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ABSTRACT

From a medical perspective, the 12 leads of the heart in an electrocardiogram (ECG) signal have functional
dependencies with each other. Therefore, all these leads report different aspects of an arrhythmia. Their differences
lie in the level of highlighting and displaying information about that arrhythmia. For example, although all leads
show traces of atrial excitation, this function is more evident in lead II than in any other lead. In this article, a new
model was proposed using ECG functional and structural dependencies between heart leads. In the prescreening
stage, the ECG signals are segmented from the QRS point so that further analyzes can be performed on these
segments in a more detailed manner. The mutual information indices were used to assess the relationship between
leads. In order to calculate mutual information, the correlation between the 12 ECG leads has been calculated.
The output of this step is a matrix containing all mutual information. Furthermore, to calculate the structural
information of ECG signals, a capsule neural network was implemented to aid physicians in the automatic
classification of cardiac arrhythmias. The architecture of this capsule neural network has been modified to perform
the classification task. In the experimental results section, the proposed model was used to classify arrhythmias in
ECG signals from the Chapman dataset. Numerical evaluations showed that this model has a precision of 97.02%,
recall of 96.13%, F1-score of 96.57% and accuracy of 97.38%, indicating acceptable performance compared to other
state-of-the-art methods. The proposed method shows an average accuracy of 2% superiority over similar works.
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1 Introduction

Electrocardiogram (ECG) technology has recently garnered interest as a simple and affordable
method in mobile phones and smart wearable devices. A signal ECG is a graphic record produced by
an electrocardiograph machine that provides details about heart rate and rhythm and other related
abnormalities. The ECG signal has found an important role in medicine due to its ability to carry
crucial information about the human cardiovascular, respiratory, and nervous systems and to monitor
the health of people remotely. The daily monitoring of human vital signs with ECG signals reduces
the risk of heart disease. Heart arrhythmia in ECG signals is among these diseases, which is the most

Copyright © 2024 The Authors. Published by Tech Science Press.
@ @ This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2024.053817
https://www.techscience.com/doi/10.32604/cmc.2024.053817
mailto:fardin.abdali@razi.ac.ir

972 CMC, 2024, vol.81, no.1

common cause of sudden death. In this arrhythmia, the heart is not able to pump sufficient blood
to supply oxygen and nutrients to the organs, which leads to fatigue, breath shortness, and edema.
According to the statistics of the European Society of Cardiology, cardiac arrhythmias in ECG signals
have been diagnosed in at least 26 million adults worldwide, and 6.3 million new cases are added to
this number every year [1]. However, early diagnosis can increase the possibility of treating this disease
and thus decrease the risk of death [2].

Heart arrhythmia diagnosis is a time-consuming and exhausting task that requires accurate and
constant measurement by a skilled cardiologist. As a result, computer-aided diagnosis, with the help
of new and efficient systems, can increase the ability to recognize the information recorded by an ECG
[3]. Deep memory models have worked very well to detect arrhythmia in ECG signals. Models based
on neural networks, such as convolutional neural networks (CNNs) and residual networks (ResNet)
[4] and stack autoencryption extract features with high quality by passing the ECG signal through
convolutional layers [5].

In recent years, many methods based on these deep learning models have been presented. Each
of these methods has advantages and disadvantages [0,7]. For example, high accuracy is one of the
advantages of different methods, which has grown significantly in recent years. In order to show the
strengths and weaknesses of some available methods, here we provide a visual comparison. Fig. |
shows the results of deep learning classifications, including CNN with nine convolutional layers
(abbreviated as CNN-9) [4], XGBoost [5], CNN-5[6], ResNet with 18 convolutional layers (abbreviated
as ResNet-18) [7], multilayer perceptron (MLP) [¢] and CNN-10 [9], to illustrate the effect of the
number of measurement leads on the performance of the ECG arrhythmia classification processing
system. The ResNet-18 yielded the best arrhythmia detection result with an accuracy of 95.55%, as
reported in [7], according to the diagram in Fig. 1. This method, which uses 12-leads ECG signal to
create a classification, can identify a reasonable number of samples. The CNN-9 classifier made from
single-lead ECG signals had a decreased performance of 11.31%, resulting in an accuracy of 84.24%,
as reported in [4].
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Figure 1: The results of deep learning classifiers in the classification of Chapman ECG dataset [4-9]

