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ABSTRACT

Large-scale indoor 3D reconstruction with multiple robots faces challenges in core enabling technologies. This
work contributes to a framework addressing localization, coordination, and vision processing for multi-agent
reconstruction. A system architecture fusing visible light positioning, multi-agent path finding via reinforcement
learning, and 360° camera techniques for 3D reconstruction is proposed. Our visible light positioning algo-
rithm leverages existing lighting for centimeter-level localization without additional infrastructure. Meanwhile,
a decentralized reinforcement learning approach is developed to solve the multi-agent path finding problem, with
communications among agents optimized. Our 3D reconstruction pipeline utilizes equirectangular projection from
360° cameras to facilitate depth-independent reconstruction from posed monocular images using neural networks.
Experimental validation demonstrates centimeter-level indoor navigation and 3D scene reconstruction capabilities
of our framework. The challenges and limitations stemming from the above enabling technologies are discussed at
the end of each corresponding section. In summary, this research advances fundamental techniques for multi-robot
indoor 3D modeling, contributing to automated, data-driven applications through coordinated robot navigation,
perception, and modeling.

KEYWORDS
Multi-agent system; multi-robot human collaboration; visible light communication; visible light positioning; 3D
reconstruction; reinforcement learning; multi-agent path finding

1 Introduction

3D reconstruction, the process of generating 3D models from 2D data like images, has emerged
as a pivotal technology with broad applications across robotics [1], virtual reality (VR) [2,3], Building
Information Modelling (BIM) [4,5], and autonomous navigation [6,7]. This technology enables robots
to perceive their surroundings accurately and empowers humans with richer understandings of com-
plex scenes. To address the urgent needs of the developing intelligent construction industry and related
applications such as surveillance, robotics, and inspections, core enabling technologies are increasingly
important. The level of system intelligence directly impacts task quality and indirectly demonstrates
value creation. In construction specifically, traditional human-centered inspection methods using
handheld devices inevitably lead to issues such as low efficiency due to time-consuming data collection;
high costs from personnel and equipment; low accuracy as relative-only measurements are obtained;
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uncertain coverage; inability to provide consistent periodic support; and safety concerns when sending
humans into dangerous unstable sites. Advancements in technologies like visible light positioning have
the potential to help alleviate these challenges by automating inspection and localization functions.

Despite the widespread use of traditional 3D reconstruction methods that often involve com-
plex setups with multiple cameras or specialized hardware [8], the popularity of 360° cameras has
significantly increased. 360° cameras have a wider Field-of-View (FOV) than normal perspective
cameras, making them suitable for a variety of applications. For instance, 360° cameras are now widely
used in the construction industry, as they provide a more efficient means of monitoring the whole
construction site.

Due to the calibration difficulties posed by wide FOV cameras, we introduce a solution to
address the calibration challenges associated with cameras featuring an ultra-wide FOV. Our approach
eliminates the need for sizeable checkerboard calibration patterns, typically required to model lens
distortion across a vast angular span. To address the calibration issue, our method projects the
distorted Equirectangular Projection (ERP) format of 360° panoramic imagery onto virtual cube faces
resembling orthographic perspective views. This projected representation facilitates compatibility with
deep learning networks pre-trained on undistorted perspective images, expanding the applicability
of low-cost commercial 360° cameras to computer vision tasks involving 3D scene reconstruction.
By resolving distortion and aligning the panoramic visual domain with established deep learning
models, our technique aims to further the utility of affordable 360° cameras in applications spanning
virtual/augmented reality to robotic vision.

In 3D reconstruction, using multiple robots can greatly enhance the accuracy and efficiency
of the reconstruction process. This approach is particularly useful for larger and more complex
environments. In addition to improving accuracy and efficiency, multi-agent-based reconstruction
can also lead to significant time savings. For instance, in construction sites, timely monitoring is
crucial for ensuring project progress and safety. Effective monitoring enables better communication
and coordination among project stakeholders, minimizing delays and costly problems. With timely
monitoring, construction companies can stay on track and deliver projects within the designated
timeline. As technology advances, the use of multiple robots in 3D reconstruction is becoming more
prevalent and essential.

Orchestrating multiple robots is critical for applications requiring reconstruction at a large
scale. To facilitate coordination between multiple mobile robots performing reconstruction tasks, we
need to first solve the Multi-Agent Path Finding (MAPF) problem [9]—defining a set of collision-
free trajectories within a given environment. While optimally solving MAPF is computationally
intractable, several algorithms have been developed to address this challenge. However, they are not
effective enough for robots to leverage their combined capabilities for applications involving large-
scale indoor 3D reconstruction. Certain methods take a search-based approach, such as utilizing
Conflict Based Search (CBS) [10,11], while others reduce the problem formulation into a Boolean
Satisfiability Problem (SAT) [12]. However, systems employing these techniques tend to scale with a
relatively small number of agents. The computational complexity of directly applying these algorithms
poses challenges for coordinating large multi-robot teams performing reconstruction tasks.

