNodes:
3: For each CID in leafCIDs:
4: If node stores data chunk with CID:
5: UpdateLocalDHT(node,CID)
6: End For
7: End For
8: Return localDHT
Function: UpdateLocalDHT(node, hash)

localDHT[hash] = node.networkInfo
closenode.storeCID(file_cid,leaf_cid)

Algorithm 3: Joining the local DHT
Input: leafNodes, leafCIDs
Output: localDHT
1: For each node in leafNodes:
2: For each CID in leafCIDs:
3: If node stores data chunk with CID:
4: JoinLocalDHT(node, CID)
5: End For
6: End For
7: Return localDHT
Function: JoinLocalDHT(node, hash)

closestNodes = FindClosestNodes(hash, K)
For each closeNode in closestNodes:

Send join request to closeNode
Receive and merge routing information from closeNode

End For
UpdateLocalDHT(node, hash)

3.2.3 Retrieving the Data Chunks

When retrieving a file, once the provider node for the file is found in the global DHT, the Merkle
DAG structure of the file and the CIDs of its data chunks can be obtained. Subsequently, based on the
CIDs of data chunks, the entry node is determined, and the location information of the data chunks
is queried in the local DHT. Entry nodes refer to certain nodes within the local DHT, they serve as
starting points for querying the data chunks. Once the entry node of the local DHT is identified, based
on the CIDs of the data chunks, the nodes that store the data chunks are found to obtain the data, and
then the data is reorganized into a complete file. The data chunk is retrieved as shown in Algorithm 4.

Algorithm 4: Retrieving the data chunk
Input: leafCIDs
Output: DataChunks

(Continued)



672 CMC, 2024, vol.81, no.1

Algorithm 4 (continued)
1: Initialize DataChunks as an empty map
2: For each leafCID in leafCIDs:
3: leafNode = FindClosestNodes(leafCID, 1)
4: If leafNode.networkInfo is In LocalDHT:
5: localDHT = leafNode.getLocalDHT()
6: For each localCID in localDHT:
7: localNode = localDHT.find(localCID)
8: dataChunk = localNode.getDataChunk()
9: DataChunks[localNode] = dataChunk
10: If DataChunks can reorganize the entire file:
11: Return DataChunks
12: Else:
13: dataChunk = leafNode.getDataChunk(leafCID)
14: DataChunks[leafCID] = dataChunk
15: Return DataChunks

3.3 Summary

The relationship between the global DHT and the local DHT is complementary and coordinated.
Each node has its position and role in the global DHT, while it may also play specific roles in one or
more local DHTs. The key points of their relationship are as follows:

(1) Global DHT: The global DHT forms the foundation of the entire IPFS network, responsible
for maintaining information on all nodes and the locations of data chunks in the network. It functions
as a large-scale distributed hash table, in which every node participates.

(2) Local DHT: The local DHT is created for specific files or sets of files, consisting of nodes
that store related data chunks. The purpose of the local DHT is to optimize the retrieval and storage
processes for data associated with these specific files.

(3) Dual roles of nodes: A node can exist simultaneously in the global DHT and one or more local
DHTs. In the global DHT, nodes are responsible for maintaining the overall network health and data
accessibility. In the local DHT, nodes focus on managing data chunks related to specific files.

(4) Independence and coordination: The local DHT is somewhat independent of the global DHT,
but its nodes still rely on the global DHT to discover and join the network. The establishment and
maintenance of the local DHT also require synchronization with the global DHT to ensure the
consistency and efficiency of the entire network.

In summary, local DHTs form sub-networks for specific tasks, based on the global DHT. They
coordinate by sharing nodes and partial routing information. This design enhances IPFS network
performance and response speed while maintaining decentralization and scalability.

4 Copyright Protection Scheme Design
4.1 Overall Design

Fig. 6 shows the architecture diagram of the proposed scheme. There are two entities in the scheme,
that is, the image owner and the verifier. The numbers identified in the figure represent the steps of the
scheme, which will be described in Section 4.2.



