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ABSTRACT

Escalating cyber security threats and the increased use of Internet of Things (IoT) devices require utilisation of
the latest technologies available to supply adequate protection. The aim of Intrusion Detection Systems (IDS) is
to prevent malicious attacks that corrupt operations and interrupt data flow, which might have significant impact
on critical industries and infrastructure. This research examines existing IDS, based on Artificial Intelligence (AI)
for ToT devices, methods, and techniques. The contribution of this study consists of identification of the most
effective IDS systems in terms of accuracy, precision, recall and F1-score; this research also considers training time.
Results demonstrate that Graph Neural Networks (GNN) have several benefits over other traditional Al frameworks
through their ability to achieve in excess of 99% accuracy in a relatively short training time, while also capable of
learning from network traffic the inherent characteristics of different cyber-attacks. These findings identify the
GNN (a Deep Learning AI method) as the most efficient IDS system. The novelty of this research lies also in
the linking between high yielding Al-based IDS algorithms and the Al-based learning approach for data privacy
protection. This research recommends Federated Learning (FL) as the Al training model, which increases data
privacy protection and reduces network data flow, resulting in a more secure and efficient IDS solution.
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Nomenclature

Al Artificial Intelligence

CL Collaborative Learning

CNN Convolution Neural Network
DCAE Deep Convolutional AutoEncoder
DL Deep Learning

DNN Deep Neural Network

DoS Denial of Service
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DDoS Distributed Denial of Service
DT Decision Tree
DSF Decentralised Secure Framework
EIDM Enhanced anomaly-based Intrusion Detection Deep Learning Multi-class
FAR False Alarm Rate
FcTH Fuzzy color Texture Histogram
FFNN Feed Forward Neural network
FL Federate Learning
FT Fine Tree
GCN Graph Convolutional Network
GNN Graph Neural Network
GRU Gated Recurrent Unit
GSL Graph Structure Learning
IDS Intrusion Detection System
IoT Internet of Things
IDSAI Intrusion Detection System Artificial Intelligence
KNN K-Nearest Neighbors
LSTM Long Short-Term Memory
MItM Man In the Middle
ML Machine Learning
MT Mean Teachers
PFI Permutation Feature Importance
RF Random Forest
RFE Recursive Feature Elimination
RNN Random Neural Network
ROC Receiver Operating Characteristics
SDN Software Defined Network
SHAP Shapley Additive Explanation

S: Shapley Additive exPlanations,
SPIP P: Permutation Feature Importance,

I: Individual Conditional Expectation,
P: Partial Dependence Plot

SSAE Stacked Sparse AutoEncoders
SVM Support Vector Machine

TCN Temporal Convolutional Network
VGG Visual Geometry Group

XAI Explainable Artificial Intelligence

1 Introduction

Cyber security threats continue to escalate, particularly for complex systems like the Internet of
Things which are widely integrated across industries and are forecast to reach 30 billion devices by
2030 [1]. This calls for a comprehensive approach to the development of robust Detection Intrusion
Systems (IDS) [2-5]. Although effective IDS exist, they often focus on specific vulnerabilities rather
than taking a holistic approach. An exception is the work of Alzubaidi et al. [6] whose work covered
a significant number of vulnerabilities and achieved the highest prediction accuracy. Their research
was based on Machine Learning (ML) with Recursive Feature Elimination (RFE) as its selection
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method, also highlighting the importance of developing an appropriate preprocessing phase to prepare
data for training during the model training phase and identify Random Forest (RF) as achieved
the highest prediction accuracy. Liu et al. [7] concurred but point to the importance of accuracy in
terms of individual decision trees and the dependencies between them. Lu et al. [§] focused on deep
learning algorithms with multilayer network models that allow them to learn data features of data
for the identification of anomalous traffic with some accuracy. Alani [9] focused on the selection of
appropriate feature reduction algorithms, to increase prediction accuracy, thus reducing training time
and computational resources required for the IDS framework. In this research, we also compared
filter-, wrapper-, and embedding-based feature selection types. Jing et al. [10] acknowledged the
resulting improved detection performance but cautioned that it resulted in increased model training
and inference time compared to feature selection. Saika et al. [11] agreed but critiqued that research
around this topic had omitted to point out the impact on the entire framework. This brief discussion
clearly demonstrates the current state of fragmentation around IDS.

The aim of this work is to evaluate recent research into Artificial Intelligence (Al)-based IDS
across a range of cyber-attack types including DDoS [12], Label flipping [13], MiTM [14], and Zero-
day exploits [15], etc., to identify all possible points of vulnerability as well as ‘best practice’ for the
defense against attacks based on Prediction accuracy, Training efficiency, Dataset preprocessing, Data
privacy, Model performance, and Resource utilization. Outcomes demonstrate that two frameworks
were identified as providing the highest prediction accuracy in Al-based IDS systems for IoT devices
and networks: the E2I3DS framework and the GNN-based network IDS.