To address the scalability limitations, decentralized execution methods leveraging techniques
like Imitation Learning (IL) or Reinforcement Learning (RL) have been explored [13–16]. Such
decentralized approaches typically frame the MAPF problem as a partially observable Markov game,
reducing overhead by enabling agents to make decisions based on local observations rather than
requiring complete environmental awareness. RL-oriented techniques incorporate guidance from
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behavior cloning [13,14] to minimize divergence or utilize heuristics [17] for faster convergence.
By distributing computational demands across agents operating with partial information, these
decentralized techniques have shown promise for coordinating larger multi-robot teams involved in
reconstruction applications.

Researchers have recently explored approaches focused on agent collaboration through commu-
nication to further advance multi-agent coordination. Solutions proposed in this domain such as [16–
18] emphasize broadcast messaging, whereby signals are transmitted indiscriminately to surrounding
bots. While broadcast communication has shown substantial benefits over past work, it inherently
produces substantial communication overhead as not all circulated information is equally relevant
for decision-making. Additionally, obscuring the signal with extraneous data can confuse agents and
potentially degrade learning dynamics over time. As a result, reinforcement learning frameworks
aimed at minimizing communication overhead have been investigated [19–23]. Specifically, study [19]
presents an approach where robots communicate only with neighbors likely to impact immediate
choices, seeking to balance coordination and efficiency in large-scale multi-robot systems.

Precise positional awareness is critical when coordinating the motions of multiple robots, as
assumed in the techniques above. However, achieving accurate indoor localization poses major tech-
nical challenges. Existing indoor positioning systems relying on technologies like Wi-Fi, Bluetooth,
and acoustics often struggle to provide the centimeter-level precision required to enable advanced
multi-robot applications. While techniques like Simultaneous Localization and Mapping (SLAM) can
achieve higher accuracy, they suffer from complexities such as mapping sharing and scalability. The
lack of an indoor equivalent to GPS also presents barriers. Without a solution for ubiquitous, highly
accurate indoor navigation, many promising use cases for collaborative robotics and other Internet of
Things (IoT) technologies remain out of reach. Developing robust indoor positioning approaches able
to meet stringent centimeter-scale requirements represents an important area for continued research,
with implications for transforming how both industrial and consumer spaces are utilized.

Over the years, researchers and experts have been exploring various solutions to address the
limitations of current existing indoor positioning systems. One such enabling technology that has
gained significant attention is Visible Light Communication (VLC). One application of VLC that
shows promising performance for providing the high-accuracy positioning requirements of multi-
robot systems is visible light positioning (VLP) [24,25]. VLP utilizes VLC between existing Light-
Emitting Diode (LED) light fixtures deployed throughout indoor environments and cameras on each
robot. When a VLC-enabled LED enters the robot camera’s FOV, its binary light Identifier (ID) code
can be decoded by the robot. Each ID holds a precise location in the facility map. The robot then
utilizes an image-based positioning algorithm to estimate the camera’s pose to the detected LED,
achieving centimeter-level localization accuracy. A key advantage of VLP is that it can achieve this
precision indoors without relying on electromagnetic signals, avoiding interference issues. VLP also
leverages ubiquitous LED lights already installed for primary lighting purposes. These characteristics
make VLP especially suitable for facilitating accurate indoor navigation of fleets of collaborating
robots.

2 Methodology

To address bottlenecks caused by challenges like high costs and inefficiencies faced across
industries, this project proposes an integrated framework (Fig. 1) fusing a mobile robot platform with
VLC, MAPF algorithms, and 3D reconstruction techniques. VLP provides centimeter-level indoor
localization accuracy, overcoming the limitations of traditional methods. This enhanced precision
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facilitates more effective MAPF planning, enabling better coordination and collaboration between
robots. With an efficient MAPF algorithm, robots can plan paths more efficiently to save time and
energy. Additionally, each robot is equipped with a 360° camera, allowing real-time panoramic data
collection and 3D reconstruction. This enables various applications, especially in the construction
industry, to provide accurate and efficient feedback from its BIM model to users. By integrating
centimeter-level localization, collaborative multi-robot planning, and 3D sensing capabilities, the
proposed approach presents a promising solution for automation and data collection across industries.

Figure 1: Architecture of the proposed multi-agent-based indoor 3D reconstruction system

2.1 Visible Light Positioning

VLP holds promise as an indoor localization solution using the ubiquitous LED lighting infras-
tructure [26]. LEDs enable both VLC and omnipresent IoT applications [27,28]. With the prevalence
of LED lighting installations, VLP can capitalize on large-scale deployments [29] of VLC lights for
positioning. Meanwhile, the rolling shutter effect of smartphone cameras allows VLP, which is based
on Optical Camera Communication (OCC) systems [30], to achieve accuracy within centimeters.
By integrating VLP’s centimeter-level positioning [31] and global location awareness with onboard
robotic sensors such as Inertial Measurement Units (IMU) and odometers, a unified system has the
potential to address key challenges in indoor localization in a scalable way without extensive additional
infrastructure deployment. The combined capabilities of VLP and robotic localization could realize
accurate indoor positioning solutions.