From a medical perspective, 12-leads ECG signal has a functional dependency. Therefore, each
of these 12-leads ECG signal reports on different aspects of a particular medical phenomenon. Their
difference lies in the extent to which they highlight and display information about the phenomenon.
However, they all indicate the situation in time, and their information is functionally dependent. For
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example, in ECG signals, although all leads show traces of atrial pacing, this activity is most evident
in lead II. This means that when an arrhythmia appears, there are traces of this phenomenon in
almost all leads, although it is more evident in some leads and less evident in others. As such, this
effect can be enhanced in some leads. By extracting mutual information between 12-leads ECG signal,
knowledge of all leads can be obtained. As a result, the neural network model is trained based on
the knowledge extracted from the mutual information between 12-leads ECG signal. Finally, we can
provide a classifier based on single lead ECG signal, which is expected to have the following properties:

1. It has acceptable performance compared to classifiers built on 12-leads ECG signal with
minimal loss of accuracy (unlike Fig. 1).

2. A small input of this classification optimizes the complexity of calculation and reduces the
number of model parameters, and it can be realized on devices with different computing power.

In this paper, this medical fact served as the basis for the introduction of a method based
on mutual information (MI) and a capsule neural network model, which aims to enhance weak
channels by utilizing strong channel information. Our calculation of this functional and structural
dependence between ECG leads will extract latent medical variables. Therefore, in this paper, first,
these dependencies were calculated by applying an MI extraction method. Then, capsule neural
networks were used for the learning model. Capsule networks have the advantage of better analyzing
information related to the sequence pattern, such as ECG signals, by simultaneously using two levels
of convolutional layers. Thus, these networks seem to have better results, which, of course, requires
laboratory evaluations and comparison with other models. Based on assessments using the Chapman
ECG dataset, the proposed method resulted in an accuracy of 97.38% compared to the other state-of-
the-art methods for classifying the Chapman ECG dataset. The most important innovations of this
paper are as follows:

1. Utilizing an MI-based technique to calculate the functional dependence between the leads of
ECG signals.
2. Using capsular neural networks to classify multi-level arrhythmia in ECG signals.

This paper consists of the following sections. Section 2 briefly reviews achievements in related
work. Section 3 thoroughly describes the proposed method in detail. Section 4 presents the results
and evaluates the parameters of the proposed method in comparison with other techniques. Finally,
Section 5 presents the discussion and draws a conclusion.

2 Related Work

This section offers an overview of the existing theories related to the ECG signal feature extraction
methods. It also provides details and explanations of the relevant formulas, including filters and
techniques in the pre-processed signal feature extraction section and the feature and classband
selection method [10]. ECG signal arrhythmia detection systems can be divided into two categories
based on the features used in them: generation of manual features and generation of deep features [11].

The working mechanism in most methods in the first category is the detection of fiducial points in
ECG signals. The QRS complex is the most important fiducial point in ECG signals. After detecting
the QRS complex, time and amplitude characteristics [12], statistics [13], signal amplitude [14], and
morphological features [ 5] are extracted from it, and other data, such as the relationship with the
adjacent QRS complex [16], are extracted from ECG signals. The quality of features used in this step
depends on the exact location of the QRS complex. In many methods, only the approximate location
of the QRS complex is identified. In addition, the QRS complex is sometimes damaged and may
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not be completely clear due to side problems such as noise. In other cases, known as non-fiducial
methods, the ECG is randomly divided into different segments, and features of those segments are
extracted. Features used include fast Fourier transform, discrete cosine transform, wavelet transform,
or symbolic representation. As mentioned in [17], extracting suitable features from an ECG signal
is a specialized engineering process (in both fiducial and non-fiducial methods) and requires basic
knowledge of the signal. For this reason, the generation of manual features is not generalizable and is
not very efficient in the design of detection systems for arrhythmia in strong ECG signals.