CMC, 2024, vol.81, no.1 673

Figure 6: Overall architecture

The components of this scheme can be primarily divided into three parts. The first part is
the blockchain network, which includes the smart contract interface and blockchain storage. The
blockchain stores relevant image information. As a decentralized database, the blockchain securely
stores data without requiring trusted third parties. It provides a transparent and tamper-proof storage
platform that ensures the authenticity and reliability of copyright information. Smart contracts
deployed on the blockchain include functions such as user registration, information uploading, and
signing, which are agreed upon and executed by all nodes. Corresponding smart contracts are designed
for different functions, with their interfaces shown in Table 1.

The second part, the WebApp, processes the specific operations of the entities and is mainly
responsible for embedding and extracting blind watermarks. Blind watermarks are used to add
identity tags to images to prevent unauthorized re-uploading and tampering. When embedding blind



674 CMC, 2024, vol.81, no.1

watermarks, the entity can adjust the watermark strength parameter as needed. A higher strength
parameter enhances watermark resistance but may affect the original image quality, while a lower
strength parameter has the opposite effect. Additionally, the WebApp can invoke smart contracts to
coordinate the work between IPFS and the blockchain.

Table 1: Smart contract interface

Contract name Interface definition Interface description

Register userRegister User registration
StoreInfo setInfo Store information

getInfo Query information
PersonalSign getSign Sign message

verifySign Verify signature

The third part, IPFS, stores image files with embedded blind watermarks and generates a unique
CID. When it’s necessary to retrieve image files and verify watermark information, the file is retrieved
from the IPFS network using the CID.

Since IPFS uses DHT to manage file storage location, the dual-layer DHT indexing structure
proposed in the paper further optimizes the file retrieval process. Therefore, the decentralized storage
and efficient retrieval provided by IPFS, together with the blockchain, create an efficient and secure
copyright protection mechanism. IPFS manages the file storage and retrieval, ensuring their integrity
and availability. Blockchain is responsible for recording and verifying copyright information, ensuring
its immutability and openness and transparency. This synergistic effect not only improves the efficiency
of file retrieval and copyright management, but also enhances the scalability and stability of the
copyright protection scheme.

4.2 Scheme Workflow

The symbols used in the text are as shown in Table 2.

Table 2: Related symbol specification

Symbol Definition

IO Image owner
IC Verifier
Pk Public key (Account address)
Sk Private key
CID() Content-addressed hash value
I Image file
WI Image file with embedded watermark
Sig Digital signature
wm Watermark information
TXH Transaction hash



CMC, 2024, vol.81, no.1 675

As shown in Fig. 6, Steps 1© to 7© outline the specific process of the scheme as follows:

(1) Image Owner

1© The Image Owner (IO) initiates the registration request by entering the password and other
basic information through the WebApp. WebApp generates the public-private key pair (Pk) and (Sk)
of IO according to the entered password, and invokes Registr.userRegister to complete registration.

2© IO selects the image file I and sets the watermark strength parameter in the WebApp. Then,
IO embeds the public key Pk as watermark information wm into I , generating the watermarked image
file WI . IO uploads WI to the IPFS network, obtaining the content hash value CID(WI).

3© IO invokes PersonalSign.getSign, which uses Sk to sign CID(WI), generating the signature Sig.

4© IO invokes StoreInfo.setInfo to store Pk, CID(WI), Sig, and other ownership information on
the blockchain. The smart contract confirms the transaction with IO and sends the transaction hash
TXH to IO. The blockchain network broadcasts the transaction request. After achieving consensus
among blockchain nodes, the transaction is packaged, and the information is permanently stored on
the blockchain.

(2) Verifier

5© The Verifier (IC) invokes StoreInfo.getInfo to query the transaction information associated
with TXH. The smart contract retrieves transaction information from the blockchain, including Pk,
CID(WI), and Sig.

6© Based on the obtained information, IC invokes PersonalSign.verifySign to verify the signature.
If the signature verification is successful, it proves that the signature was signed by the holder of the
private key Sk, confirming Pk as the genuine uploader of the image. Otherwise, the verification fails,
and the signature does not belong to the IO.