2.1.1 Visible Light Communication

VLP methods can be broadly categorized based on the type of VLC receiver employed:
photodiode-based or image sensor-based. While photodiodes have been used in some early VLC
systems due to their simplicity, they suffer from issues like excessive sensitivity to varying light intensity
and light reflections that degrade positioning accuracy. In contrast, image sensor-based VLC has
garnered more widespread adoption in real-world applications due to its better compatibility with
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common devices like mobile robots and smartphones that already integrate cameras equipped with
Complementary Metal-Oxide-Semiconductor (CMOS) image sensors. These techniques leverage the
rolling shutter effect from the CMOS image sensors [30] and VLC light modulation, as illustrated
in Fig. 2. After that, the binary LED ID can be mapped from the patterns captured by the camera
sensor. By extracting the light pattern, we can query the location from the database.

Figure 2: Illustration of the rolling shutter effect on a CMOS image sensor when turning the LED light
on and off sequentially

In the VLP system, each LED is programmed with a unique ID encoding important location
metadata. To facilitate global localization awareness, the location information stored in the database
using this ID includes precise latitude and longitude coordinates as well as additional context like the
building, floor, orientation, and physical dimensions. This database is deployed on the cloud to allow
easy access via an Application Programming Interface (API), requiring only the LED’s ID to retrieve
its pre-programmed installation location details. When an LED signal is detected during positioning,
the extracted ID is queried against the cloud database to retrieve the LED’s unique coordinates [24,29],
as depicted in Fig. 3. By directly embedding this contextual data in each LED’s ID, the VLC system
can seamlessly map detected light signals to precise geospatial coordinates without extra infrastructure
or calculations, aided by the globally accessible cloud-hosted location database.

2.1.2 VLP-Based Robot Navigation

To enable image-based VLC light tracking, a dynamic VLC positioning tracking detection
algorithm is deployed to extract the region of interest in the image capturing the VLC LED [25].
Next, we proceed to identify the VLC light ID using an LED recognition algorithm. This algorithm
extracts image features and matches them to a pre-established database to identify the position data
or coordinates of the LEDs. Using imaging-positioning techniques, the robot’s position relative to the
LEDs in the localization area is determined, thus achieving accurate indoor positioning. The image
processing tasks, including LED feature tracking, light ID extraction, and coordinate calculation, are
carried out remotely by a server connected to the same local network as the robot.



166 CMC, 2024, vol.81, no.1

Figure 3: Robot decoding signals from VLC LED and accessing the light location through a database

In the above framework, we propose the integration of a 3D positioning algorithm [29] to further
enhance the indoor positioning precision on top of the LED’s location queried from the database.
Leveraging the pinhole camera model, the algorithm utilizes a camera mounted on the robot to capture
images of ceiling-mounted VLC lights. The lights’ projections in the image are used to determine the
relative position of the robot to the VLC lights [28], as shown in Fig. 4. To transform real-world 3D
points onto a 2D image plane, we first define a camera extrinsic matrix. The extrinsic matrix models
the spatial relationship between the camera’s coordinate system and the world coordinate system,
which specifies the camera’s position and orientation in world space. Specifically, the extrinsic matrix
is defined by the following equation, in which R and T represent the rotation and translation relating
the camera to the world frame:

[R|T ] =
⎡⎣r1 r2 r3

r4 r5 r6

r7 r8 r9

|
tx

ty

tz

⎤⎦ (1)

Figure 4: Illustration of the spatial relationship between light, onboard camera, and image plane [29]
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Notice that the translation matrix T is the coordinates of the camera w.r.t. the VLC light. In the
scenario where the camera is close to the ground, tz is assumed to be the height of the light zw. To get
the rotation matrix R, we utilize the robot’s IMU to find the orientations, i.e., pitch ϕx, roll ϕy, and
azimuth ϕz, and combine the information as follows:

R =
⎡⎣1 0 0

0 cosϕx −sinϕx

0 sinϕx cosϕx

⎤⎦ ×
⎡⎣ cosϕy 0 sinϕy

0 1 0
−sinϕy 0 cosϕx

⎤⎦ ×
⎡⎣cosϕz −sinϕz 0

sinϕz cosϕz 0
0 0 1

⎤⎦ . (2)

In addition, the camera intrinsic matrix is also defined as

K =
⎡⎣fx 0 u0

0 fy v0

0 0 1

⎤⎦ , (3)

where fx and fy are the focal lengths along the x-axis and y-axis, u0, v0 are the center coordinates of the
image plane, and γ is the skew coefficient between the x and y-axis.