Deep learning models are used in the second category of feature generation. In the last decade,
deep learning has gained many supporters, and various methods from this branch, including CNN,
have been used to solve many problems. Recently, various methods have been presented for automatic
feature generation based on the latest deep learning technologies. Deep learning methods, including
CNN, provide multiple representations of raw data in the form of multiple processing layers that enable
automatic learning from these data. The methods in two families of ECG feature extraction algorithms
are described below.

Some essential methods used in feature generation from ECG signals based on CNN architecture
are given below. In [18], a DCNN-based ECG signal anomaly detection system was proposed, which
was built with four convolutional layers, two cumulative layers, and one fully connected layer. The
last layer was used for the classification process. The data used in the experiment consisted of signals
obtained from 33 female patients with regular daily activities. This test was performed using the signal
in 10 consecutive periods. According to the laboratory results, the accuracy of this method was almost
99%. In [19], a CNN-based ECG signal anomaly detection system was also introduced, in which an
ECG signal was entered into the model as a 2D connected image. The CNN architecture of this method
included 12 convolution layers, six integration layers, and two fully connected layers. The experimental
results using MIT-BIH and PTB dataset obtained from 18 healthy individuals showed an accuracy of
about 99% in this method. In [20], a system called deep ECG was introduced to detect arrhythmia in
ECG signals based on CNN. In this method, DCNN is used to extract features from different ECG
leads. The CNN architecture of this method included six convolution layers, three integration layers,
a dropout layer, and a fully connected layer at the end. The laboratory results showed the accuracy of
this method to be about 100%. These results were obtained from 52 healthy subjects using E-HOL-
03-0202-003 and PTB dataset from Physionet. In [21], a semi-automated standard architecture called
ResNet was used to design a system for detecting arrhythmia in ECG signals. At first, S transform
was used to make 2D images of the ECG trajectory. These images were then fed into the CNN model
to generate features. In [22], the deep CNN architecture of several convolutions and integration layers
based on the ResNet standard was used to generate global features. The classification process was
performed in the last step of the majority voting algorithm. The laboratory results of this method
showed an accuracy between 93% and 99% for different datasets. Although the CNN-based feature
generation methods are very accurate and have made significant progress in the ECG signal arrhythmia
detection system, as mentioned above, the architecture of CNN models, which includes the number
and type of layers, is designed through trial and error.

3 Proposed Method
3.1 Mutual Information
There are 12-leads ECG signal for each person in the used dataset (S“''?). Each of these signals

views the heart from a specific angle. Therefore, by combining the information of these 12-leads ECG
signal, one can obtain a higher level of information about the heart signals in each person. Each
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of these ECG signals, if examined individually, is a semi-periodic signal. This means that the signal
consists of a series of linear sequences of the same or different lengths that repeat one after the other.
Hence, the signal can be decomposed by dividing it into repeated units. The best point for segmentation
criteria is the QRS. Accordingly, in the method proposed in this thesis, the ECG signal, as shown in
the Fig. 2, is segmented using the QRS points.

T T T T LE

PR —— |

o

g

Ay

e x@ 3 MO)

1

f e
-~
y

- - P

Figure 2: Segmentation of ECG signal into x? to different segments

To extract mutual information between 12 ECG leads, the correlation between them has been
calculated. As shown in Fig. 3, the correlation between the two leads S® and SY is calculated using
the following equation:

(-9 ()
JE o0 =9 00 -

In this equation, a"” represents the calculated correlation. x? is the /-th window in the signal S©
and X is the mean of all windows in this signal. Similarly, y is the /-th window in the signal S¥ and y
is the mean of all windows in this signal. Finally, by calculating all correlations, a matrix M is formed,
which will be provided to the capsule neural network for final classification in the next section.
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Figure 3: The method of calculating the correlation between two leads S and SV, in this figure a®” is
the output of the correlation, finally M is the matrix consisting of correlation between 12 ECG leads

3.2 Capsular Neural Networks

The general structure of the capsule networks is shown in Fig. 4. The given number has two parts:
the encoder part and the decoder part. The encoder part usually consists of three layers of convolution,
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primary capsules, and batch capsules. The encoder takes images as input and learns to encode them
into vectors of parameters during training. The decoder part, which is made up of fully connected
layers, takes a vector from the bundles capsule and learns to decode it as an image. It is important
to mention that the decoder considers only the capsule vector of the correct category during the
training process and ignores the incorrect ones. In fact, the decoder part is used as a regulator. As
a result, the correct output of the capsule receives the categories as input and learns to reconstruct
an image corresponding to it. The cost function of this task is the Euclidean distance between the
reconstructed image and the input image. In general, a capsule consists of two important parts: 1-
Matrix multiplication of input vectors with weight coefficients; 2-Numerical weighting of vectors
created in the previous step, weighted summation of vectors, and vector nonlinearization.
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Figure 4: Diagram of capsule neural network for ECG arrhythmia classification, this network includes
convolution layer, primary capsules layers, capsules of arrhythmia classes and decoder

Fig. 5 shows structures related to neurons and capsules. According to part (b) of this figure, input
vectors are received by capsule j (ul,u2,u3). They came from the other three capsules in the lower
layer and surface. The length of these vectors indicates the probability of stacking low-level capsules
of objects they have identified, and the direction of the vectors shows some of the internal states of
the discovered objects. The vectors are then multiplied by weight matrices w that show spatial and
other important relationships between low-level features (11, 42, u3) and high-level features (uj). The
resulting output is the predicted location of the features. The upper level is made according to the
following equation:

wli = wyu; 2
k
. . k . ok
zziO.Zsz— 1} — {zeR'o: R (3)
zJj
dz=——j=1.....k
Zk:l elk

After determining the u|i’s, a dynamic routing algorithm is used to find ¢, which is a new method
to determine the exit location of each capsule. In fact, at this stage, the goal is to decide which capsule
of the previous layer belongs to which capsule of the higher layer. In other words, ¢ values exist to
determine how much each capsule of the lower layer is related to the capsules of the next layer. The steps
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of the dynamic routing algorithm are listed in Algorithm 1. According to this table, the coefficients
cij indicate with what probability the ith capsule from layer 1 belongs to the jth capsule from layer
(L+1). The number of iterations is represented by r, and 1 refers to the previous layer of the capsule.
The value of b is the value of the local variable in the equations, which is used to update the weights of
¢, and the value of zero is assigned to it at the beginning. In Step (2-1) of this table, softmax function is
used. Eq. (3) is related to softmax. In Step (2) of Algorithm 1, the capsule of the next layer is obtained
from the weighted sum of the capsules of the previous layer, and then in Step (3), its value is entered
into the nonlinear activation function. Another innovation introduced in capsule networks is a new
nonlinear activation function that takes a vector and then transforms it into a form whose length does
not exceed one, but preserves the direction of the vector [6]. This is a new method of vector-to-vector
nonlinearization performed by this function.
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The prediction is done by the decoder network by reconstructing the input image from the output
capsules that have the most probable label. In the end, the decoder reconstructs the input signal
using the output capsules, which will help in the training of the model. Fig. 6 shows model’s decoder
structure.
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Figure 5: Structure related to (a) standard neuron and (b) capsule
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Algorithm 1: Steps of dynamic routing algorithm in capsule neural networks

1 Input: Mutual Information Matrix (M)

2 forward propagation:

3. bij—0

4.  for the i-th capsule in layer 1 and the j-th capsule in layer (L+1) do
5. OF =0 W, "VF+0p