7© IC retrieves the corresponding image file WI ′ from the IPFS network using CID(WI), then
extracts the watermark information wm′ from WI ′ using the WebApp. IC checks whether the extracted
watermark wm’ matches the public key Pk. If wm′ = Pk, it confirms Pk as the rightful owner of the file.
Otherwise, the file is considered unauthorized use.

The entire process of the scheme can be divided into five stages:

(1) User registration: To generate signatures and invoke smart contracts, entities need to possess
key pairs associated with the account. IO obtains its public and private keys through the WebApp.

(2) Image storage: IO embeds the public key into the image as watermark information using
blind watermark embedding algorithms via WebApp, adding an anti-counterfeiting identification to
the image, which results in a watermarked image file. The file is then stored in IPFS, and its CID is
obtained.

(3) Signing: IO generates the file CID’s signature using its private key through signature
algorithms.

(4) Information storage: After signing, relevant ownership information is stored in the blockchain,
ensuring security and credibility through the blockchain’s immutability and decentralization. Other
entities can verify the signature based on the information on the blockchain.

(5) Ownership verification: To verify image ownership, verifiers first retrieve relevant transaction
information from the blockchain and use this information to confirm the signature’s authenticity. Once
the signature is verified, verifiers proceed to verify the watermark information of the file. IC uses blind



676 CMC, 2024, vol.81, no.1

watermark extraction algorithms via WebApp to extract watermark information and compare it with
the public key, determining whether the file is unauthorized.

4.3 Algorithm Design

Given the advantages of the ECDSA (Elliptic Curve Digital Signature Algorithm) [23], including
small key size, short signature generation time, and fast computation speed, this paper adopts
ECDSA for digital signature generation and verification. At the same time, this paper implements
the embedding and extraction of watermark information based on the Discrete Wavelet Transform-
Discrete Cosine Transform-Singular Value Decomposition (DWT-DCT-SVD) blind watermarking
algorithm. Compared with traditional DWT and DCT algorithms, this approach exhibits better
robustness, effectiveness, and imperceptibility [24].

Singular Value Decomposition (SVD) [25] is applied in orthogonal matrices, serving as a linear
algebra tool. Let matrix A ∈ Rm∗n, where R represents the real number field, and m ∗ n denotes the
matrix size. The SVD of A is defined as follows:

A = USV T (2)

where U = [u1, u2, u3, . . . , um] ∈ Rm∗m, V = [v1, v2, v3, . . . , vm] ∈ Rn∗n, and T represents the transpose.
U and V are orthogonal matrices. S is a diagonal matrix, S = diag (σ1, σ2, σ3, . . . σm) ∈ Rm∗n, where
the singular values (σ1 ≥ σ2 ≥ σ3 ≥ . . . σr ≥ σr+1 = . . . = σm = 0) are the diagonal elements, with r
representing the rank of the matrix.

Let the size of the image file I be 512 × 512 pixels. The watermark information, denoted as wm,
is the account address and is defined as a string type.

4.3.1 Watermark Embedding

Step 1: Convert the watermark information wm into binary form, obtaining a binary array wi.

Step 2: Extract the Red, Green, and Blue (RGB) components of imageIand convert them into
the Luminance and Chrominance (YUV) format. Perform a level-one DWT on the Y component to
obtain four sub-bands: LL, HL, LH, and HH. Divide the low-frequency sub-band LL into 8 × 8
blocks, with each block embedding 1 bit of data. Thus, the maximum number of watermark bits that
can be embedded in the low-frequency sub-band LL is calculated as 512/(2×8)×512/(2×8) = 1024.

Step 3: Apply DCT to each block, followed by SVD on the output matrix of DCT, Blocki =
UiSiV T

i , and arrange the singular values σi in descending order.