The calculation of the LED position, based on the pinhole camera model with scale factor s, is as
follows:

s

⎡⎣tx

ty

tz

⎤⎦ = K[R|T ] =

⎡⎢⎢⎣
xw

yw

zw

1

⎤⎥⎥⎦ . (4)

The 3D coordinates of the light w.r.t. world coordinate, as denoted by xw, yw and zw, first multiply
with the camera extrinsic matrix to get the 3D coordinates of the light w.r.t. camera coordinates, as
denoted by xc, yc, and yc. We then multiply the camera intrinsic matrix K with [xc, yc, zc]

T to get the
coordinates on the image plane:

s

⎡⎣u
v
1

⎤⎦ = K

⎡⎣xc

yc

zc

⎤⎦ . (5)

Based on our VLC setup and VLP algorithm, we built an experimental testbed [25] to evaluate
the robot’s positioning. A ceiling-facing camera on a robot captures images of VLC-enabled LEDs,
from which our ID recognition algorithm determines the corresponding light IDs and queries the
LEDs’ position from the database. After that, our positioning algorithm based on the pinhole camera
model calculates the robot’s real-time position with respect to the LED, as the final position. As
demonstrated in Fig. 5, we tested our VLP algorithm for single-robot navigation using the Turtlebot3
robotic platform equipped with an onboard camera for capturing VLC signals. The Turtlebot3 robot
runs on Ubuntu 16.04 MATE, and a server (Lenovo Thinkpad, Core i7, 16 GB RAM) that processes
the image data runs on Ubuntu 16.04 and ROS Kinetic. We successfully navigated the robot and
tracked its trajectory in an RViz-visualized demo, validating our VLP approach for robot localization.
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Figure 5: Demonstration setup of high-precision positioning system based on VLC smart lighting [25].
The robot’s trajectory is represented by a trail of purple dots, with the robot model depicted in gray,
and real-time captured VLC signals shown at the bottom left

2.1.3 Challenges and Limitations

Although VLC and VLP enable many promising applications, realizing their full potential remains
challenging due to considerable technical limitations. For instance, light fixture costs pose a major
hurdle to widespread VLP adoption. While LED lighting is common, upgrading existing installations
with VLC modulators requires new hardware. Retrofitting an entire building or campus would involve
significant expenditure to procure hundreds of LEDs. Their installation also demands time and
labor to physically upgrade each unit. Such infrastructure investments could easily run into the tens
of thousands or more for large spaces. The financial barriers are prohibitive compared to cheaper
solutions such as WiFi, that reuse access points. To become economically competitive, VLP requires
a substantial cost reduction, potentially achievable through emerging alternatives like less-expensive
LED drivers.

Line-of-sight transmission grants benefits but introduces vulnerabilities. Line-of-sight links avoid
radio frequency interference, so VLC signals propagate predictably within rooms. However, this
sensitivity also creates vulnerabilities. Even slight obstructions may cause brief but critical losses of
positioning data. Positioning disruptions could occur when people walk between robots and VLC
lights, obstructing the line-of-sight communication paths. Furthermore, dynamic indoor environments
pose challenges to maintaining clear lines as occupants and objects move independently over time.
Addressing these unpredictable disruptions will require complex navigation algorithms and continu-
ous positioning fixes.



CMC, 2024, vol.81, no.1 169

The tradeoff between VLC signal length (using longer binary codes) and computation efficiency
also introduces constraints. The number of supported VLC light IDs is represented as 2l−k, where
l is the total bit length and k is the redundant bit length. Longer codes increase image processing
complexity but enable longer bit lengths of the VLC signals. Shorter codes can be decoded faster
but limit the capacity to map each light to its metadata. This lack of flexibility presents scalability
challenges in large indoor spaces like airports. As a solution, we proposed integrating the usage
of Bluetooth [29] as an extra location query parameter. However, facilities undergoing renovations
complicate static mappings, demanding flexible light ID. Satisfying these scale, speed, and dynamic
use case requirements remains a challenging task.

Relying on remote databases introduces reliability issues. Cloud infrastructure introduces risks if
the network experiences intermittent connectivity or high latency. Location look-ups with long delays
would degrade the usability of VLC as a real-time positioning system. Positioning would come to
a complete halt during outages or when IDs cannot be resolved, resuming only after connectivity
is restored. In mission-critical applications like search and rescue operations, such dependencies
could have catastrophic consequences during connectivity failures. Improving robustness to network
conditions will be vital to ensure consistent, dependable localization services.

2.2 Multi-Agent Path Finding

Orchestrating large robot fleets for 3D reconstruction requires solving the MAPF problem to
define collision-free trajectories. While existing MAPF algorithms [10–12] have been developed to
address this challenge, they do not scale effectively to large teams due to the exponential increase
in planning complexity. To mitigate this, our approach utilizes a decentralized RL framework in
which each robot makes localized decisions based on partial observations. Furthermore, our model
incorporates inter-robot communication to facilitate collaboration among robots with limited infor-
mation access. With decentralized execution and communication, robots can navigate themselves to
collaboratively accomplish reconstruction tasks, while avoiding exponential planning complexity that
hinders scaling to large fleets.

2.2.1 Multi-Agent Path Finding via Reinforcement Learning

Drawing inspiration from the RL model architectures presented in [17,19], which [17] enables
communications among agents and [19] utilizes the selective communication mechanism inspired by
Individually Inferred Communication [20]. The decentralized multi-agent RL model contains four
main components: an observation encoder, a decision causal unit, a communication block, and a
Dueling Deep Q Network (DQN) [32].

