
Copyright © 2024 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

echT PressScience

DOI: 10.32604/cmc.2024.050090

ARTICLE

High-Secured Image LSB Steganography Using AVL-Tree with Random RGB
Channel Substitution

Murad Njoum1,2,*, Rossilawati Sulaiman1, Zarina Shukur1 and Faizan Qamar1

1Center of Cyber Security, Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor,
43600, Malaysia
2Computer Science and Cyber Security, Faculty of Engineering and Information Technology, BirZeit University, BirZeit, Ramallah,
P.O. Box 14, Palestine

*Corresponding Author: Murad Njoum. Email: mnjoum@staff.birzeit.edu

Received: 27 January 2024 Accepted: 09 August 2024 Published: 15 October 2024

ABSTRACT

Random pixel selection is one of the image steganography methods that has achieved significant success in
enhancing the robustness of hidden data. This property makes it difficult for steganalysts’ powerful data extraction
tools to detect the hidden data and ensures high-quality stego image generation. However, using a seed key to
generate non-repeated sequential numbers takes a long time because it requires specific mathematical equations.
In addition, these numbers may cluster in certain ranges. The hidden data in these clustered pixels will reduce the
image quality, which steganalysis tools can detect. Therefore, this paper proposes a data structure that safeguards
the steganographic model data and maintains the quality of the stego image. This paper employs the Adelson-
Velsky and Landis (AVL) tree data structure algorithm to implement the randomization pixel selection technique
for data concealment. The AVL tree algorithm provides several advantages for image steganography. Firstly, it
ensures balanced tree structures, which leads to efficient data retrieval and insertion operations. Secondly, the
self-balancing nature of AVL trees minimizes clustering by maintaining an even distribution of pixels, thereby
preserving the stego image quality. The data structure employs the pixel indicator technique for Red, Green, and
Blue (RGB) channel extraction. The green channel serves as the foundation for building a balanced binary tree.
First, the sender identifies the colored cover image and secret data. The sender will use the two least significant bits
(2-LSB) of RGB channels to conceal the data’s size and associated information. The next step is to create a balanced
binary tree based on the green channel. Utilizing the channel pixel indicator on the LSB of the green channel, we can
conceal bits in the 2-LSB of the red or blue channel. The first four levels of the data structure tree will mask the data
size, while subsequent levels will conceal the remaining digits of secret data. After embedding the bits in the binary
tree level by level, the model restores the AVL tree to create the stego image. Ultimately, the receiver receives this
stego image through the public channel, enabling secret data recovery without stego or crypto keys. This method
ensures that the stego image appears unsuspicious to potential attackers. Without an extraction algorithm, a third
party cannot extract the original secret information from an intercepted stego image. Experimental results showed
high levels of imperceptibility and security.

KEYWORDS
Image steganography; pixel random selection (PRS); AVL tree; peak signal-to-noise ratio (PSNR); imperceptibility;
capacity

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2024.050090
https://www.techscience.com/doi/10.32604/cmc.2024.050090
mailto:mnjoum@staff.birzeit.edu


184 CMC, 2024, vol.81, no.1

1 Introduction

As communication technology advances, public networks have seen an increase in digital media
exchange, including images, movies, and audio. Digital media is susceptible to attacks such as
eavesdropping, modification, privacy compromise, and theft of confidential information [1]. As
data carriers, these images raise significant concerns about their security and confidentiality. Secure
information is classified into cryptography, watermarking, and steganography. Cryptographers mainly
focus on preventing intruders from breaking the encryption algorithm, which involves transforming
plain text into something meaningless. Digital watermarking has been crucial in protecting copyright
and intellectual property by embedding a unique watermark within digital content. Maintaining the
invisibility of the watermark is essential for its effectiveness. Steganography protects the message
from unauthorized access [2]. Cryptography provides one layer of security and confidentiality, while
steganography adds an additional layer [3]. The steganographic message remains hidden from view.
Even if code breakers suspect steganography in a transferred object, they cannot confirm it. Extracting
the hidden message requires knowledge about the message, the file path, or the object’s appearance.
Without knowing the method used for hiding data within an object, code breakers will fail to pursue
the purpose of the secret information. Together, the two techniques can complement each other [4].

