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ABSTRACT

Brain tumor is a global issue due to which several people suffer, and its early diagnosis can help in the treatment
in a more efficient manner. Identifying different types of brain tumors, including gliomas, meningiomas, pituitary
tumors, as well as confirming the absence of tumors, poses a significant challenge using MRI images. Current
approaches predominantly rely on traditional machine learning and basic deep learning methods for image classi-
fication. These methods often rely on manual feature extraction and basic convolutional neural networks (CNNs).
The limitations include inadequate accuracy, poor generalization of new data, and limited ability to manage the high
variability in MRI images. Utilizing the EfficientNetB3 architecture, this study presents a groundbreaking approach
in the computational engineering domain, enhancing MRI-based brain tumor classification. Our approach high-
lights a major advancement in employing sophisticated machine learning techniques within Computer Science and
Engineering, showcasing a highly accurate framework with significant potential for healthcare technologies. The
model achieves an outstanding 99% accuracy, exhibiting balanced precision, recall, and F1-scores across all tumor
types, as detailed in the classification report. This successful implementation demonstrates the model’s potential
as an essential tool for diagnosing and classifying brain tumors, marking a notable improvement over current
methods. The integration of such advanced computational techniques in medical diagnostics can significantly
enhance accuracy and efficiency, paving the way for wider application. This research highlights the revolutionary
impact of deep learning technologies in improving diagnostic processes and patient outcomes in neuro-oncology.
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1 Introduction

Brain tumors, emerging as abnormal cell masses within the brain’s complex structure, stand
at the forefront of modern medical challenges. Their presence not only poses a significant health
threat but also demands intricate diagnostic measures for effective treatment. The classification of
these tumors is vital in crafting patient-specific treatment strategies and prognostic assessments. This
extensive study explores the intricate field of brain tumors, focusing on their diverse classifications,
diagnostic challenges, and the crucial role of Magnetic Resonance Imaging (MRI) in their detection
and evaluation. Brain tumors are typically categorized into primary and secondary tumors. Primary
brain tumors originate within the brain itself and encompass various types, including gliomas,
meningiomas, and pituitary tumors [1,2]. Conversely, secondary brain tumors, or metastases, originate
from cancer cells that have traveled from other body parts. The diversity in their biological behavior
necessitates precise classification, as each tumor type requires a specific therapeutic approach.

Addressing MRI interpretation challenges involves improving imaging quality, refining radiolo-
gists’ training, and integrating AI and machine learning algorithms. AI enhances diagnostic accuracy
and reduces interpretative variability. Ongoing research in imaging techniques like fMRI, DTI, and
spectroscopy offers deeper insights into brain tumor pathophysiology, aiding in precise diagnosis and
treatment planning [3,4].

Our method stands out due to its utilization of EfficientNetB3, known for its optimal balance of
model depth, width, and resolution, which enables high performance on complex image classification
tasks with reduced computational demand [5,6]. This is particularly important in medical imaging,
where precision and efficiency are critical. Compared to traditional methods, our approach offers
significant improvements in processing speed and diagnostic accuracy, achieving an impressive clas-
sification accuracy of 99%. This high level of performance underscores the potential of our model
to provide rapid and reliable diagnostic support in clinical settings, facilitating timely and precise
treatment decisions, thus highlighting its substantial benefits over existing methodologies.

The motivation behind this research is driven by the aim to enhance the accuracy and reliability
of brain tumor diagnoses. Given the high stakes involved in neuro-oncology, there is a pressing need
for tools that can supplement the expertise of medical professionals [7–10].

Despite significant advances in brain tumor classification using deep learning, several gaps persist:
limited use of EfficientNetB3 in medical imaging, insufficient integration of diverse MRI datasets,
challenges in addressing overfitting and model generalization, lack of focus on real-time diagnostic
support, and a narrow focus on accuracy over comprehensive evaluation metrics. This study aims
to address these gaps by leveraging EfficientNetB3 for enhanced classification, integrating diverse
MRI datasets for better generalizability, implementing advanced regularization techniques to combat
overfitting, emphasizing real-time diagnostic potential, and conducting a comprehensive performance
evaluation using various metrics including accuracy, precision, recall, F1-score, and ROC-AUC curves.

The contributions of the proposed study are summarized as follows:

• This study introduces a cutting-edge deep learning model that incorporates the pre-trained
EfficientNetB3 architecture, augmented with custom dense layers, to classify brain tumors from
MRI images.