Each agent takes a 6-channel observation tensor of size l × l ×6 as input, where l × l represents the
FOV size. This input comprises two key components. First, two binary matrices indicate the positions
of other agents and obstacles within the agent’s FOV. Second, it includes four heuristic channels from
DHC [17], corresponding to the four actions (Up, Down, Left, Right). Within these action channels,
locations that move the agent closer to its goal are marked with a one, and others with a zero to embed
path information. Following the processing of this input by the observation encoder, the decision
causal unit [19] and communication block facilitate information exchange between connected agents.
Finally, the Dueling DQN generates Q-values for the agent’s actions.

The decision causal unit determines whether communication should be triggered between agent
i and its neighbors Ni by assessing the influence of neighbors on agent i’s decision-making. To do
this, the observation encoder first generates modified observation embeddings

{
ei,−j

}
j∈Ni

based on
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modified observations
{
oi,−j

}
j∈Ni

that exclude each neighboring agent j from agent i’s full observation.
The embeddings are then input to the Dueling DQN, which produces temporary actions ãi and{
ãi,−j

}
j∈Ni

, from the original observation and the modified observations lacking individual neighbor j,

respectively. By comparing ãi to
{
ãi,−j

}
j∈Ni

, the communication scope is defined as the set of neighbors

whose absence causes
{
ãi,−j

}
j∈Ni

to differ from ãi, i.e.,

Ci = {
j|ã �= ãi,−j

}
j∈Ni

(6)

In other words, the communication scope selectively targets neighbors that potentially impact
agent i’s decision, based on an analysis of how decisions change with and without the presence of each
neighbor.

Communication between neighbors occurs in a request-reply fashion for better efficiency. Given
a communication scope Ci defined for agent i, the observation embeddings ei generated by agent i’s
observation encoder, along with the relative positions li of its neighbors in Ci, are passed from agent i
to each corresponding neighboring agent j ∈ Ci. Through this selective exchange of embedding data
and spatial context between connected agents according to the Ci, the communication block enables
efficient cooperative decision-making.

Within the communication block, the message ej is projected into a query vector using matrix
W h

Q, while the concatenation of ei and relative position data li is projected into key and value vectors
using matrices W h

K and W h
V , respectively. The receiving scope Oj for each agent j contains agent i where

Oj = {i|j ∈ Ci}, and the set Oj+ is represented as {Oj, j}. The relation computed in the h-th attention
head between agent j and each sending agent i ∈ Oj+ is calculated by

μh
ji = softmax

[
Wh

Qej ·
(
Wh

K [ei, l i]
)T

√
dK

]
. (7)

where dK is the key dimension providing normalization via
√

dK . The outputs from each of the H
attention heads are concatenated, capturing relationships between communicating agents through the
multi-head attention mechanism. This combined output is then passed through a single neural network
layer fo to generate the final embedding output êj:

êj = fo

⎡⎣concat

⎡⎣∑
i∈Oj+

μh
jiW

h
V [ei, li] , ∀h ∈ H

⎤⎦⎤⎦ . (8)

The output êj and the observation embedding ej are aggregated using a Gated Recurrent Unit
(GRU). The output of the GRU e′

i serves as a new input message to repeat the operations of Eqs. (7)
and (8) for the following round. The final output of the entire communication module is denoted as e′′

i .
This leverages the GRU to aggregate inputs across time steps and propagate updated neighbor-aware
embeddings throughout the sequential request-reply communication flow.

A Dueling DQN model, which leverages advantage functions, is used to estimate the Q-value
based on the outputs from the communication block. We first calculate the advantage mean

m = 1
|N|

∑
a
A

(
e′′

i

)
. (9)
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where N is the size of the action space. Specifically, we subtract the advantage value from the advantage
mean to stabilize training, and add the state value as the final adjustment as described in

Q{i,s,a} = Vs (e"i) +
[

A (e"i) − 1
|N|

∑
a
A(e"i)

]
. (10)

After we get the Q-values from the DQN model, a multi-step Temporal Difference error is
calculated to update the model parameters by minimizing the mean squared error between the total
discounted rewards and the predicted Q-values, as shown in

L (θ) = MSE
(
Rt − Qst ,at(θ)

)
(11)

The total discounted rewards are defined as Rt = rt+γ rt+1+· · ·+γ nQst+n ,at+n(θ). Here, γ denotes the
discount factor applied to future rewards, and θ represents the periodic copy of the model parameters
θ maintained by the target network.

2.2.2 Optimizing Communication in MAPF via RL

As described above, our multi-agent RL approach utilizes a decentralized model to facilitate robot
coordination. A crucial element of this model is the communication block, which enables information
sharing between agents based on their defined communication scopes. These scopes are primarily
determined by the agents’ FOVs, which correspond to their perception range, typically provided by
Light Detection and Ranging (LiDAR) or ultrasonic sensors. Optimizing the agents’ FOVs becomes
especially important in this context because it strikes a balance between minimizing the computational
burden of coordinating larger communication scopes and maximizing performance.