Image steganography has two categories: spatial domain and frequency domain. In the spatial
domain approach, the secret data to be embedded directly affects the pixel intensity values. Meanwhile,
an appropriate transform is applied to the image in the frequency domain, and the resulting coefficients
are altered to reflect the secret data [5,6]. Many techniques have been published to embed secret
message bits in both spatial and frequency domain categories. The most familiar technique in the
spatial domain is the least significant bit (LSB). Other methods such as pixel indicator techniques
(PIT) [7], pixel locator sequence (PLS) techniques [8], pseudo-random number generator (PRNG) [9],
and Rand-Stego pattern techniques are also used [10]. The main objective of steganalysis is to detect
the transmission of steganographic communication between two relevant parties [11]. We can evaluate
the performance of data hiding techniques using the peak signal-to-noise ratio (PSNR), mean square
error (MSE), and Normalized Correlation Coefficient (NCC). We can also evaluate the data-hiding
techniques with other parameters like hiding capacity and security [12,13].

According to the present research, hidden capacity is directly proportional to visual distortion and
security. Therefore, there is scope for identifying a better solution. Current methods recommend using
a PRNG to choose data-hiding locations. These methods require seeds for the PRNG to generate
random sequence numbers to conceal bits of the secret messages. The main disadvantage of these
methods is that they are expensive to generate non-repeating numbers, and the distribution of random
numbers may not be typical. This issue aids in the detection of secret messages in digital media. A
second disadvantage is that these methods need to share the seed key with the recipient. This research
proposes a scheme to embed information bits in the LSB of non-consecutive pixels using a pixel
indicator and an Adelson-Velsky and Landis (AVL) tree. This paper proposes a new random technique
using an AVL tree data structure, pixel indicator, and 24-bit color RGB images as the cover medium
instead of concealing the secret bits of confidential messages directly into the LSB of a sequence of
pixels of data channels. The LSBs of random red and blue channels will conceal the secret message
bits. The LSB of the green channel is used as an indicator because of human eye sensitivity [5].

The rest of the paper is organized as follows: Background studies are shown in Section 2. The
literature review is presented in Section 3. The proposed method (AVL tree steganography, embedding,
and extraction) is discussed in Section 4. Performance analysis and discussion are presented in
Section 5. Finally, Section 6 presents the conclusion and future work.



CMC, 2024, vol.81, no.1 185

2 Background Studies

In recent times, there has been a growing emphasis on cryptography and steganography. The need
for secure communication and concerns about potential misuse, such as unauthorized distribution of
digital information, have underscored the importance of integrating these techniques. As a result, it has
become essential to have a comprehensive and well-defined understanding of both fields to implement
them effectively. The primary focus of this paper is to address the security aspects associated with
transferring text within images and to provide an overview of steganography techniques.

2.1 Cryptography

Cryptography is the art and science of sending messages so that only the intended recipient can
read them [4]. In other words, cryptography aims to ensure that a message sent from a sender to a
receiver remains confidential and secure. Even if someone intercepts the message, they should not
be able to read it. Cryptography is a technique for protecting data using encryption formulas and
functionalities so that the data held in a computer can only be interpreted by individuals who can
decode it. Historically, cryptography was used mainly in the military and diplomacy until a few decades
ago when the realization of digital data saw widespread application in many non-military fields such
as e-commerce, e-banking, e-governance, telemedicine, e-shopping, and e-mailing.

There are three types of cryptographic schemes for securing data: public-key cryptography,
private-key cryptography, and hash functions. The length and type of the keys used depend on the
type of encryption algorithm.

2.2 Symmetric Key Cryptography

Symmetric key cryptography is a traditional cryptography implemented as a private key algorithm.
They can be divided into conventional or fast algorithms and block ciphers. Fast algorithms like Data
Encryption Standard (DES) focus on reducing the encryption and decryption time with a limited key
length. Their nature does not meet the requirements of the current epoch; therefore, they are not secure.
Modern-designed block ciphers like Advance Encryption Standard (AES) apply the substitution–
permutation network structure. They are built using different transformations: substitution (S-boxes)
and permutation (P-boxes) layers. They produce effective confusion, dispersion, and diffusion prop-
erties. The significant amounts of transformation rounds and complex S-boxes improve the security
level of those ciphers. Generally, the main disadvantage of conventional symmetric key cryptography
is the need for a secure key distribution channel to transmit key material over the network safely [14].