• The study demonstrates the model’s superior performance compared to existing methods and
establishes a framework that can be applied in real-world clinical settings.

• Introduces a model that excels in accurately classifying gliomas, meningiomas, absence of
tumors, and pituitary tumors, providing a dependable tool for clinical decision-making.
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2 Literature Review

Efforts to achieve effective and precise classification of brain tumors have been a prominent
focus of research in the medical field [11,12]. This literature review aims to traverse through various
methodologies adopted over the years, from conventional image processing techniques to the sophisti-
cated realm of machine learning algorithms, particularly deep learning. In Table 1, several studies are
mentioned with their summary.

Table 1: Summary of studies

Study Objective Summary

Woźniak et al. [13] Enhance CT brain scan analysis
with CLM (96% accuracy).

Introduced CLM for faster and
more efficient CT brain scan
analysis, achieving 96% accuracy.

Demir et al. [14] Improve brain tumor classification
with 3ACL model (up to 99.29%
accuracy).

Presented 3ACL model combining
attention, CNN, and LSTM
structures for high accuracy brain
tumor classification.

Tandel et al. [15] Develop CAD tool for brain tumor
grading with ensemble CNNs (up to
98.88% accuracy).

Introduced CAD tool using
ensemble CNNs achieving up to
98.88% accuracy for brain tumor
grading.

Hossain et al. [16] Introduce MBINet for brain tumor
classification (96.97% accuracy).

Proposed MBINet achieving 96.97%
accuracy for brain tumor
classification.

Mijwil et al. [17] Utilize MobileNetV1 for early brain
tumor detection (over 97%
accuracy).

Employed MobileNetV1 achieving
over 97% accuracy for early brain
tumor detection.

Ruba et al. [18] Segment brain tumor extent using
cascaded CNNs (accurate
segmentation).

Proposed cascaded CNN approach
for accurate segmentation of brain
tumor extent.

Yousef et al. [19] Explore brain tumor segmentation
with Bridged U-Net-ASPP-EVO
(superior results).

Introduced Bridged
U-Net-ASPP-EVO architecture
achieving superior results for brain
tumor segmentation.

The literature on brain tumor classification has primarily concentrated on different deep learning
models, with significant attention given to convolutional neural networks (CNNs) for their effective-
ness in processing image data. Previous studies have employed architectures like VGG, ResNet, and U-
Net, often yielding high accuracies but at the cost of substantial computational resources and complex
tuning requirements. EfficientNetB3 tackles these challenges by utilizing a scalable architecture that
optimizes the balance between depth, width, and resolution of the network, thereby improving both
accuracy and computational efficiency [20]. Medina and Sánchez in their research work used the
EfficientNetB0, B3, and small and used datasets that are publicly available, such as figshare, compared
to this study, the proposed study proposes the use of 3 different datasets, and each feature scaled for
better accuracy adaptation. Similarly, Reyes and Sánchez in their study proposed CONVNEXT and
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EfficientNet models, also this model was performed well but in the same, it suggested research direction
leading to better feature extraction and dataset [21]. The proposed model leverages compound scaling,
which allows it to systematically and uniformly scale up CNNs in a way that traditional models do not,
making it uniquely suited for medical imaging tasks where both detail precision and processing speed
are crucial. Through the integration of EfficientNetB3, our study advances technological capabilities
in the field, presenting a method that notably enhances the speed and accuracy of brain tumor
classifications compared to previous models. This addresses critical technological gaps and fulfills
clinical needs more effectively.

3 Materials and Methods

Our methodological approach harnesses the EfficientNetB3 architecture, a testament to the
convergence of engineering innovation and medical diagnostics. Through meticulous data prepro-
cessing and augmentation strategies, we exemplify the engineering rigor applied to enhance model
performance, emphasizing the synergy between computational engineering principles and healthcare
applications. The workflow of the model is shown in Fig. 1.

Figure 1: Model schematic diagram

3.1 Dataset Description

The dataset utilized in this research comprises a total of 7023 MRI pictures collected from
three different sources: figshare [22], the SARTAJ dataset [23], and Br35H [24]. This compilation
guarantees a comprehensive representation of tumor appearances, thereby improving the model’s
resilience and applicability. Before the model was trained and evaluated, preprocessing of these pictures
was indispensable. Initially, all pictures underwent resizing to a consistent dimension of 224 × 224
pixels to maintain uniformity across the dataset, which is critical for effective data handling by neural
networks. This methodical distribution ensured that the model was exposed to balanced and varied
data during both training and testing phases, as illustrated in Table 2.