Consequently, investigating the influence of FOV settings on both performance and computa-
tional requirements is crucial for designing scalable multi-agent systems. Many state-of-the-art works
that applied RL to MAPF, including [17,19], have not explored varying FOV sizes, opting instead
for a default FOV size of 9 × 9. Therefore, a 9 × 9 FOV configuration serves as our initial baseline
for evaluation and analysis. We assessed the impacts of different FOV settings through three key
performance metrics: success rate, average steps, and number of communications. Success rate refers to
the percentage of agents arriving at their designated destination within the allotted maximum number
of steps. Average steps denote the mean number of maneuvers required across all agents to complete
a MAPF scenario. Agents were permitted a maximum of 256 steps per task. Finally, the number
of communications represents the total quantity of request-reply exchanges generated during each
MAPF solution. We evaluated the model using five different FOVs, i.e., {3 × 3, 5 × 5, 7 × 7, 9 × 9,
and 11 × 11} on 40 × 40 and 80 × 80 map sizes. The model was trained on HKUST HPC3 (2 RTX
6000 GPUs and 6 Intel Xeon Gold 6230 CPUs) using a curriculum training approach.

Fig. 6 shows success rates, average steps, and number of communications across different FOVs
in an 80 × 80 map. On average, the 7 × 7 FOV outperformed the baseline 9 × 9 FOV with 4.2% higher
success rate and 3.0% fewer average steps. Although receiving the least information, the 3 × 3 FOV
demonstrated relatively small sacrifices, with success rates being 5.85% and 1.65% lower than 7×7 and
9×9, respectively. For average steps, 3 × 3 exhibited 4.2% and 1.0% more steps than 7 × 7 and 9 × 9.
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Figure 6: Performance of different FOVs in (a) success rate, (b) average steps, and (c) number of
communications [33]

Despite receiving the least amount of surrounding information, the 3 × 3 FOV demonstrated
a significant reduction in communication overhead. Specifically, it achieved a 28.9% reduction
compared to the 9 × 9 baseline and a 24.4% reduction compared to the highest-performing 7 × 7
FOV. The 3 × 3 FOV’s combination of minimal communication yet small performance impacts make
it preferable when bandwidth is constrained, such as for deploying many networked robots with limited
communication devices.

2.2.3 Challenges and Limitations

A key challenges lies in the development of algorithms capable of handling dynamic environments
where obstacles or agents may move unpredictably over time. Most MAPF formulations assume a
static map, but real-world scenarios are often more dynamic. Algorithms need to efficiently re-plan
solutions in response to changes while minimizing disruption. This is particularly difficult with large
teams where minor perturbations could cascade effects across agents.

Decentralized execution poses challenges in maintaining the coherence of the overall plan. When
agents operate solely on local information, their behaviors might diverge over time without proper
coordination. Effectively achieving global convergence under such conditions of partial observability
remains an open research problem. This lack of global awareness significantly complicates the training
phase. Additionally, integrating communication effectively is non-trivial, as excessive messaging also
degrades performance. The relationship between communication and emergent coordination requires
deeper study, and algorithms that promote further coordination, such as [34], should be considered.

Although discretizing space into a grid offers computational advantages for path finding algo-
rithms, it cannot accurately capture environments with obstacles smaller than the grid’s resolution.
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However, discretized representations can still be useful when applied as a global planning approach
to provide an initial coarse trajectory. For global planning over a large area, using a discretized grid
maintains efficiency even with a lower resolution that loses some detail. This allows the development
of a high-level collision-free route for guidance. However, once within proximity, a local planner is
needed to refine the trajectory. The local planner should work with a smaller-scale, higher-resolution
continuous or grid map centered around the robot. This enables finer-grained navigation that considers
smaller obstacles not represented in the global map. By using discrete grids for the computationally
efficient global planning element, coupled with a local planner for finer maneuvering, both generality
and efficiency can be balanced. This two-level approach distributes computations between planners
and presents a promising direction worth further exploration to integrate discrete and continuous
representations.

Addressing these challenges requires developing more sophisticated MAPF algorithms that can
effectively handle dynamic environments, maintain coherence in decentralized execution, and integrate
communication selectively without compromising performance. Potential solutions include incorpo-
rating dynamic obstacle avoidance techniques into the RL framework, exploring distributed consensus
algorithms to enhance coordination among agents, and developing adaptive communication protocols
based on environmental complexity and task requirements. Further research is needed to explore
these avenues and develop robust and scalable solutions for real-world multi-robot 3D reconstruction
applications.

2.3 Robotic 3D Reconstruction

2.3.1 360° Camera Image Acquisition

The real-time capture and transfer of images directly from a 360° camera to a ROS system presents
challenges due to the significant time needed to access and transfer the camera’s high-resolution
images. While 360° cameras can output a live video stream in real-time, this stream is often compressed,
generally in the H.264 format, due to the high resolution of omnidirectional images. To utilize the video
stream as input to an image capture system on the ROS platform, the compressed stream must first
be decompressed and converted to a standard image format that is compatible with image processing
pipelines, such as bitmap or JPEG. Specifically, 360° camera video streams are typically compressed
to address the large data sizes of high-resolution spherical imagery, but this compression prevents
direct usage of the stream within image processing workflows. Therefore, decompression and format
conversion of the compressed video to a suitable image format is required to enable real-time image
capture and processing on ROS.