The remainder of this work is structured as follows: Section 2 outlines the research methodology,
followed by the literature review in Section 3. Section 4 presents a comprehensive analysis of each
contribution included in this research, followed by a discussion of outcomes. Recommendations for
future work are made in Section 5 while Section 6 provides the research conclusion.

2 Research Methodology

The key terms ‘Anomaly Detection; Artificial Intelligence; Cyber Security; Data Privacy; Deep
Learning; Federated Learning (FL) [16]; Industrial Internet of things; Internet of things; Intrusion
Detection System; and Machine Learning’ were entered into a range of journal databases. Results
were subsequently filtered for Q1 peer-reviewed articles from 2023 and 2024. A comparison of relevant
results was drawn from these works with the aim of finding approaches that provide a combination of
high accuracy prediction and precision along with the ability to protect sensitive data, as part of the
training model process. The process of gathering the selected journal articles is depicted in Fig. 1.

The final selection included Al methods, i.e., training time and prediction accuracy. Models were
tested for their ability to offload high processing and large memory storage requirements of the
targeted IoT devices by utilising external servers and cloud-based infrastructure. The above process
was repeated until an adequate list of sources had been identified to permit a meaningful comparison.

3 Literature Review

The journal articles used for this research project were selected based on a set of keywords showing
the main goals of enhancing IoT IDS using Al. The keyword relationships to the selected journal
articles are depicted in Fig. 2.
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Figure 2: The network visualization map for co-occurring keywords

As an evolving technology, AI is comprised of several branches of technological methods,
frameworks, and algorithms. Vila et al. [4] mentioned Big Data and the different branches that arise
from Al technology.



CMC, 2024, vol.81, no.1 5

Fig. 3 illustrates the relationship between Al and some of its primary areas of use, methods,
frameworks, and related algorithms.
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Figure 3: The relationships between Al and some of its primary area of use

After analysing the different algorithms, techniques and models mentioned in the selected articles,
we can conclude that there are several differences among them, especially in the variety of algorithms
used for the IDS and frameworks, as depicted in Fig. 4.
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Figure 4: Different AI/ML/DL/FL algorithms, techniques and models used in the selected articles



6 CMC, 2024, vol.81, no.1

However, there is a single common objective that is clearly shown in these articles, and this is their
ability to achieve high prediction accuracy rates as depicted in Fig. 5.
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Figure 5: The IDS accuracy comparison mentioned for each of the included journals

The highest prediction accuracy was 99.99% [9], ML-based with a Recursive Feature Elimination
(RFE) as its feature selection method with strong emphasis on the development of an appropriate
preprocessing phase to prepare data for training. This research identifies Random Forest (RF) as the
ML model that achieved the highest prediction accuracy. Liu et al. [7] were using a similar approach
indicated that the performance of the RF algorithm is most impacted by the accuracy of individual
decision trees and the dependencies between them (i.e., diversity).

Deep learning algorithms use multilayer network models to learn the features of data enabling
them to identify anomalous traffic more accurately based on large amount of network traffic data, as
mentioned by Lu et al. [§]. Research using DL models, such as the one conducted by Sharma et al. [17],
indicates the importance of selecting appropriate feature reduction algorithms, to increase prediction
accuracy, as well as reducing the model’s training time and the computational resources required for the
IDS framework. It also indicates the differences between filter-based, wrapper-based, and embedding-
based feature selection types and the benefits of reducing feature selection to increase prediction
accuracy. The use of feature extraction or reduction gives an overall better detection performance than
feature selection; however, it increases the model’s training and inference time compared to feature
selection, as mentioned by Jing et al. [10]. Saika et al. [1 1] also commented that foregrounded feature
selection provides greater effectiveness of the entire framework.

Another aspect contributing to higher model prediction accuracy is the use of a denoising
autoencoder. Its advantages over the traditional autoencoder are mentioned by Sharma et al. [17]. The
denoising autoencoder can map the input to an intermediate representation, which increases the IDS
effectiveness and accuracy of malicious data detection in heterogeneous environments. Furthermore,
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this mapping constructs a better representation of the data before it is being inserted into the classifier,
resulting in a higher accuracy.

The same concept of carefully selecting the essential features for extraction to train the Al-based
IDS and increase prediction accuracy is further clarified by Abusitta et al. [18]. This research also
articulates the direct relation between the chosen IDS framework and the model’s ability to produce
high accuracy predictions. However, there is a limitation in identifying the vulnerability of an attack
class exploit.

A new framework using FFNN [19], LTSM [20] and RNN [21] models was introduced by
Keshk et al. [22] with the aim to provide a broader IDS and classification for the entire IoT
network, as opposed to other ML and DL algorithms mentioned earlier. This approach was compared
with multiple state-of-the-art IDS, showing clear improvements in intrusion detection accuracy. The
researchers listed as future work the development of a more robust algorithm and metrics. A notable
limitation pointed out by the researchers relates to the lack of an effective testing platform which limits
test reliability, inevitably putting this research results in doubt.