Preprocessing is crucial in machine learning, especially for handling medical images such as MRI
scans used in brain tumor classification. Fig. 2 illustrates sample images from the dataset, processed
using Eq. (1).
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Table 2: Dataset description

Type Training Testing

Glioma 1321 300
Meningioma 1339 306
No tumor 1595 405
Pituitary 1457 300

Figure 2: Sample images from the dataset
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Algorithm 1: Data preprocessing
1. Initialize an ImageDataGenerator instance for both training and testing datasets to apply

real-time data augmentation.
2. Specify target image size (224 × 224) for uniformity and set batch size to 16.
3. Load images and labels from the specified file paths using the flow_from_dataframe method,

applying real-time data augmentation for the training set and only rescaling for the test set.
4. Normalize image pixel values to a range of 0 to 1.

Resized Image = Resize (Original Image, new dimensions) (1)

Neural networks require a consistent input format to process data efficiently. By resizing all images
to the same dimensions, we ensure that each input fed into the network is of a uniform size, thereby
facilitating smoother and more efficient processing and further the image is normalized using Eq. (2).

Normalized Image = Image − Mean
Standard Deviation

(2)

Algorithm 1 details the steps for preparing the MRI image data for model training and evaluation.

The augmentation techniques used include:

• Adjustments in Brightness and Contrast: Variations in brightness and contrast were introduced
randomly. This step is particularly important as it mimics the variations that can occur in real-
world imaging scenarios due to differences in MRI machine settings and conditions.

• Rotation and Flipping: The images underwent random rotation and horizontal flipping. These
transformations aid the model in learning to detect tumors irrespective of their orientation
within the brain.

• Scaling and Translation: Random scaling and translation (shifting) of images were also per-
formed. This ensures that the model is not biased towards tumors of a specific size or location
within the brain.

• Artificial Noise Addition: To simulate the effect of different MRI machine qualities and imaging
conditions, artificial noise was occasionally added to the images. This step helps in making the
model robust to noise that is often present in real MRI scans.

Further, to mimic real-world variations in MRI scans and improve the model’s adaptability,
the images underwent normalization and augmentation processes. These included adjustments in
brightness and contrast, as well as the application of random rotations, flips, and translations.
Additionally, to simulate various qualities of MRI machines and imaging conditions, artificial noise
was occasionally introduced. These preprocessing steps were vital in preparing the dataset for effective
training of the deep learning model, ensuring that it not only learns to recognize patterns in tumor
images but also becomes resilient to common variations and noise in clinical MRI scans.

3.2 Model Architecture

In this research, transfer learning plays a pivotal role in enhancing the model’s accuracy in
classifying brain tumors from MRI scans. We selected EfficientNetB3 for our classification model due
to its exceptional efficiency and scalability, vital for medical imaging applications. EfficientNetB3, a
part of the EfficientNet series, employs an innovative compound scaling approach to progressively
enhance the network’s depth, width, and resolution. This strategy enables improved accuracy while
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simultaneously reducing the number of parameters and computational expenses. This is crucial in
clinical settings with limited resources where fast processing is essential for timely diagnoses. Efficient-
NetB3 utilizes advanced techniques like depthwise separable convolutions to minimize computational
demands without compromising performance. It has outperformed larger models such as ResNet
and VGG in both accuracy and efficiency, making it ideal for medical imaging where high-quality
annotated datasets are often scarce. Its ability to maintain high accuracy with limited training
data and its fine-grained feature extraction capabilities are essential for accurately distinguishing
subtle differences in medical images, critical for classifying brain tumors. Moreover, its robustness to
variations in image quality and adaptability to different scales of input data further justify its selection,
ensuring the model is powerful and versatile in handling real-world medical imaging challenges.

Custom layers have been added on top of EfficientNetB3 to enhance its capabilities for brain
tumor classification. Following the base model, a BatchNormalization layer normalizes activations
from the preceding layer, stabilizing learning and enhancing training speed. Two Dense layers with 512
and 256 units incorporate L1 and L2 regularization to counter overfitting common in medical image
analysis, addressing complex patterns and inherent noise in the data. Dropout layers with rates of 0.4
and 0.2 are placed between these Dense layers to further prevent overfitting by randomly excluding
features during training.