2.3 Asymmetric Key Cryptography

Asymmetric key cryptography is a primary component in public key cryptographic algorithms like
Rivest–Shamir–Adleman (RSA), ElGamal, and Elliptic Curve. The main advantages of asymmetric
key cryptography are facilitating the management of keys and the secure exchange of keys. The main
problem, however, is that it is much slower than symmetric key cryptography. Therefore, the common
practice is to use asymmetric key cryptography only to exchange a session key between the two sides
and then use the session key with symmetric key cryptography to secure the rest of the communication
between the two sides. During the asymmetric key cryptography exchange phase, the two sides must
establish the authenticity of the other side and ensure that no man-in-the-middle attacker impersonates
the other side to downgrade the communication security level [15].



186 CMC, 2024, vol.81, no.1

2.4 Steganography: Concealing Information

Steganography is the art of hiding a secret data message within an ordinary, non-secret file or
other medium to avoid detection and later extraction at its destination [16]. The security of concealing
data in images has attracted researchers’ attention to improving security aspects [17]. Researchers
have proposed many steganography techniques to conceal secret messages in multimedia files such as
images [18], audio files [19], video files [20], text [21], and internet protocols [22] to protect confidential
data from attackers and transfer data without suspicion. Image steganography has two categories:
spatial domain and frequency domain. In the spatial domain approach, the secret data to be embedded
directly affects the pixel intensity values. Meanwhile, an appropriate transform is applied to the image
in the frequency domain, and the resulting coefficients are altered to reflect the secret data [5,6].

3 Literature Review

Steganography focuses on capacity, imperceptibility, and security to achieve the invisibility of
secret data. Imperceptibility is achieved by embedding data without suspicion, using techniques like
localizing regions that can withstand pixel changes. Security involves making hidden information
impossible to recover, impenetrable, or unpredictable. Proposed methods like LSB, randomization,
pixel indication, and hybrid techniques have improved steganographic security.

3.1 Least Significant Bit (LSB)

LSB steganography is a basic technique that hides information within images, videos, or audio
files by replacing the least significant bit of each pixel or sample with a bit from the secret message.
However, it may not be secure against advanced detection methods or attacks. Information hiding
in an image aims to alter less critical information in the carrier image. The LSB is the most used in
steganography. It is among the most straightforward and widely used spatial image steganographic
techniques [23–25]. The idea behind this technique is that the smallest components of an image only
provide weak information, and human eyes cannot notice even minute changes in those components.
The fundamental idea of the LSB embedding technique is shown in Fig. 1.

Figure 1: Basic LSB technique

In most proposed methods, the secret message bits are randomly or sequentially inserted in
the LSB of the pixel positions. The advantages of LSB steganography are: (i) it is the simplest
steganographic method to embed a message into digital media such as an image or sound; (ii) it
does not require transformation of the cover medium; (iii) the LSB replacement ensures that the
stego medium is indistinguishable from the original cover medium; (iv) it is the fastest technique for
embedding speed; and (v) it is also possible to partially decode or detect the hidden message without
completely decoding the stego object [26,27]. Conversely, the major drawbacks of LSB steganography
are: (i) the stego medium is vulnerable to relatively simple statistical analysis; (ii) the hidden data



CMC, 2024, vol.81, no.1 187

is easily destroyed by simple manipulation or processing of the stego object; (iii) it is easy to insert
data by comparing the magnitude of the pixel value or the absolute LSB value with the secret data;
(iv) the steganographic algorithm is weak against the known-plaintext attack; (v) the depth or posi-
tional representation of the secret data is not considered; and (vi) it frequently provides unsatisfactory
visual quality of the stego image [28,29].