Step 4: Modify the first σ1 in each block according to the following rules (let Z = σ1modβ):

1© wi = 0, then:{
σ ′

1 = σ1 − Z + 5β/4, if Z ≥ 3β/4
σ ′

1 = σ1 − Z + β/4, else (3)

2© wi = 1, then:{
σ ′

1 = σ1 − Z + 3β/4, if Z ≥ β/4
σ ′

1 = σ1 − Z − β/4, else (4)

where β is the watermark embedding strength factor, and the modified block is Block′
i = UiS′

iV
T
i .

Step 5: Repeat the operations of Steps 3 and 4 until all watermark information is embedded. Then
perform inverse DCT to obtain the low-frequency sub-band with embedded watermark, followed by



CMC, 2024, vol.81, no.1 677

inverse DWT to obtain the Y component with embedded watermark. Finally, convert the YUV format
back to the RGB format and reconstruct the RGB components to obtain the watermarked image WI .
The watermark embedding process is illustrated in Fig. 7.

Figure 7: Watermark embedding

4.3.2 Watermark Extraction

Step 1: Extract the RGB components of the image WI , convert them from RGB to YUV format,
and perform a level-one DWT on the Y component. Then divide the low-frequency sub-band LL into
8 × 8 blocks.

Step 2: Apply DCT to each block and perform SVD on the output matrix, Block′
i = UiS′

iV
T
i , and

arrange the singular values σ ′
i in descending order.

Step 3: Modify wi according to the following rule (let Z = σ ′
1modβ):{

wi = 0, if Z ≤ β/2
wi = 1, else (5)

Step 4: Repeat the operations of Steps 2 and 3 until all embedded watermark information is
extracted from the low-frequency sub-band.

Step 5: Convert the extracted wi back into a string format to obtain the original watermark
information wm. The watermark extraction process is illustrated in Fig. 8.

5 Experiment and Analysis

The experiments were conducted on a local area network, consisting of a private IPFS network
cluster consisting of 20 nodes, and a private blockchain built locally using Geth. The specific
experimental environment is shown in Table 3.



678 CMC, 2024, vol.81, no.1

Figure 8: Watermark extraction

Table 3: Experimental environment

Category Configuration/Version

CPU (Central Processing Unit) 13th Intel(R) Core(TM) i7-13620H 2.40 GHz
Internal memory 16 GB
Operating system Ubuntu, v22.04.1
IPFS Kubo, v0.22.0
Blockchain Geth, v1.9.10

5.1 Dual-Layer DHT Indexing Structure Analysis

Setting the data chunk size to the default 256 KB, as shown in Fig. 9, the use of the dual-layer
DHT indexing structure method results in overall reduced DHT query time compared to IPFS’s native
DHT. In Fig. 9a, the reduction in DHT latency is minimal for small files. However, as the file size
increases, the optimization effect of the dual-layer DHT indexing structure becomes more pronounced,
reducing query latency by approximately 33% compared to the native DHT. The reduction effect
grows as file size increases. This occurs because as file size increases, the number of data chunks
also grows, leading to more intermediate nodes in the Merkle DAG and greater depth. The dual-
layer DHT indexing structure reduces queries to intermediate nodes in the Merkle DAG, thereby
significantly lowering the overall DHT query time. The impact of Merkle DAG depth on query latency
is shown in Fig. 9b, where the optimization effect of the dual-layer DHT indexing structure becomes
significant at a depth of 5 and intensifies as the depth increases. To confirm the impact of Merkle
DAG depth on query latency, in Fig. 10, the Merkle DAG depth was varied by adjusting the data
chunk size. Files of 50, 100, 500, and 1000 MB were constructed to test the changes in query latency,
as shown in Fig. 11.

Compared to the existing methods, the proposed dual-layer DHT indexing structure not only
improves the efficiency but also significantly enhances the scalability and reliability. Zhu et al. [19]
employed distributed B+ Tree and HashMap for keyword searches, but the complexity of their
index merging algorithm and network traffic adversely affected system performance. Cao et al. [20]
proposed a double-layer inverted indexing structure that improved search efficiency but imposed
significant update overheads, thereby limiting system scalability. Khudhur et al. [21] used DHT to
store mappings between keywords and CIDs, and leveraged result caching to speed up repeated



CMC, 2024, vol.81, no.1 679

queries. However, their approach offered limited improvements for new queries and faced scal-
ability challenges. Yao et al. [22] employed Fat Merkle Trees and DHT caching mechanisms to
reduce query latency, but their complex structure increased operational burdens, impacting system
reliability. In contrast, the dual-layer DHT indexing structure simplifies the query process and
reduces network overhead, providing a more effective solution to the problem of low IPFS file
retrieval efficiency.