The ultimate layer is a Dense output layer that utilizes softmax activation, customized for the
specific classes in the dataset (glioma, meningioma, no tumor, pituitary tumors). Softmax transforms
outputs into probability scores, facilitating clinical decision-making by indicating the likelihood
of each tumor type. The model is compiled with Adamax optimizer, noted for handling sparse
gradients well, minimizing categorical crossentropy suitable for multi-class tasks in classification. This
architecture combines advanced deep learning techniques, finely tuned for medical imaging challenges,
aiming for high accuracy and reliability crucial in clinical applications.

The architecture of this model and its visual representation is given in Table 3.

Table 3: Architecture of model

Layer (type) Output shape Param #

EfficientNetB3 (Functional) (None, 1536) 10783535
batch_normalization (BatchNormalization) (None, 1536) 6144
dense (Dense) (None, 512) 786944
dropout (Dropout) (None, 512) 0
dense_1 (Dense) (None, 256) 131328
dropout_1 (Dropout) (None, 256) 0
dense_2 (Dense) (None, 4) 1028

Algorithm 2 outlines the construction of the neural network using the EfficientNetB3 architecture.
Key steps include integrating the pre-trained EfficientNetB3 as the base, adding batch normalization
and dense layers with regularization to combat overfitting, and including dropout layers for robustness,
culminating in a SoftMax output layer for multi-class classification.
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Algorithm 2: EfficientNetB3 model for tumor classification
1. Load the EfficientNetB3 model pre-trained on ImageNet without the top layer, setting the

input shape to (224, 224, 3) and using ‘max’ pooling.
2. Add a BatchNormalization layer to stabilize and speed up the training process.
3. Append a fully connected Dense layer with 512 units, applying L2 and L1 regularization to

prevent overfitting.
4. Include a Dropout layer with a rate of 0.4 to reduce over-reliance on specific neurons,

enhancing generalization.
5. Add another Dense layer with 256 units, also with L2 and L1 regularization.
6. Insert a second Dropout layer with a rate of 0.2 to further enhance model robustness.
7. Add a Dense output layer at the end of the model architecture, with a number of units equal to

the total classes in the dataset. Apply SoftMax activation to enable multi-class classification,
ensuring that the model outputs probability distributions across all classes.

8. Create the model by utilizing the Adamax optimizer, setting the learning rate to 0.001. Employ
the categorical_crossentropy loss function and monitor accuracy as the performance metric.

To customize the EfficientNetB3 model for brain tumor classification, several key changes were
made. First, the original top layers were removed because they were designed for different tasks, not
medical imaging. A Batch Normalization layer was added right after the base model to stabilize
and speed up the learning process. Then, a series of Dense layers were included to help the model
learn complex patterns specific to brain tumors. In order to mitigate overfitting, regularizers were
incorporated into these Dense layers, ensuring the model does not overly specialize to the training
data. Dropout layers were additionally inserted between the Dense layers to enhance prevention of
overfitting, thereby decreasing dependency on specific neuron sets. These modifications enhance the
model’s accuracy and robustness in diagnosing brain tumors from medical images.

3.3 Final Layer and SoftMax Activation

The final layer of the model is crucial for classifying tumors. It’s like the brain of the model, helping
it decide which type of tumor it’s looking at. This layer uses something called SoftMax activation,
which turns the model’s output into probabilities for each of the four tumor classes. This makes it
easier to understand which type of tumor the model thinks it’s seeing. The output layer has four parts,
each one representing a different tumor type, giving a score for how likely it is that the tumor belongs
to each class.

3.4 Training and Validation Methodology

Training utilized the Adamax optimizer, a derivative of Adam known for effectively managing
sparse gradients in noisy scenarios. A learning rate of 0.001 was chosen to strike a balance between
training efficiency and convergence reliability.

Algorithm 3 outlines the training process of the model, including defining the number of epochs,
utilizing real-time data from generators, and evaluating the model’s performance on new data after
each epoch to encourage generalization and reduce overfitting.
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Algorithm 3: Model training and validation
1. Train the model on the training dataset using the fit method, with the number of epochs set

to 10 and verbosity level 1.
2. Validate the model performance on a separate testing dataset at each epoch to monitor

generalization capabilities.
3. Use the recorded training and validation loss and accuracy to adjust hyperparameters if

necessary, aiming to improve model performance.

During the training process, batches of images along with their corresponding labels were fed
into the model. A batch size of 16 was chosen, ensuring each gradient update had ample data while
remaining within the constraints of GPU memory capacity. The training and validation are shown in
Fig. 3.