3.2 Pixel Indicator Techniques

The PIT is a method to conceal secret messages by adjusting each pixel’s least significant bit,
allowing subtle color changes undetectable to the human eye. Various factors, such as this pixel’s
location within the image or its color value, are considered when selecting it. The digital image
steganographic method uses odd/even pixel allocation to hide encrypted messages in even pixels,
ensuring the change is made on the first or second LSB without affecting the base of odd or even
in the stego image [30]. The proposed method in [31] shows an image coding technique that conceals
information along a chosen pixel and, on its subsequent value (pixel + 1). Two bits of the message
can be concealed on each pixel based on a combination of these values. The authors of [25] use the
indicator channel to select the data channel for hiding information. The technique depends on the
length and parity bits of the secret message. If the length of the message is even, then data channel
1 is red, data channel 2 is green, and data channel 3 is blue; the three most significant bits (MSB)
are considered indicators. Every bit of these three represents a channel (R, G, or B) that contains the
hidden two bits of the secret message. For example, if three-MSB is 101, the red and blue channels will
hide two secret bits; these will be hidden in the LSB of these channels. In [30], the method conceals
secret information in red and blue channels using the LSB of the green channel as an indicator. The
method uses 2, 2–4, or 4 LSBs of red and blue channels for up to six bits.

In [31], the proposed technique divides a cover image into four blocks of storage area and decides
if each desired pixel can be saved based on the red channel’s three MSBs. If the three MSBs have
a value of 111, all red, green, and blue channels are candidates for data storage. No data can be
stored in bits with a value of 000. If the bits have a value of 011, both green and blue channels are
candidates. Four zeros in the LSBs determine the number of hidden bits. Pixel indicator techniques in
steganography use one or more pixels on a cover image to signal whether the image contains hidden
data. If these pixels are modified, they can lose their significance, and the steganalysis can fail. The
significant advantage of pixel indicator techniques from the steganographic point of view is that, unless
the indicators are disabled, no other changes are made to the image. This is very useful when the
steganographic capacity is low or when the steganographic algorithm works in an adaptive mode,
concealing data bit by bit and needing to access the stego image many times for different data to
be embedded. The main disadvantage of pixel-indicator techniques is that the secret message is not
directly embedded in the cover image. Data embedding, extraction, and possibly the adaptive hiding
algorithm are more complex than desired [32–35].

3.3 Random Techniques

Randomization techniques enhance security in stego images by scattering secret message bits in
a pattern known only to the method’s owner, making this distribution undetectable by attackers. The
least significant bit is used in a cover image to embed information in a random bit of a pixel using a
PRNG. PRNG employs a 3-3-2 approach to hide a byte in a 24-bit color image, selecting random pixels
and bit positions within the R, G, and B values. The authors in [36] proposed an efficient and adaptive
data-hiding scheme based on a secure reference matrix. LSB steganography using a pixel locator
sequence (PLS) with AES (Advance Encryption Standard) is suggested in [8], which uses a randomly



188 CMC, 2024, vol.81, no.1

generated secure reference matrix stored as a PLS file. PLS increases the security of LSB steganography
by randomly distributing the secret data hidden in the image, making it difficult for unauthorized users
to detect the hidden data. The PLS file is encrypted using AES. The random-bit selection algorithm
in [37] enables users to conceal information within a cover image using randomly generated integers
and user-specified parameters for the number of bits to be replaced in each pixel. The methods in [38–
40] employ a chaotic pseudorandom generator to randomly determine the position and hierarchy of
image pixels for embedding information while encrypting the secret message. In [10], a random varied
pattern key is generated automatically or manually saved in a file and shared with the recipient. Both
methods in [30,41] use the Henon map function and stego keys to generate a random sequence of pixels
to hide the bits of the secret messages. Random selections in embedding locations or values generate an
equal probability of steganographic messages, enhancing security and resistance to steganalysis. The
distribution of these techniques is independent of the cover image position. Advanced steganographic
programs extract secret messages from known steganographic implementations. Multi-dimensional
random algorithms, like those used in deterministic techniques, prevent the detection of structures,
ensuring system resistance to attack. The main advantages of this technique are: 1) Increased safety.
By introducing an element of unpredictability and randomness, random procedures in steganography
make it more difficult for unauthorized users to detect hidden information. 2) Resistance to detection:
Randomly dispersing the hidden data throughout the cover file makes it less evident and difficult
to find. 3) Robustness: Spreading the secret information throughout the carrier file in several places
increases its resistance to corruption or data loss. The main disadvantages of the random technique
are: 1) Complexity: Random techniques typically require more complex algorithms and procedures
than straightforward steganography approaches. 2) Reduced hiding capacity: Randomly distributing
the hidden information may result in fewer bits accessible in each location, leading to a lower overall
hiding capacity. 3) Increased computational overhead: Random approaches frequently require more
computational resources to produce and control the randomization process [32,33].