Another new framework included the introduction of a GNN-based [23] network IDS that
maximises the ability to involve structural characteristics of normal and malicious network traffic,
mentioned by Bakhsh et al. [24]. This model proposed a multi-edged graph structure that captures
the entire communication between any pair of IoT nodes at the edge level of the network. This
novel GNN model combines the benefits of spectral and spatial GNNs tailored to process and
learn from complex multigraph-structured information. In addition, this approach is especially
helpful in learning graph geometry and traffic patterns in complex networks, resulting in an effective
framework for detecting network intrusions. This research proves that the proposed model is more
effective at minimising False Alarm Rate (FAR) [25] compared to other models. Moreover, the
results of this research demonstrated that the proposed model is capable of learning entirely from
the inherent characteristics of network traffic, which may include attacks. This model achieved a
high accuracy rate with competitive training times across all tested datasets. Furthermore, almost
all evaluations demonstrated an almost perfect accuracy of 99.9%. Mirlashari et al. [26], also using
GNN, extended the widely recognized GraphSAGE [27] algorithm to incorporate edge classification
and edge embedding capabilities, achieving DDoS attack detection with a precision of 99.8%. Probably
due to their high outcomes, the use of GNN-based models has gained popularity in recent years.
Furthermore, they have demonstrated great ability to handle complex and structured data, which is
difficult to model using traditional classification methods, as mentioned by Gillioz et al. [28]. Research
by Hamdi et al. [29] introduced a GNN-based intrusion detection framework that enhances intrusion
detection capabilities by generalisation of malicious behaviour patterns from the learning process. A
slightly different approach was taken by Wei et al. [30] where a GNN-based traffic anomaly detection
extracts traffic features from different channels as time series and then uses a GNN combined with
structured learning to learn relationships between features.

A comprehensive intrusion detection accuracy comparison of seventeen different ML models was
carried out by Altaf et al. [31]. The result of this research identified that the VGG-16 [32] CNN [33
architecture along with stacking of the KNN [34] ML algorithm achieved prediction accuracy of
98.3%. It showed that incorporating a stacked model along with advanced feature extraction enhances
the performance of the trained model in achieving higher prediction accuracy rates. However, without
a cleaned and balanced dataset, the entire model prediction capability will be negatively impacted.

Recognising the importance of training datasets when comparing prediction accuracy in ML, a
new balanced dataset called IDSAI was introduced by Musleh et al. [35]. It provides a comparison of a
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range of datasets with the IDSAI. Furthermore, this study identified the ML algorithm that achieved
the highest intrusion detection accuracy among those compared. However, as with any dataset, new
intrusion data should be added to increase the efficiency of the training model, which would also
increase prediction accuracy.

Software Defined Network (SDN) [36] frameworks using ML techniques for intrusion detection
in industrial IoT environments were introduced by Fernando et al. [37]. The ability to use SDN
at the network edges, such as network switches, can offload some of the high resource-utilisation
requirements of incorporating ML algorithms and training models operations from the IoT devices
themselves onto network switching devices. The authors used SVM [38] and DT [39] classification
models for evaluating their framework and provided a comparison between several models within
each of the classifications to show the differences in accuracy, prediction speed, and training time.
This framework produced an extremely high prediction accuracy of 99.7% using the chosen datasets.
Results also showed the close accuracy results obtained for each of the models, which allows conclusion
as to which classifier model better utilises its training time to produce a higher prediction accuracy.
The authors plan to employ newer data sources to enhance the adaptability and efficacy of this study.

A completely different approach was taken by Alshahrani et al. [40] who introduced a cross-layer
federated sampling and lightweight IDS for IoT networks using K-means for sampling network traffic
and finding anomalies in a semi-supervised way. This system is designed to preserve data privacy
by performing local clustering on each device and reducing the traffic by sharing only summary
statistics with a central aggregator, which acts as a coordinator. Furthermore, this system is particularly
suitable for resource constrained IoT devices, highlighting the advantages of merging operations on
the performance of both coordinator and workers in the proposed model. However, some observed
limitations were mentioned in this research, such as performance degradation over time, a decline in
precision, and an increase in the false-positive rate when the coordinator and workers engage in FL.
(i.e., Collaborative Learning [41]) in a merging operation.

Both Hajj et al. [42] and Yang et al. [43] introduced new FL techniques which reduce [oT resource
utilisation by offloading the global training model’s processing operations of the aggregator server to a
cloud-based infrastructure. FL also aims to reduce the traffic between IoT devices and the cloud-based
components and protect sensitive data collected on each individual edge device from being exposed
on the network, as mentioned by Lakhan et al. [44].

Hajj et al. [42] introduced a non-invasive and lightweight detecting mechanisms to enhance [oT
intrusion detection in IoT networks while protecting sensitive data. This new method mitigates poi-
soning and label flipping attacks. The proposed model introduced a scoring mechanism for evaluating
participants, based on loss results of the local model and the training dataset size. Furthermore, as
this method is based on results obtained from training of local models for detection, it does not
require significant additional processing analysis for the same model. Moreover, this research also
emphasises the security vulnerabilities of the FL framework, which cannot ensure the robustness of
the global models trained collaboratively, as each participant has access to the model’s parameters and
training data.