Figure 9: Query latency

Figure 10: Merkle DAG depth changes



680 CMC, 2024, vol.81, no.1

Figure 11: Query latency for different chunk sizes

5.2 Copyright Protection Scheme Analysis

5.2.1 Ownership Analysis of Files

(1) Trusted source information for files

Unlike traditional centralized technologies, this scheme leverages blockchain and smart contracts
to ensure the security of source information for image files. By recording information such as
CID, account addresses, and digital signatures on the blockchain, automatically managed by smart
contracts, the risk of third-party data tampering is eliminated. This approach provides trusted and
verifiable transaction records of file ownership. Once the information is recorded, it is permanently
associated with the file, meaning that account addresses and signature information can be reliably
traced and verified. Smart contracts provide automated interfaces that simplify file ownership verifi-
cation, ensuring reliable information circulation and transparency throughout the verification process.
This creates a robust trust foundation for file ownership verification. Additionally, this framework is
flexible and scalable, capable of adapting to various user needs.

(2) Identity verification and copyright tracing

The scheme employs blind watermarking to embed the image owner’s account address into the
image as watermark information. This effectively deters unauthorized use and copyright infringement,
while enabling the owner to track and verify their work. Should unauthorized distribution occur,
the owner can extract the watermark to reveal the account address, trace the blockchain record, and
thereby establish the image’s true ownership. The privacy of the image owner is strictly protected, as
the account address is only disclosed during ownership verification.

By combining digital signature technology, the owner’s account address is closely linked to the
image’s CID. The uniqueness of the digital signature ensures that only the image owner can generate
a valid signature. During signature verification, if both the CID and the account address are correct,
the verification succeeds, and the account address is confirmed as the true uploader. Any modification
results in verification failure. By comparing the extracted watermark information from the IPFS image
with the account address, ownership can be determined, thereby establishing the true owner of the
image. This mechanism not only verifies the true source of the image but also significantly enhances
strengthens copyright protection.



CMC, 2024, vol.81, no.1 681

5.2.2 Performance Analysis

This experiment section aims to evaluate the impact of blind watermark on the image upload time
to IPFS, as well as the performance of the proposed scheme across different processing stages. Five test
images of varying sizes were selected, and a blind watermark was embedded in each. Both the original
images and watermarked images were uploaded to IPFS, with the upload times recorded as shown in
Fig. 12. Finally, the selected images were applied to the entire copyright protection scheme, and the
average runtime of each key stage was measured. The data in Fig. 12 shows that the time required to
upload images to IPFS differs by less than 50 ms before and after embedding a blind watermark. This
indicates that the embedding blind watermark has a negligible impact on IPFS upload time, allowing
users to do so without concern for significantly increasing the upload duration. As shown in Table 4,
the average runtime of each stage of the scheme is within milliseconds, and the time spent is acceptable
and not disruptive to daily applications.

Figure 12: Upload time

Table 4: Average running time for different phases

Phase Average run time (ms)

User registration 84
Storage of image 352
Signing 68
Storing information 836
Ownership verification 781

5.2.3 Smart Contract Testing

Detailed gas consumption tests were conducted on the contract to evaluate the execution costs.
Table 5 lists the costs associated with executing the contract. The contract is deployed once during
the blockchain network’s initialization and does not require redeployment during normal operations,
resulting in no additional gas consumption. The setInfo and userRegister functions within the contract
generate transactions and incur gas costs, whereas other functions, which do not alter the contract



682 CMC, 2024, vol.81, no.1

state, do not incur gas costs. The experiments indicate that the cost of the scheme is relatively low,
providing substantial advantages for applications.