3.4 Hide Bits in Minimum and Maximum Color Intensity

In steganography, one approach is to hide bits of information by minimizing the color intensity
of pixels in an image. By decreasing the color intensity of specific pixels, hidden data can be embedded
without significantly altering the image’s appearance. This method makes it difficult for third parties
to detect the presence of hidden information, thus ensuring the security and confidentiality of the
communication. Using the minimum color intensity of pixels, the hidden data can blend seamlessly
with the cover media, making it virtually impossible for unauthorized users to detect or extract the
hidden information [42–44].

The concept of hiding bits at maximum color intensity refers to concealing information within
an image by manipulating the RGB values of pixels. This technique takes advantage of the imper-
ceptibility of human vision to slight variations in color within a specific range. Secret information
can be embedded without significantly altering the image’s appearance by adjusting each pixel’s most
significant and second significant bits. Utilizing the maximum color intensity of each pixel allows
more data to be hidden within the image while maintaining high image quality and minimizing visual
distortions.

This information-hiding method provides transparency, security, and robustness in data transmis-
sion within images. The primary objective of hiding bits in maximum color intensity is to ensure the
security and integrity of information during transmission through images [45,46].



CMC, 2024, vol.81, no.1 189

Ultimately, the choice depends on the trade-off between hiding capacity and imperceptibility. If
the priority is to maximize the amount of information that can be hidden while accepting a slightly
higher risk of detection, using the maximum color intensity may be preferred. On the other hand,
if the goal is to minimize the chance of detection at the expense of hiding capacity, the minimum
color intensity approach could be more suitable. The minimum color intensity technique also provides
several advantages: 1) It can hide many significant or more visually noticeable bits. 2) The degradation
from hiding these bits is more evenly distributed. This helps prevent localized noticeable degradation,
as the human visual system is more sensitive to alterations in specific image regions. 3) It is more
protective of the secret, as it must first modify the encoded image to access and reveal the original
message. The maximum color intensity technique offers several advantages: 1) The message colors
never lose intensity. 2) It can conceal less significant bits outside the range of easily noticeable
degradation. 3) It works with all types of images. 4) It’s easier and more efficient to implement.

3.5 Summary and Comparison

The main features, pros, and cons of the literature methods discussed in this paper can be
summarized in the following table (Table 1).

Table 1: Features, prose and, cos of literature techniques in steganography

Technique Features Pros Cons

LSB • LSB steganography
is user-friendly and
straightforward,
making it accessible
to those with limited
technical expertise.

• Simplicity
• Large hiding capacity
• Imperceptibility.
• They were used for

grayscale images and
RGB images.

• Vulnerability to
detection.

• Fragile due to
image
manipulations or
compression.

• Potential for
accidental
disclosure.

• Limited security:

(Continued)



190 CMC, 2024, vol.81, no.1

Table 1 (continued)

Technique Features Pros Cons

PIT • The PIT uses one
channel to indicate
the hidden data in the
other two channels.

• Increased capacity
for data hiding.

• Enhanced security.

• The complexity of
method.

• Increased
detection risk.

• Fragility and
potential
data loss.

• Limited
availability of
tools and
resources.

• Reduced image
quality.

Random techniques • Random techniques
are methods for
selecting embeddings
or covering changes
at specific locations.

• Enhanced security.
• Resistance to the

statistical analysis.
• Increased robustness:

by distributing the
hidden information
over file.

• Increased
complexity.

• Reduced hiding
capacity.

• It increased
computational
overhead.

Hide Bits in Min/
MaxColor intensity

• Increased security.
• Improved

imperceptibility.
• Resistance to simple

detection techniques.

• They limited
hiding capacity.

• Susceptibility to
more advanced
detection
techniques.

• Vulnerability to
image
modifications.