Yang et al. [43] introduced an efficient two-stage intrusion detection method considering the
time-series properties and resource limitations of IoT devices, based on cloud-edge CL. This reduces
computational workload to speed up training. Furthermore, this research found that the model
training on edge devices with constrained resources, using TCN [45] models and dimensional reduction
techniques, such as SSAE [46], is extremely efficient, compared to LSTM [20] and GRU [47]. In
addition, this approach can share threat intelligence with other devices and hence has potential to
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defend against unknown attacks collaboratively. The authors supplied convincing evidence of the
benefit of their model in reducing memory utilisation and training time by more than 50%, even
though the detection accuracy is close to centralised training models. In addition, IoT devices are
widely connected to the cloud, which can be easily integrated with cloud-based services to offload
resource utilisation for the intrusion detection process, as also mentioned by Figen et al. [48]. However,
this research is extremely reliant on labelled data, which is difficult to provide in real-world situations.
Alzubaidi et al. [6], Alani [9], and Sharma et al. [17], referred to XAI [49], a relatively simple method
to achieve a high [oT IDS prediction accuracy.

As the current research is aimed to identify the most efficient AI models for enhancing IoT IDS,
data privacy is also of high importance (see Yang et al. [50]). To illustrate data privacy differences of
the main Al models, there is a need to look at the high-level differences between Centralised Learning
(CL), Distributed Learning (DL), and Federated Learning (FL).

In Centralised Learning, each IoT device sends its input data along with its private data, allowing
the main server to aggregate the information and train the global model that is stored in the cloud.
Once new data is received, the [oT device sends a request to the cloud server and in return it receives a
response, based on the global model decision. Hence, there is an ongoing traffic between all IoT devices
and the cloud server, including sensitive data that identifies each IoT device and its characteristics, as
articulated in Fig. 6a.

(a) (b) (©)

Figure 6: (a) Centralised learning. (b) Distributed learning. (c) Federated learning

The DL model is trained to use the same method as the CL; however there is a separate model
for each IoT participant, as mentioned by Abdulrahman et al. [51]. During the training phase in a
DL algorithm, the IoT participants independently train their model and send the weighted updates to
the central server. During the same time, the central server receives updates from IoT participants and
performs an output calculation, as illustrated in Fig. 6b.

FL also trains the models independently. The difference between DL and FL is that in FL each
IoT participant initialises the training process independently. In addition, the training is conducted
collaboratively and independently on individual IoT participants. FL allows decentralised training of
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ML and DL models at or near the source of data generation, so that sensitive data does not need to
be shared for centralised training, as mentioned by Figen et al. [48]. The model updates received by
the cloud server does, thus, not include sensitive data, but only averages and aggregates for the next
global model, which is then shared among all IoT participants, as illustrated in Fig. 6¢c. Therefore,
there is an advantage for FL in its ability to provide better protection against the potential exposure
of sensitive [oT related data. This also benefits the entire model by reducing excessive network traffic,
which directly reduces the risk of eavesdropping and other potential malicious attacks. In addition,
the FL model enables multiple clients to jointly train an ML model while keeping their local data
decentralized, as mentioned by Zhang et al. [52].

There are distinctive differences between each of the journal articles, indicated by the type of
technology used in the research, training phase data sets, classification algorithms, feature selection
methods, and additional concepts. The articles chosen for this research include a balanced mix of
Al technologies to show the various aspects of research that was recently conducted in a particular
field. Researchers try to be creative in using different methods, and some include a significant amount
of preparation phases to clean, balance and extract the best features from selected datasets, in the
attempt to outfit the dataset with the appropriate training algorithm, aiming to reduce training time
while gaining high accuracy prediction results.

Most of the analysed research mentioned the distinguishing relation of appropriate feature
selection and the efficiency of prediction accuracy, as it affects the ability of the model to be trained
upon relevant network traffic, which should be as close in nature to real-time malicious attack
scenarios. In addition, it is interesting to see that classification algorithms vary from using the basic
binary, multi-class up to the more advanced classification algorithms of using stacked models. The
vast use of different feature selections is also distinctive; however the commonality related to feature
selection reflects the aim to extract the most distinctive and useful features, which will contribute to
reducing training time while enhancing prediction accuracy.

The AI technologies used and the main intrusion detection characteristics mentioned in each of
the included journal articles are shown in Table 1.