Table 5: Contract cost consumption

Operation Gas cost (wei) Ether cost (ETH)

Deploy register 138684 0.000138684
Deploy StoreInfo 347716 0.000347716
Deploy PersonalSign 288710 0.000288710
userRegister 43455 0.000043455
setInfo 53187 0.000053187

5.2.4 Scheme Comparison

Table 6 presents a comprehensive performance comparison between the proposed research scheme
and existing schemes that employ IPFS for the protection of image file copyright. While schemes [10]
and [11] were designed to create image copyright management systems that would ensure the security
and transparency of copyright information, they lacked the capacity to be scaled up. Scheme [12]
detected infringement through perceptual hash technology but did not fully address user ownership
issues. Scheme [13] not only completed identity verification but also employed dual encryption storage
technology to mitigate the risk of copyright information theft. However, the verification process was
relatively complex. Scheme [14] enhanced the security and transparency of copyright information, and
provided robust copyright protection for multiple creations, however, it lacked scalability. Schemes [15]
and [16] authenticated images by designing smart contracts and combining them with zero watermark
algorithms while also ensuring the scalability of the image copyright protection system through IPFS.
However, limitations were encountered with respect to file retrieval. As shown in Table 6, the proposed
scheme demonstrates superior performance in terms of scalability, privacy protection, and identity
verification in comparison to existing schemes.

Table 6: Comparison of existing copyright protection schemes

Scheme Scalability Privacy Authentication Infringement detection Security

[10] � � None
[11] � Perceptual hashing
[12] � Perceptual hashing �
[13] � � � Perceptual hashing �
[14] � � Watermark �
[15] � � � Watermark �
[16] � � � Watermark �
Proposed � � � Watermark �

Existing schemes generally employ IPFS to store images or copyright information. However, there
is still scope for improvement in terms of the efficiency of retrieving IPFS files. The proposed research
scheme addresses this issue by optimizing the efficiency of IPFS file retrieval, thereby resolving



CMC, 2024, vol.81, no.1 683

potential performance bottlenecks encountered by existing schemes in practical applications. This
improvement ensures rapid access to image files and copyright information.

6 Conclusion

This paper addresses the issue of copyright protection for image files on IPFS. The proposed
approach organically combines blockchain, digital signature, and blind watermarking technology
to successfully ensure copyright protection of images, effectively prevent unauthorized copying and
tampering, and achieve infringement prevention. The smart contract method is designed and applied
with the objective of ensuring the secure storage of the ownership information and the identity
verification of the uploader. This further enhances the security and trustworthiness of the information
storage and verification process. Additionally, to address the efficiency issues in IPFS querying, a dual-
layer DHT indexing structure is proposed. Through experimental analysis, it has been demonstrated
that the efficiency and performance of file queries have been enhanced significantly under the dual-
layer DHT indexing structure, the latency of file retrieval has been greatly reduced, and the success
rate of query has been increased.

Acknowledgement: We would like to acknowledge the editors and anonymous reviewers.

Funding Statement: This work was supported by the Doctoral Research Foundation of Chongqing
Normal University (Nos. 21XLB030, 21XLB029) and the Key Program of Chongqing Education
Science Planning Project (No. K22YE205098).

Author Contributions: The authors confirm contribution to the paper as follows: study conception and
design: Xin Cong, Lanjin Feng; methodology: Xin Cong; data collection: Lanjin Feng; analysis and
interpretation of results: Lingling Zi; writing—review & editing: Xin Cong, Lingling Zi, Lanjin Feng.
All authors reviewed the results and approved the final version of the manuscript.

Availability of Data and Materials: The authors confirm that the data and materials supporting the
findings of this study are not applicable as there were no specific datasets or materials used.

Ethics Approval: Not applicable.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] Y. Chen, H. Li, K. Li, and J. Zhang, “An improved P2P file system scheme based on IPFS and Blockchain,”

in 2017 IEEE Int. Conf. Big Data, Boston, MA, USA, Jan. 2017, pp. 2652–2657.
[2] P. Kang, W. Yang, and J. Zheng, “Blockchain private file storage-sharing method based on IPFS,” Sensors,

vol. 22, no. 14, pp. 5100–5112, Jul. 2022. doi: 10.3390/s22145100.
[3] Y. Shang, “Efficient and secure algorithm: The application and improvement of ECDSA,” in 2022 Int.