6 WF =g (“)F)

7 store ' F

8.  end for

9. back propagation:

10. for thei-th capsule in layer 1 and the j-th capsule in layer (L+1) do
11. softmax (b)i —ci

12. dlicj ut jl i—yj

13. squash s (sj) —>uj

14. end for

4 Experimental Results
4.1 Dataset

In order to evaluate the proposed method, Chapman University and Shaoxing People’s Hospital
(Chapman ECG in short) dataset [23] has been used in this article. The details of the arrhythmia classes
as well as the number of samples of each arrhythmia are shown in Table 1. In this dataset, 12-leads
ECG signal are collected for 10,496 people. These signals have been recorded during several days and
several working sessions. The storage frequency is 500 Hz and the length of each signal is 10 s. The
creators of this data set have implemented a Butterworth filter and the Non-Local Means technique in
order to remove noise and make the signals smooth. In this paper, the classification model was trained
using 70% of the samples, and 15% of the dataset’s samples were used for each of the validation and
test stages.

Table 1: Details of the number of the samples of the arrhythmia classes in the Chapman ECG
dataset [23]

Rhythms Name Samples Males Females
Sinus Bradycardia (SB) 3889 2481 1408
Sinus Rhythm (SR) 1826 1024 802
Atrial Fibrillation (AFIB) 1780 1041 739
Sinus Tachycardia (ST) 1568 799 769
Atrial Flutter (AF) 445 257 188
Sinus Irregularity (SI) 399 223 176
Supraventricular Tachycardia (SVT) 587 308 279
Atrial Tachycardia (AT) 121 64 57
Atrioventricular Node Reentrant Tachycardia (AVNRT) 16 12 4
Atrioventricular Reentrant Tachycardia (AVRT) 8 5 3
Sinus Atrium to Atrial Wandering Rhythm (SAAWR) 7 6 1

All 10,646 5956 5310
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As can see from Table 1, the statistical distribution of the later samples of the Chapman dataset
shows an under-representation of some of the classes (fewer samples). This article only used the “first
seven classes” marked in Table | of the Chapman dataset.

4.2 Performance Evaluation of Model

In this section, the performance of the proposed the capsule neural networks, including its
computational complexity and accuracy, is examined. Accuracy, precision, recall and F1-score criteria
are also used to evaluate the results (Egs. (5) to (8)).

TP+ TN
Accuracy = (5)
TP+ TN + FP + FN
TP
Precision =—————— (6)
(TP + FP)
TP
Recall =————— 7
TP EN ™
Floscore =2 x Precision x Recall )

Precision + Recal

In this section, precision, recall, F1-score and accuracy evaluation criteria are used to evaluate the
model. The proposed model was implemented using TensorFlow Lite and Genymotion simulations.
The experiments were implemented on a Samsung smartphone with GPU capability. Table 2 displays
results for the capsule neural networks without and with MI. According to the accuracy of the
proposed model, no overall differences essentially existed between the capsule neural networks without
and with MI in cancerous samples. However, the table demonstrates that the capsule neural networks
with MI were approximately 259.10 times more compact with only 9.75 M parameters than the capsule
neural networks without MI.

Table 2: The results obtained from the calculation complexity and recognition of the models

Models #Params (M) Precision Recall Fl-score Accuracy

Train Phase (Without MI) ~106.10 M 98.00% 97.11% 98.65%  98.13%
Train Phase (With MI) ~31.14 M 98.42% 98.01% 97.55%  98.15%
Test Phase (Without MI)  ~89.20 M 95.53% 97.36% 94.94%  94.01%
Test Phase (With MI) ~9.715 M 97.02% 96.13% 96.57%  97.38%