Table 1: A summary of technology and main intrusion detection characteristics

Reference Type of Datasets used Classification Additional Feature selection
technology methods used
Alani [9] ML WUSTL-IIOT- RF Introducing a new  Recursive Feature
2021 system-E2I3DS Elimination (RFE)
Sharma et al. [17] DL NSL-KDD, DNN, CNN Filter based, wrapper
UNSW-NBI5 based, embedded
based
Abusittaetal. [18] DL DS20S, DNN Extract robust Using an efficient
BoTNeTIoT-L01 features and neural model to extract
features together robust features and
isolate unnecessary
features
Keshk et al. [22 ML NSL-KDD, Binary SPIP Using label encoder,
UNSW-NBIS, SHAP and PFI to
TON_IoT extract notable
features

(Continued)
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Table 1 (continued)

Reference Type of Datasets used Classification Additional Feature selection
technology methods used
Bakhsh et al. [24] DL CIC-10T-2022 Binary and Feature scaling, Using Principal
multiclass data augmentation ~Component Analysis
and balancing (PCA)
using SMOTE
Altaf et al. [31] DL Ton-10T, Bot-IoT, = GCN model used Using multi-edge
NF-Ton-10T, to perform node features
NF-Bot-IoT classification,
improving
accuracy up to
nearly 10%
Musleh et al. [35] ML IEEE DataPort Comparing several Comparing Using feature
models with and stacked models: extraction to reduce
without stacked KNN, SMO, RF, data dimensions while
models and with (KNN+SMO) obtaining the relevant
and without meta stacked with KNN, information
classifiers (KNN (Jrip+RF) stacked
and SMO) with SMO
Fernando et al. [37] ML A new balanced Using supervised ML
dataset for training algorithms for binary
(IDSAI), Bot-1oT and multiclass
classification
Alshahranietal. [40] ML NSL-KDD DT, SVM, FT, MT Using SVM and Using
FT model on an Correlation-based
SDN controller for feature
early intrusion selection (CFS)
detection
Hajj et al. [42] FL NSL-KDD Using a cluster of  Cluster-based feature
coordinators and reduction
multiple workers as
the IDS agent. The
coordinator learns
the baseline,
analysing new
data, aggregates
and distributes it
to the workers
Yang et al. [43] FL CIC-IDS-2017 Using binary Evaluation of
classification training intrusion
(k=0[1) detection models

based on federated
averaging (FedAvg)
algorithm

(Continued)
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Table 1 (continued)

Reference Type of Datasets used Classification Additional Feature selection
technology methods used

Yang et al. [50] FL CIC-IDS-2017 Using Stacked Using SSAE to
Sparse extract useful feature
Autoencoders representations from
(SSAE) to produce high-dimensional
a more accurate network data. This
output method requires

minimum processing
and storage resources

The data specification and preprocessing characteristics are articulated in Table 2. The data
preprocessing, based on the selected datasets, is a critical phase before implementing feature extraction
and feeding the normalised data into the training and testing phases of the model. As seen in
Table 2, there is a need to conduct a preprocessing phase and prepare the dataset contents for most
of the frameworks examined. Some of the dataset preparation processes may involve data cleanup,
normalisation, rebalancing, transformation and additional data processing steps, to correlate the
selected features more efficiently. As Dehghani et al. [53] mentioned, there is a specific mention of
using a network analyser to drop redundant packets to reduce complexity of the algorithm, resulting
in reducing the training time. Network components, data split and additional data processing stages
may be needed as part of the selected framework requirements.

Table 2: A summary of data, preprocessing and network components discussed

Reference Network User/local Data Data split Additional data
components components  pre-processing processing
Alani [9] - - - - -
Sharmaetal.[17] Bigdata Cleaning, nor-
network malisation,
encoding
Abusittaetal. [18] Adding noise Combine Using a
to the data robust pre-training
features and process
neural
features
Keshk et al. [22] To improve Introducing a new
interpretation model-SPIP to
along with a enhance
decision performance

engine module

(Continued)
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Table 2 (continued)
Reference Network User/local Data Data split Additional data
components  components  pre-processing processing
Bakhshetal.[24] v Cleaning, nor- Using network
malisation, analyzer to gather
Transforma- network traffic.
tion Data cleaned by
dropping
redundant
packets and
removing missing
and infinite values
Altafetal. [31] Network Data transfor- Graph
data and mation, construction used
edge identification to create nodes
components of source- and feature
(IoT devices) destination matrix and edges
nodes and and feature
relative edges matrix
Muslehetal. [35] Dataset Auto-color  Using an image
preprocessing  Correlo- dataset created
and balancing gram filter, after data
using the Auto-color  pre-processing as
SMOTE and FcTH, the input to the
technique DenseNet,  training model
VGG-16
Fernandoetal. [37] Used to contrast
model
generalisation
from different
datasets
Alshahrani SDN Using
et al. [40] controller, Correlation-
SDN based feature
switches selection
(CFS)
Hajj et al. [42] Using Using local
cloud-edge anomaly
collaboration detection on
architecture  each worker

(Continued)



14 CMC, 2024, vol.81, no.1

Table 2 (continued)

Reference Network User/local Data Data split Additional data
components  components  pre-processing processing
Yang et al. [43]  ToT network, Using the
Edge servers, Manhattan
Central similarity between
servers participants
according to the
scores
Yang et al. [50]  Using Requires a
cloud-edge cloud central

collaboration server to

architecture  aggregate all
edge servers
for model
training

Note: v" indicates the component name was mentioned but no specific information was disclosed.