Conf. Big Data, Inf. Comput. Netw. (BDICN), Sanya, China, Jan. 2022, pp. 182–188.
[4] J. Wang, D. Wu, L. Li, J. Zhao, H. Wu and Y. Tang, “Robust periodic blind watermarking based on

sub-block mapping and block encryption,” Expert. Syst. Appl., vol. 224, Aug. 2023, Art. no. 119981. doi:
10.1016/j.eswa.2023.119981.

[5] S. Henningsen, M. Florian, S. Rust, and B. Scheuermann, “Mapping the interplanetary filesystem,” in 2020
IFIP Netw. Conf., Paris, France, Jun. 2020, pp. 289–297.

https://doi.org/10.3390/s22145100
https://doi.org/10.1016/j.eswa.2023.119981


684 CMC, 2024, vol.81, no.1

[6] L. Chen, X. Zhang, and Z. Sun, “Scalable blockchain storage model based on DHT and IPFS, KSII Trans,”
Internet Inf. Syst., vol. 16, no. 7, pp. 2286–2304, Jul. 2022. doi: 10.3837/tiis.2022.07.009.

[7] C. Chrysoulas et al., “GLASS: Towards secure and decentralized eGovernance services using IPFS,” in
Eur. Symp. Res. Comput. Secur., Darmstadt, Germany, Oct. 2021, pp. 40–57.

[8] S. Alghamdi, S. Naz, A. Saeed, E. A. Solami, M. Kamran and M. S. Alkatheiri, “A novel database
watermarking technique using blockchain as trusted third party,” Comput. Mater. Contin., vol. 70, no.
1, pp. 1585–1601, Sep. 2022. doi: 10.32604/cmc.2022.019936.

[9] X. Chen, A. Yang, J. Weng, Y. Tong, C. Huang and T. Li, “A Blockchain-based copyright protection
scheme with proactive defense,” IEEE Trans. Serv. Comput., vol. 16, no. 4, pp. 2316–2329, Jun. 2023. doi:
10.1109/TSC.2023.3246476.

[10] J. Ning, L. Feng, G. Yuan, and X. Yang, “Research on image trading system based on Blockchain and
IPFS,” in Int. Conf. Netw. Commun. Inf. Secur. (ICNCIS), Beijing, China, Apr. 2022, pp. 51–58.

[11] A. Muwafaq and S. N. Alsaad, “Design scheme for copyright management system using Blockchain and
IPFS,” Int. J. Comput. Digit. Syst., vol. 10, no. 1, pp. 613–618, May 2021. doi: 10.12785/ijcds/100159.

[12] R. Kumar, R. Tripathi, N. Marchang, G. Srivastava, T. R. Gadekallu and N. N. Xiong, “A secured
distributed detection system based on IPFS and blockchain for industrial image and video data security,”
J. Parallel Distr. Comput., vol. 152, no. 2, pp. 128–143, Jun. 2021. doi: 10.1016/j.jpdc.2021.02.022.

[13] Q. Zhang, G. Wu, R. Yang, and J. Chen, “Digital image copyright protection method based on
blockchain and zero trust mechanism,” Multimed. Tools Appl., vol. 17, no. 2, pp. 1–36, Feb. 2024. doi:
10.1007/s11042-024-18514-3.

[14] Z. Meng, T. Morizumi, S. Miyata, and H. Kinoshita, “Design scheme of copyright management system
based on digital watermarking and blockchain,” in 2018 IEEE 42nd Annu. Comput. Softw. Appl. Conf.
(COMPSAC), Tokyo, Japan, Jul. 2018, pp. 359–364.