Figure 3: Training and validation

In our study of brain tumor classification using MRI images, optimizing crucial training param-
eters—commonly known as hyperparameters—greatly impacted the effectiveness and efficiency of
the deep learning model. The choice of a learning rate, specifically configured at 0.001 using the
Adamax optimizer, was meticulously made to achieve a delicate balance between rapid convergence
and accuracy. This balance is especially crucial in medical imaging research. A batch size of 16 provided
computational efficiency while maintaining reasonable gradient variance, helping prevent overfitting.
Training for 10 epochs ensured sufficient convergence without overfitting, as indicated by stabilized
loss and accuracy metrics. Dropout rates of 0.4 and 0.2 were applied in different layers to prevent
overfitting and enhance robustness. L1 and L2 regularizations in the dense layers controlled overfitting
and promoted model interpretability and reliability, essential in medical applications.

3.5 Model Evaluation Techniques

Assessing the model’s performance is a pivotal step in gauging its efficacy and practicality.

Accuracy: This measure is straightforward, representing the proportion of correctly predicted
observations out of the total number of observations. It offers a quick evaluation of the model’s overall
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effectiveness and is calculated using Eq. (3).

Accuracy = Number of Correct Predictions
Total Number of Predictions

(3)

Precision and Recall: Precision, defined as the fraction of correctly predicted positive instances out
of all instances predicted as positive, can be calculated using Eq. (4). Recall, also known as sensitivity,
measures the proportion of correctly predicted positive instances out of all instances that truly belong
to the positive class, and is computed using Eq. (5).

Precision = True Positives
True Positives + False Positives

(4)

Recall = True Positives
True Positives + False Negatives

(5)

F1-score: The F1-score is a metric that merges Precision and Recall into a unified value. It
represents the harmonic mean of Precision and Recall, offering a balanced evaluation of a model’s
performance by taking into account both false positives and false negatives. Eq. (6) delineates the
computation of the F1-score.

F1 = 2 · Precision × Recall
Precision + Recall

(6)

Confusion Matrix: The confusion matrix acts as a structured table that illustrates the performance
of a classification model on a defined set of test data, where the true values are already established.
It provides a comprehensive breakdown of the model’s predictions compared to the actual outcomes,
thus revealing the types and frequency of errors made by the model.

4 Results and Discussion

The results section of a research paper is pivotal in showcasing the effectiveness of the proposed
model. In this study, our main goal was to evaluate a deep learning model specifically developed for
classifying brain tumors from MRI images. We assessed the model’s performance using critical metrics
including accuracy, precision, recall, and F1-score. These metrics are crucial for gauging the model’s
effectiveness and for comparing it with existing methodologies in the field.

4.1 Model Performance Metrics

Accuracy: The model exhibited exceptional accuracy in distinguishing between the four types
of brain tumors, achieving an impressive accuracy rate of 99% on the testing dataset. This high
accuracy underscores the model’s effectiveness in precisely identifying tumor types from the MRI
images provided. This achievement is particularly noteworthy due to the inherent complexity and
variability present in medical imaging data, especially in MRI scans of brain tumors. Fig. 4 illustrates
this finding.

• Precision, Recall, and F1-Score: The study meticulously tracked precision and recall metrics for
each tumor type. The model attained a precision of 1.00 for glioma, 0.99 for meningioma, 1.00
for cases without tumors, and 0.98 for pituitary tumors. In terms of recall, the model achieved
scores of 0.99 for glioma, 0.99 for meningioma, 1.00 for cases without tumors, and 1.00 for
pituitary tumors. The F1-scores, which offer a balanced assessment of precision and recall,
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consistently demonstrated high values across all categories. These results underscore the model’s
accuracy, dependability, and uniformity in classification tasks. The detailed classification report
is available in Table 4.

• ROC-AUC Curve Analysis: The ROC curve visually depicts how well a binary classifier
discriminates between classes as the decision threshold changes. Fig. 5 illustrates these metrics.

• Precision-Recall Curve Analysis: The precision-recall curve serves as an alternative evalua-
tion tool for binary classifiers, especially beneficial for assessing performance in imbalanced
datasets, common in medical diagnostics. Fig. 6 displays this curve.