Fernando et al. [37] mentioned the use of SDN on network switches, while Hajj et al. [42] and
Yang et al. [50] referred to cloud-edge collaboration for FL frameworks.

The output parameters and metrics used, including the highest accuracy rate, precision, testing,
and training times observed in each study are mentioned in Table 3.

Table 3: A summary of IDS results, output parameters/metrics discussed

Reference Accuracy Loss (%) Precision Recall F1 (%) Perfor-  Cross- False ROC- Testing  Training Detection
(%) (for (for best (%) mance validation Alarm AUC time time time
best rate) rate) Rate (Sec)
(FAR)
Alani [9] 99.99 0.05 99.99 99.99 99.99 v 4.7 uSec 21 0.1517 pSec
Sharmaetal. [17]  99.40 10 v v v 0.455
Abusitta et al. [18]  94.90
Keshk et al. [22] 99.10 99.90 v v v v v
Bakhsh et al. [24] 99.93 v v v v
Altafetal. [31] 99.96 99.96 99.96 99.95 v v 2.89
Musleh et al. [35] 98.30 96.30 100 98 v
Fernando et al. [37] 92.00 v v v v v v v v
Alshahranietal. [40] 99.70 v v v v 11.029 1100 Obs/Sec
Hajj et al. [42] 98.52 v v v
Yang et al. [43] 97.53
Yang et al. [50] 98.62 98.90 98.45 98.71 v v v

Note: v indicates the parameter name was mentioned but no specific value was disclosed.

The E213DS system using RFE feature selection and an RF classifier, introduced by Alani [9]
achieved an almost perfect prediction accuracy rate of 99.9% and the same precision, recall and F1-
score rates, with an exceptionally low loss of 0.05%. Combining this with a training phase of 21 s, and
a detection time of 0.1517 psec, and we get an impressive overall IDS performance.
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However, a slightly similar accuracy rate was achieved by Altaf et al. [31] using the GNN-
based network IDS with a much faster training time of 2.89 s. This framework considers the full
communication between every pair of IoT nodes at the edge level in the network. The result highlights
the proposed model’s capability to learn entirely from the inherent characteristics of network traffic
made up of different attacks. This model introduces an alternative to Alani [9], which achieved the
highest yielding accuracy IDS solution in all major output parameters and a high accuracy rate, with
competitive training times across all datasets compared.

Additionally, Altaf et al. [31] also mentioned achieving an extremely high measurements related
to precision, recall and F1-score. However, the downside of this model is the need to construct a multi-
edge graph structure at the beginning of the preparation phase of the model.

Additionally, applying FL poses some challenges, like poor robustness against malicious attacks,
unfair resource allocation among devices, imbalanced data distribution, varying data sources and
quantities among different devices. These challenges cause significant performance discrepancies in
the global model on different clients, as mentioned by Liu et al. [54].

Some reasonably high achieving IDS research was deliberately excluded from this evaluation as
it did not fit our key criteria. This includes the work of Yesi et al. [55] based on Deep Covolutional
Autoencoder (DCAE) [56], the Facebook Prophet model [57], an Intrusion Detection Deep Learning
Multi-class classification model (EIDM) [58], research into ML-based IDS [59], IDS for IT devices
operating only in cloud environments [60] reduction of processing power [61], and cost reduction [62].

4 Discussion

The aim of the above analysis has been to draw comparisons between recent IDS for IoT devices
and identify best practice. General outcomes demonstrate that using Al technologies, IDS systems
can provide efficient anomaly detection and increase IoT resiliency towards current and new cyber-
attacks. However, it is paramount to protect sensitive data collected on IoT devices and prevent it from
being exposed over the network. Moreover, any selected IDS model should improve the performance
compared to other tested models, so that it will be able to identify network anomalies, as soon as they
arrive from the network. In addition, as IoT devices have limited resources, the IDS model should be
as lightweight as possible in its resource utilisation requirements. The same conclusions were drawn by
Inam et al. [63], who indicated that due to the peculiarities of IoT devices, their security design is more
difficult. Taking into consideration that there is a wide range of devices and protocols available, finding
effective security solutions is highly challenging, particularly since conventional anomaly detection
techniques generally depend on centralized systems, where data is gathered and analysed in a single
location, such as a cloud server or local server may cause delays. These are too numerous to include in
this research but they do increase communication expenses [64] and cause privacy hazards such as the
Deep Convolutional Autoencoder (DCAE) [56], achieving a detection rate of 99.17%, as mentioned
by Yesi et al. [55]; the Facebook Prophet model used with several classifications and algorithms and
achieving the highest prediction average accuracy of 96.35% [57], and an enhanced anomaly-based
Intrusion Detection Deep Learning Multi-class classification model (EIDM) that can classify 15
different traffic behaviours, including 14 attack types, and achieved an accuracy of 95% [5§].