4.3 Class-Based Results of Models

The results of the classification model were analyzed for samples in the Chapman ECG dataset.
Fig. 7 shows the results of the capsule network of the samples in the Chapman ECG dataset, shown
as confusion matrices. The performance of capsule neural network model, which was fully capable of
distinguishing samples in the Chapman ECG dataset, is amply demonstrated by this matrix, which
shows a high percentage of true positives. For instance, out of 2480 samples, or 2400 cases, the capsule
neural network model model recognized 2400 cases as true and only 118 classes—or 4% of cases in
this class—as false (false positive instances in the matrix).
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Figure 7: The results obtained through the confusion matrix of the capsule neural network model (a)
Seventh-class confusion matrix, (b) Binary confusion matrix
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The classification model generates results that satisfy all relevant criteria, such as accuracy,
precision, recall, and F-score, when a matrix similar to that in Fig. 7 is generated. This problem is
illustrated in the paper for every class. The ratio of the true positive rate to the false positive rate
for capsule neural network model is represented by a receiver operating characteristics. All samples
in the Chapman ECG dataset were binary categorized using this diagram. Requirements such as
sensitivity and specificity are crucial in this case. Receiver operating characteristics shows the true
positive rate to false positive rate ratio, as determined by the capsule neural network model. This led
to the achievement of 97% of the area under the ROC curve (AUC).

4.4 Comparison of Proposed Method with Other State-of-the-Arts Method

The proposed method was compared with previously introduced works in the categorization of
Chapman dataset samples. Table 3 highlights earlier work, all of which use deep learning approaches.
Yildirim et al. [24] used a CNN+LSTM classifier to classify seven categories of arrhythmia in a
single-lead ECG signal. In [25], a separate section for classification based on 2 leads ECG signal was
introduced. The results of this study for 10,436 patients in 2 lead type revealed accuracies of 91.86% in
evaluations. Andayeshgar et al. [26] have presented a method based on XGBoost for the classification
of 12-lead ECG signals, which shows 89.00% accuracy. Yildirim et al. [27] have presented a method
based on CNN and LSTM for the classification of 12-lead ECG signals, which shows 92.13% accuracy.
Moreover, Faust et al. [28] described a method for classifying 10,093 cases using Detrending+ResNet-
18. They reported a 95.55% accuracy in classifying seven categories of arrhythmia in the evaluation
portion. Deep learning approaches, such as CNN, have demonstrated improved performance by
increasing the number of inputs; thus, the methods described in Table 3 are advanced and have
generally acceptable accuracies. The proposed method exhibits behavior comparable to classifiers
created with 12-leads ECG signal and can compete with these classifications.
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Table 3: Comparison of proposed method with other state-of-the-arts method on the Chapman ECG
dataset

Reference Number of lead Number of class Method Accuracy
Yildirim et al. [24] Single Lead 7 CNN+LSTM 84.24%
Lietal. [25] 2 Lead 5 ResNet-31 91.86%
Andayeshgar et al. [26] 12 Lead 7 XGBoost 89.00%
Yildirim et al. [27] 12 Lead 7 CNN+LSTM 92.13%
Faust et al. [28] 12 Lead 7 CNN+LSTM 95.55%
Mabhari et al. [29] 12 Lead 7 Auto Encoder+MLP 90.00%
Chen et al. [30] 12 Lead 7 CNN 91.00%
Proposed Method 12 Lead 7 Mutual Information + 97.38%
Capsule Neural Network

5 Conclusion

This article proposes a new model using ECG functional and structural dependencies between
heart leads. The model evaluates the relationship between leads using mutual information indices.
Furthermore, to calculate the structural information of ECG signals, a capsule neural network is
implemented to aid physicians in automatically classifying cardiac arrhythmias. The experimental
results section applies the proposed model to classify arrhythmias in ECG signals from the Chapman
dataset. Numerical evaluations indicate that this model has a precision of 97.02%, recall of 96.13%,
F1-score of 96.57%, and accuracy of 97.38%, indicating acceptable performance compared to other
state-of-the-art methods. The proposed method can be further improved by presenting a multi-capsule
neural network version for ECG arrhythmia classification, considering the diversity problem and
generalization preservation.
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