• Confusion Matrix Analysis: The confusion matrix provided deeper insights into the model’s
performance. It revealed that the model had an exceptionally low incidence of misclassification
across all tumor types. For instance, the few cases where glioma was misclassified as meningioma
(and vice versa) were minimal. It has been shown in Fig. 7.
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Figure 4: Train loss and accuracy

Table 4: Classification report

Precision Recall F1-score

Glioma 1 0.99 0.99
Meningioma 0.99 0.99 0.99
Notumor 1 1 1
Pituitary 0.98 1 0.99

Misclassification cases primarily arose from the confusion between similar tumor types such
as gliomas and meningiomas, which often share overlapping radiological features. These misclas-
sifications could have serious clinical implications, as they might lead to inappropriate treatment
planning—meningiomas typically require only surgical removal, whereas gliomas, often malignant,
might need a combination of surgery, chemotherapy, and radiotherapy. Another contributing factor
to misclassifications could be the image quality and preprocessing methods; artifacts like motion
blur or suboptimal normalization processes might obscure crucial tumor characteristics. Additionally,
model sensitivity to the variability in training data can cause overfitting, reducing the model’s ability to
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generalize to new, unseen images, which is a critical issue in diverse clinical environments. To minimize
these risks, enhancing the dataset to include a broader spectrum of tumor appearances, implementing
advanced preprocessing techniques to improve image quality, continuously evaluating and updating
the model with new data, and integrating AI predictions with expert radiologist evaluations are
recommended. These steps will improve the reliability of tumor classification models and ensure their
practical utility in clinical settings, ultimately enhancing patient care outcomes.

Figure 5: ROC-AUC curve

In Table 5, a comparison is provided between different existing methodologies and the proposed
methodology, highlighting their respective strengths and applicability.

Unlike traditional deep learning models like VGG and ResNet, which often require substantial
computational resources and longer inference times due to their depth and complexity [17], Effi-
cientNetB3 is designed to scale more efficiently. Its design employs a compound scaling technique
that systematically adjusts the depth, width, and resolution of the network according to available
resources, thereby substantially improving processing speed and accuracy. This makes EfficientNetB3
not only faster but also more adaptable to different computational environments, from high-end GPUs
to more constrained settings, without a substantial loss in performance. The findings of this study
hold significant clinical implications, particularly in enhancing the accuracy and efficiency of brain
tumor diagnostics. This high level of performance can support radiologists in making more informed
decisions, reducing the likelihood of misdiagnosis and ensuring that patients receive appropriate
and personalized treatment plans more quickly. Additionally, the model’s efficiency and reduced
computational demands make it feasible for integration into real-time clinical workflows, potentially
streamlining diagnostic processes and reducing the workload on healthcare professionals.
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Figure 6: Precision-recall curve analysis

Figure 7: Confusion matrix
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Table 5: Comparison with existing methods

Study Technique Accuracy

Xie et al. [25] Deep learning-based brain tumor classifier using CNN 92.13%
Bingol et al. [26] Utilization of deep learning architectures (AlexNet,

GoogLeNet, ResNet50) for brain tumor image detection
85.71%

Pillai et al. [27] Advanced models in transfer learning 91.58%
Sharma et al. [28] ResNet50 adapted with integrated HOG features 88%
Gaur et al. [29] Integration of gaussian noise into CNN 94.64%
Alshammari [30] Incorporating CNN into VGG-16 93.74%
Kumar et al. [31] CNN based model 96.2%
Mahmud et al. [32] Enhanced CNN model with adjusted classification 93.3%
Islam et al. [33] Federated learning 91.05%
Proposed model Deep learning model architecture (EfficientNetB3) 99%

5 Conclusion

This study introduced a deep learning model based on the EfficientNetB3 architecture to
classify brain tumors from MRI images, demonstrating significant advancements over conventional
approaches in medical image analysis. The study found that using the EfficientNetB3 model, brain
tumors can be classified with 99% accuracy, which is a significant advancement in neuro-oncology.
This precise classification can improve diagnostic accuracy and lead to more personalized and effective
treatment plans for patients. The deep learning framework also enables quicker and more reliable
diagnoses, easing the workload on radiologists and potentially speeding up treatment. Future research
could focus on adapting and expanding the EfficientNetB3 model for other types of medical imaging,
such as CT scans, PET scans, and ultrasound imaging, to enhance diagnostic accuracy across a broader
range of medical conditions. Investigating the model’s performance in classifying other types of
tumors and diseases could validate its versatility and robustness. Additionally, integrating multi-modal
data, including clinical and genomic data alongside imaging, could provide a more comprehensive
diagnostic tool. Exploring the model’s applicability in detecting early-stage diseases and its potential
for predicting treatment outcomes could further advance its clinical utility.
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