In summary, selecting the most suitable Al-based framework for enhancing IDS in IoT devices
and networks is predominantly focused on achieving the highest prediction accuracy, however, there
are other parameters to be considered, which have considerable influence on the selected framework.
This paper discusses the following IDS characteristics:
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e Prediction accuracy

e Training efficiency

e Dataset preprocessing
e Data privacy

e Model performance

e Resource utilisation

4.1 Prediction Accuracy

The main aim of any IDS system is to provide the highest prediction accuracy possible, so that
malicious traffic will be identified and distinguished from benign traffic. Alani [9] reported an almost
perfect prediction accuracy, precision, recall and Fl-score of 99.99% and Altaf et al. [31] achieved
99.96% in accuracy, precision and recall and almost the same F1-score. However, the framework used
by Alani [9] needed a relatively long training time of 21 s. In contrast, the GNN-based framework
introduced by Altaf et al. [31] achieved a slightly lower prediction accuracy, precision, recall and F1-
score compared to Alani [9], but once the multi-edged graph structure was constructed, this model
was highly effective in reducing false alarms, hence increasing precision. In addition, it is capable of
learning from inherent characteristics of network traffic that constitutes different attacks. This results
in high accuracy with competitive training times across several datasets which is why it is a preferred
framework for prediction accuracy.

4.2 Training Efficiency

The training phase in Al-based IDS frameworks is fundamental for the efficiency of the entire
model. While incorporating an ML algorithm in IoT infrastructure, we must ensure that the model
utilises the data efficiently and in as close to real-time as possible, as mentioned by Igbal et al. [65].
However, additional time required to provide a more accurate prediction reduces the model’s efficiency.
Comparing the training times mentioned by Alshahrani et al. [40], and Alani [9], the former achieved
99.70% accuracy within 11.029 s, while the latter had slightly higher accuracy but took almost
twice the time to achieve an almost perfect prediction accuracy of 99.99%. This suggests that both
Alshahrani et al. [40] and Alani [9] require significantly longer training times when compared to
Altaf et al. [31], which only requires 2.89 s to achieve prediction accuracy of 99.96%. Therefore,
Altaf et al. [31] is the preferred framework for training efficiency.

4.3 Dataset Preprocessing

Dataset preprocessing comparison was mentioned in Table 2, indicating several operations that
were performed on the selected datasets, in preparation for feature selection and the training phase of
the framework. Therefore, the preprocessing phase is extremely important to any framework. However,
this causes the framework to be reliant on a specific dataset, for which the appropriate preprocessing
algorithm was already set. When changing datasets, the preprocessing phase should be altered to suit
the new dataset. This introduces another aspect that requires more generalisation and the ability
to dynamically adjust the preprocessing algorithm for different datasets, while leaving the feature
selection with dynamic capabilities.

The limitations of appropriate datasets for different Al-based IDS frameworks were mentioned
by Abusitta et al. [18] specifically regarding existing datasets, capable of assisting DL-models in
identifying new attacks, specifically Zero-day exploits.
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4.4 Data Privacy

Ensuring data privacy and security is one of the most important problems for artificial intelligence
modelling of data, as mentioned by Zeng et al. [66]. When analysing IDS solutions, data privacy and
data exposure are critical concerns, as malevolent actors might use eavesdropping techniques to expose
sensitive information, which needs to be kept private. Such exposure might introduce MItM attacks.
Sauter et al. [67] mentioned that a device adopting the IoT concept is generally utilising a connection
to a back-end server, sometimes not compatible with industry best practices, which poses a security
risk because it bypasses established security concepts, such as the defense-in-depth approach. This may
allow malicious [oT devices to take part in the network, enabling them to inflict label-flipping attacks
or contaminate the model’s training data, which will reduce the model’s accuracy prediction and its
ability to provide appropriate malicious data prediction [42].

Reducing data exposure between loT devices and the centralised server, holding the generic
ML model is introduced by utilising Federated Learning instead of Centralised Learning or Dis-
tributed Learning, as mentioned by Hajj et al. [42], Yang et al. [43] and in Fig. 6, which provides
a more secure training method. Similar perspectives were mentioned by Chandiramani et al. [68]
and Ahsan et al. [69], who indicated that Federated Learning is highly promising as it is capable
of training models on a user-device, without sharing the raw data, thereby preserving privacy while
enabling edge devices to collaboratively learn a shared prediction model. However, additional studies
by Jagarlamudi et al. [70], Yang et al. [71], and Wang et al. [72] showed that FL also has limitations
regarding security and privacy, which require appropriate planning and design to be overcome.
Additional research was conducted to establish a method of protecting the confidentiality of data
in ML models, like Decentralised Secure Framework (DSF) [73], on a decentralised network without
the need for a third-party server, as mentioned by Anh-Tu et al. [74].