To overcome this challenge, we developed a video processing pipeline that utilizes the live
compressed video stream directly from the 360° camera. Our implementation employs a popular 360°
camera model, the Ricoh Theta V, which outputs an H.264 compressed video stream through its Linux
driver. We then use Gstreamer to decompress the video, converting each frame to a JPEG image, as
shown in Fig. 7. The process is performed on a ROS server (Lenovo ThinkPad, Core i7, 16 GB RAM)
using a pipeline that includes H.264 video decoding. The pipeline is managed through a queuing system
to accommodate variations in block processing time. The resulting images are then outputted on a
standard ROS image topic. We tested this approach using standard 4 and 2 K video resolutions from
the camera, achieving measurable frame rates for the real-time applications on the ROS platform. The
result is shown in Table 1.
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Figure 7: 360° camera video processing pipeline on ROS platform

Table 1: Output frame rate for different video resolution in ERP format

ERP resolution Output image frame rate

1920 × 960 (2 K) 30 Frames per second
3840 × 1920 (4 K) 10 Frames per second

2.3.2 Conversion for Equirectangular Projection

The output images from the video processing pipeline (Fig. 8) are stored in ERP format, which is
highly distorted with increased distortion towards the top and bottom halves. Accurately determining
relative sizes and projections using these images within a neural network-based 3D reconstruction
framework requires intrinsic camera calibration to extract parameters. However, calibrating 360°
cameras is challenging as their wide FOV necessitates an impractically large calibration checkerboard
pattern for indoor use. Moreover, ERP images are generally unsuitable for deep learning models which
are trained on regular perspective images with low distortion, posing limitations for standard pipelines.

To address the distortions inherent in the ERP format, our proposed solution involves converting
the panoramic ERP image into four perspective views [35]: front, right, back, and left. The visualiza-
tion of this process is presented at Fig. 9. Typically, 360° cameras utilize two fish-eye lenses to capture
views that are stitched together. For our experiment, we have chosen to crop the top and bottom views
due to limitations in accurately merging them. As shown in Fig. 9, the conversion maps the spherical
pixel coordinates from the ERP onto four rectangular tangent planes, transforming the representation
into more manageable cube-map style outputs, resembling the perspective of four virtual cameras
positioned in different orientations around the scene. Similarly, we tested the conversion processing
time using 4 K and 2 K video resolutions as presented in Table 2.
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Figure 8: Implementation of ERP conversion and calibration in ROS

Figure 9: Processing pipeline overview for converting ERP into perspective images and deriving their
corresponding poses [35]. The top graph shows a spherical-to-rectangular pixel mapping for an ERP

Table 2: ERP-to-perspective conversion processing time for different ERP resolution

ERP resolution Perspective image resolution Processing time

1920 × 960 (2 K) 480 × 480 (× 4) <30 ms (∼30 Hz)
3840 × 1920 (4 K) 960 × 960 (× 4) <230 ms (4 Hz)
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While perspective images contain less distortion than the original ERP format, even minor
warping can influence 3D reconstruction accuracy. In our ROS platform implementation (Fig. 9),
a dedicated node performs the ERP-to-perspective conversion and publishes the resulting perspective
images as ROS topics. We then calibrate each perspective view individually to account for any remain-
ing distortions. By decomposing the distorted spherical panorama into conventional perspective cube-
map views, our approach aims to address the limitations of working directly with the ERP projection
for subsequent processing steps like visualization and 3D reconstruction.

2.3.3 Pose Estimation of Cube-Map Views

The camera’s pose for perspective images can be determined by applying a rigid body transfor-
mation based on the robot’s location, which is calculated using a fusion of sensors such as IMU and
LiDAR. This transformation utilizes four distinct sets of rotation vectors, one for each horizontal view
(front, right, back, left) of the cube-map. As depicted in Fig. 10, the poses for the four views share the
same x and y coordinates but exhibit 90° differences in yaw angle. To validate these poses, we collected
a dataset in a conference room by sending the robot on a predetermined trajectory to capture posed
images at 1-s intervals. Fig. 10 displays the 3D view of camera poses at various locations along the
robot’s trajectory.

Figure 10: Estimating camera poses for cube-map using XYZ transformations and a 90° phase shift

2.3.4 3D Reconstruction Results

To facilitate 3D reconstruction from ERP imagery for applications like VR and BIM using solely
visual perception techniques, our pipeline first converts the ERP format into a representation suitable
for depth-independent 3D reconstruction. We leverage ERP-to-perspective image conversion to
generate conventional perspective images paired with the corresponding camera poses. By combining
the extracted poses with the aligned perspective images, we then feed these posed images into our
3D reconstruction pipeline. While depth sensing is commonly used to aid 3D modeling, fulfilling our
objective of depth-independent reconstruction requires a different approach. We drew upon the work
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of Atlas [36] a neural network architecture that enables end-to-end regression of 3D structures directly
from posed monocular imagery, without relying on depth cues.