[15] B. Wang, J. W. Shi, W. Wang, and P. Zhao, “Image copyright protection based on blockchain
and zero-watermark,” IEEE Trans. Netw. Sci. Eng., vol. 9, no. 4, pp. 2188–2199, May 2022. doi:
10.1109/TNSE.2022.3157867.

[16] T. Chen et al., “A image copyright protection method using zero-watermark by blockchain and IPFS,” J.
Inf. Hiding Priv. Prot., vol. 3, no. 3, pp. 131–142, Dec. 2021. doi: 10.32604/jihpp.2021.026606.

[17] S. G. Liu, W. Q. Chen, and J. L. Liu, “An efficient double parameter elliptic curve digital signature algorithm
for blockchain,” IEEE Access, vol. 9, pp. 77058–77066, May 2021. doi: 10.1109/ACCESS.2021.3082704.

[18] D. Trautwein et al., “Design and evaluation of IPFS: A storage layer for the decentralized web,” in Proc.
ACM SIGCOMM, Amsterdam, Netherlands, Aug. 2022, pp. 739–752.

[19] L. Zhu, C. Xiao, and X. Gong, “Keyword search in decentralized storage systems,” Electronics, vol. 9, no.
12, pp. 2041–2058, Dec. 2020. doi: 10.3390/electronics9122041.

[20] L. Cao and Y. Li, “IPFS keyword search based on double-layer index,” in Int. Conf. Electron. Inf. Eng.
Comput. Commun. (EIECC), Nanchang, China, May 2022, pp. 45–50.

[21] N. Khudhur and S. Fujita, “Siva-The IPFS search engine,” in 2019 Seventh Int. Symp. Comput. Netw.
(CANDAR), Nagasaki, Japan, Nov. 2019, pp. 150–156.

[22] Z. Yao, B. Ding, Q. Bai, and Y. Xu, “Minerva: Decentralized collaborative query processing over interplan-
etary file system,” IEEE Trans. Big Data, pp. 1–15, Jul. 2024. doi: 10.1109/TBDATA.2024.3423729.

[23] S. Ullah, J. Zheng, N. Din, M. T. Hussain, F. Ullah and M. Yousaf, “Elliptic curve cryptography;
Applications, challenges, recent advances, and future trends: A comprehensive survey,” Comput. Sci. Rev.,
vol. 47, pp. 100530–100544, Feb. 2023. doi: 10.1016/j.cosrev.2022.100530.

[24] S. Bagheri Baba Ahmadi, G. Zhang, S. Wei, and L. Boukela, “An intelligent and blind image watermarking
scheme based on hybrid SVD transforms using human visual system characteristics,” Vis. Comput., vol. 37,
no. 2, pp. 385–409, Feb. 2021. doi: 10.1007/s00371-020-01808-6.

[25] H. T. Hu, L. Y. Hsu, and H. H. Chou, “An improved SVD-based blind color image watermark-
ing algorithm with mixed modulation incorporated,” Inf. Sci., vol. 519, pp. 161–182, May 2020. doi:
10.1016/j.ins.2020.01.019.

https://doi.org/10.3837/tiis.2022.07.009
https://doi.org/10.32604/cmc.2022.019936
https://doi.org/10.1109/TSC.2023.3246476
https://doi.org/10.12785/ijcds/100159
https://doi.org/10.1016/j.jpdc.2021.02.022
https://doi.org/10.1007/s11042-024-18514-3
https://doi.org/10.1109/TNSE.2022.3157867
https://doi.org/10.32604/jihpp.2021.026606
https://doi.org/10.1109/ACCESS.2021.3082704
https://doi.org/10.3390/electronics9122041
https://doi.org/10.1109/TBDATA.2024.3423729
https://doi.org/10.1016/j.cosrev.2022.100530
https://doi.org/10.1007/s00371-020-01808-6
https://doi.org/10.1016/j.ins.2020.01.019

	Research on IPFS Image Copyright Protection Method Based on Blockchain
	1 Introduction
	2 Related Work
	3 Dual-Layer DHT Indexing Structure Design
	4 Copyright Protection Scheme Design
	5 Experiment and Analysis
	6 Conclusion
	References