4.5 Model Performance

Malicious attack prevention is a core capability of any IDS, especially when these models are
Al-based and rely on training data. Comparing several Al-based IDS frameworks and models with
respect to prediction accuracy of malicious traffic, the model’s resilience and its ability to identify
new attacks and anomalies are paramount. Cyber-attacks such as DoS and DDoS are common in
generic datasets and hence can be easily identified. However, Zero-day exploits are much harder to
locate. Alani [9] mentioned that identifying Zero-day exploits in existing DL-based models will be
their aim in future research. Relying on dataset data is another limitation when training a model to
identify similar anomalies mentioned in the training data. Furthermore, selecting appropriate features
is of high importance as they might also limit the prediction output for new and unfamiliar malicious
traffic.

Training time also affects model performance [17], to achieve an accuracy of 99.40% within
455 ms, an extremely high amount of loss, measured as 10% of the input data, is introduced into
the system. If slight changes to normal behaviour are identified as abnormal, a significant increase in
false positives may be introduced, therefore reducing the efficiency of an IDS model. Song et al. [75]
focused on performance related to detecting [oT time series anomalies, using multi-layer Perceptron
Graph Convolutional Networks (GCN) [76]. Theoretical work showed a significant improvement over
traditional methods. Additional aspects that might impact the performance of a proposed framework
are wired and wireless network used to connect the IoT devices to the Internet, as mentioned by
Neeti et al. [77] and energy-efficient power and mobility aspects [78] although these are not part of
this research.
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4.6 Resource Utilisation

An FL-based model, like a distributed model (see Fig. 6) provides resource off-loading by utilising
a remote cloud server for training a global ML-model. In addition, IoT devices can train their internal
model with the input data they accumulate over time, reducing the need to share sensitive data with
the remote server. As mentioned by Liu et al. [54], FL models can train their own models on the
edge-device, without sharing the raw data, thereby protecting privacy. In addition, these models can
collaborate on learning a shared prediction model, thereby reducing network traffic between each IoT
device and the cloud server. However, a sudden rapid increase in resource utilisation of IoT devices
will increase its power consumption, which may also be an indication of a potential cyber-attack, as
mentioned by Miller et al. [79].

5 Future Work

Al-based IDS solutions are based on the ability to train a model and enhance its prediction
accuracy of potential malicious cyber-attacks. The training phase consists of an input dataset,
appropriate data preprocessing mechanisms and efficient training algorithms which aim to reduce
the training time, while keeping model output at high prediction accuracy. The training phase requires
appropriate dataset cleanup and balancing operations to allow better feature extraction, resulting in
enhanced prediction accuracy while reducing training time. The lack of appropriate datasets, when
dealing with IoT devices and networks was highlighted by Divyansh et al. [80] as a key challenge to
providing robust and generalised IDS frameworks. Therefore, additional datasets should be created.
These should contain the latest and most up-to-date information on network traffic with the latest
known malicious and benign data for a range of IoT devices and network components. In addition,
as mentioned by Vila et al. [4], new data sources are required to enhance the adaptability and efficacy
of IDS study for various IoT devices, and more research is needed to explore new frameworks
that can target new vulnerabilities, by studying the features of network traffic generated during
malicious attacks. Significant effort has been made in the research of processing loT data based on
neural networks and this trend will most likely continue in the coming decades, as mentioned by
Zhang et al. [81].

Additional research involving the adaptation and further implementations of GNN is required
to enhance IDS capabilities to identify anomalies in individual devices within an IoT network. The
abilities of the GNN to extract information from the inherent behaviour of a device through adjacent
neighbours in a network has significant potential to contribute to the identification of Zero day
exploits, which are particularly important in infrastructure, utility and military-based IoT networks.
Such implementations of GNN capabilities can potentially provide solutions for current and future
IDS frameworks.

In addition, identifying new frameworks and enhancing currently existing frameworks is of high
importance, even if prediction accuracy of 99.99% is being achieved. There is still a need to reduce
training time, so that the IDS ability to predict potential cyber-attacks with high accuracy is reduced
as close to Realtime as possible, while keeping resource utilisation to a minimum.

As discussed earlier in this research, the preferred method the ML learning phase for IDS
frameworks is FL. There is a need to further research FL methods and the data flow between
edge IoT devices and the remote centralised server to identify potential bottle necks in highly
congested networks. Special consideration should be given to securing FL frameworks in the event
of contamination or malicious activity that has compromised a valid edge device within the internal.
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6 Conclusions

The E2I3DS framework [9], yielded the highest prediction accuracy rate at 99.99% with an
exceptionally low loss rate of 0.05% and a training phase of only 21 s. This also demonstrated that
the RF classifier achieved significant prediction accuracy. Altaf et al. [31] achieved similar results with
the GNN-based network IDS, with full communication between any pair of IoT nodes at the edge level
in the network. This framework has the additional benefit of requiring only 2.89 s of training time,
yielding a better overall performance. However, sharing sensitive data over the network still poses
security risks and thus requires additional security intervention such as an FL training model which
has the potential to reduce sensitive data exposure and excessive network traffic. Thus, combining the
GNN-based model with FL has the potential to provide the most efficient overall Al-based IDS for
IoT devices and networks.
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