Specifically, Atlas first applies a 2D convolutional neural network to individually encode visual
features from each input image. Leveraging the known intrinsic and extrinsic camera parameters, it
then back-projects these 2D features into a joint 3D voxel representation. These accumulated voxels
undergo further 3D CNN processing to predict a 3D mesh representing the environment. Other than
the 3D mesh itself, the model is also capable of inferring the semantic labeling, which is the assignment
of class labels to the mesh.

To evaluate the performance of the entire pipeline, we compared the final 3D model with a ground
truth point cloud obtained from a LiDAR sensor (Fig. 11). Notice that semantic labels are not present
in the ground truth due to the nature of LiDAR data. Our full experiment was conducted within a 30 m2

conference room at ICDC, HKUST. By evaluating this modestly sized indoor environment, we aimed
to demonstrate the effectiveness of our proposed pipeline for performing robotic 3D reconstruction
within a setting commonly found in many real-world scenarios.

Figure 11: Qualitative comparison between ground truth and 3D reconstruction result [35]

2.3.5 Challenges and Limitations

A primary challenge we encountered stemmed from the reliance on accurate robot pose estimation
for determining camera positions and orientations. However, pose sensing with IMU, odometry, and
LiDAR each have limitations that can introduce errors. However, IMUs are prone to drift over time,
odometry can accumulate errors on slippery or uneven surfaces, and LiDAR measurements might
suffer from noise or offer incomplete views due to occlusions. When these sources are fused for robot
pose, even small uncertainties in the estimated trajectory get magnified in their impact. This impact is
further exacerbated when utilizing lower-cost sensors and fusion systems, which tend to be less precise.
Inaccurate camera poses directly affect the ability of 3D reconstruction models, such as Atlas, to
effectively utilize pose information during the reconstruction process. Structures may appear distorted
or incomplete in the final model if image locations are geometrically misaligned. While sensor fusion
helps mitigate individual limitations, further advancements are still needed to achieve robust, drift-
free localization in real-world environments. More accurate and reliable robot pose sensing will be
critical to overcome this challenge and fully realize the quality of reconstruction possible through our
approach.

Although 360° cameras offer the advantage of a wide FOV, direct utilization of the raw ERP
format for 3D reconstruction presents challenges due to its inherent distortions. Our proposed ERP-
to-perspective conversion aims to address these issues by transforming the input into a more man-
ageable cube-map representation. However, this additional processing step inherently discards some
information from the original panoramic capture and introduces computational overhead compared
to working directly with ERP images. Ideally, algorithms and models could be developed to leverage
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the full 360° information contained within ERP formats while also addressing the issues of distortion.
In the future, it may be possible to build upon these techniques to design new pose estimation and
reconstruction systems optimized for ERP, eliminating the need for our conversion methodology.
Doing so could improve efficiency and avoid any loss of visual data associated with converting to
perspective views. However, for applications requiring perspective outputs, our approach offers a
practical solution given the current technical limitations of operating directly on ERP distortions for
many vision tasks.

While Atlas provides decent 3D reconstructions from posed images, it currently relies on offline
processing which takes time to generate the results. This makes it unsuitable for applications requiring
real-time or interactive reconstruction, such as a real-time perception system for robots. Recent works
like CDRNet [37] have demonstrated the ability to perform 3D reconstruction in a real-time fashion
by inferring 3D mesh on the fly. Transitioning to a real-time 3D reconstruction pipeline has the
potential to significantly expand the range of applications for our 360° vision system. It would open up
possibilities in areas like dynamic scene understanding, and robotic perception that require continual,
low-latency geometric insights rather than offline processing of pre-recorded data.

3 Conclusion

In this work, we proposed an integrated framework for multi-robot indoor 3D reconstruction
leveraging VLP, MAPF, and 360° vision techniques. By providing centimeter-level localization accu-
racy, VLP overcomes the limitations of existing indoor localization methods. This precision enables
more effective MAPF planning and robot coordination. Our decentralized RL-based MAPF approach
allows localized decisions based on partial observation and facilitates coordinated navigation in large
environments. Equipping robots with 360° cameras allows capturing panoramic imagery for subse-
quent depth-independent 3D reconstruction. By addressing distortions through ERP-to-perspective
conversion, our approach enables reconstruction from posed monocular images with deep learning
techniques. Experimental validation demonstrated centimeter-level navigation and 3D modeling
capabilities in real test environments. While challenges remain around sensor fusion uncertainties and
infrastructure costs, this work advances core enabling technologies with implications for automating
data-driven applications across industries. To support a more complete framework, future work will
explore real-time reconstruction and adaptation to dynamic conditions. Overall, the presented multi-
modal framework represents a promising solution for collaborative robotics and large-scale indoor
reconstruction tasks.
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