4 Proposed Method

This section emphasizes the modifications to conventional LSB steganography for high security.
Our basic idea is to use an AVL tree for embedding the information bits and to use a random sequence
of pixels for embedding the data bits to improve security while maintaining the capacity of the cover
image. Firstly, the cover image must have more than enough pixels to conceal portions of the secret
message, as it must be compatible with the text message length. Since each pixel will contain two bits of
a secret message, the cover image must have more pixels than the message’s length divided by two. Then,
construct an AVL tree to embed the secret bits to minimize the distortion between the transformed



CMC, 2024, vol.81, no.1 191

and original cover images. The measure used to calculate the distortion is MSE. We modify the typical
method of embedding the bits in random order. Instead of embedding two bits in sequential order at a
time, this paper explores the possibilities of embedding two bits in non-sequential order, selecting the
one that results in the slightest increase in MSE. The specific details of the method of concealing the
secret bits are far too extensive to mention here, so we offer an outline in our paper.

4.1 Overview of the Proposed Method

This proposed steganography method increases the data payload and secures the secret data. The
AVL tree is used to determine the exact location for the replacement, while the random RGB channel
substitution is used to secure the planted secret data. Overall, this method eases the data detection
process and can provide a high payload with minimum distortion to the cover image [47].

This paper uses an AVL tree, queue data structures, and pixel indicator channels of 24-bit RGB
images in the LSB-based image steganography technique. The proposed algorithm embeds secret bits
randomly in the LSBs of nonconsecutive pixels using the AVL tree without sharing a stego key or seed
number used to generate a random number. The proposed randomization technique will depend on
the selected pixels for hiding the bits that will be constructed based on the existing pixels in each level
of the AVL tree. Furthermore, the green channel is selected to maintain the AVL tree construction
without any change between the client and server. The construction of the AVL tree will be based on
the green channel because the green color is more sensitive to human eyes than red and blue. Changing
bits in the green channel will be detected by human eyes [48]. In addition, the green channel’s LSB was
selected to indicate the secret message bits’ position in the other channels.

4.2 Implementation Details

The first step is to read the cover image pixels’ RGB channels as decimal numbers. Then, a node
is created to store information about the pixel containing the red, green, and blue decimal values.
Additionally, the node will store the order of cover image pixels read from left to right and from top
to bottom. The decimal value of the green channel will be used to construct the AVL tree because this
value will remain unchanged and will not contain any hidden bits. The order of pixels will indicate the
current position of the pixels after the extraction process.

The second step is constructing the AVL tree based on the green channel. For example, Fig. 2
shows the steps for inserting a secret bit into the green channel integer values of pixels from the first
pixel to the fifth pixel.

Fig. 2a shows the green channel’s first inserting value (164). Fig. 2b–d show the insertion of 202
to the right side since its value is greater than the parent’s (164), then the insertion of 55 to the left side
since its value is less than the parent’s. When inserting 102, as shown in Fig. 2e, the tree needs a single
rotation to the left. The result will be shown when all table pixels are read into the AVL tree. As seen
in Fig. 2f, the pixel location will change according to the rebalancing of the tree.

The formation of the AVL tree is used to classify the cover image’s pixel location and balance
the tree. At the same time, the sorting is based on comparing the pixel values of the green channel
belonging to the cover image. The next step involves converting the secret message from ASCII codes
into a sequence of bits, simplifying the concealing process within the cover image pixels. The red or
blue channel will be used to save two bits. The last step of this method is hiding the message in the
pixels of the cover image by combining the AVL trees and the concept of random RGB selection with
bits of a secret message. The position of the pixels is essential to determining the location of pixel
modification. So, the position of the pixels classified at the top will use the pixels of the cover image



192 CMC, 2024, vol.81, no.1

with a small RGB value. This is important due to the probability of certain RGB combinations in
the bright pixels, as noise is smaller than the RGB combinations in color images. This process is done
incrementally, starting from the tree’s top node with the proposed AVL trees and level by level, and is
stored in a blue or red channel based on the LSB two bits of the green channel. The following section
will show the algorithm of this proposed method.

Figure 2: A sample steps for constructing an AVL tree (a) insert 164; (b) insert 202; (c) insert 55;
(d) insert 78; (e) insert 102; (f) the balanced AVL tree

4.3 Embedding a Secret Message Algorithm

The following Table 2 shows the algorithm of the proposed method steps to embed a secret
message into the cover image.

Table 2: Embedding a secret messaging algorithm

Algorithm: Embedding a secret messaging algorithm
Input: Cover image and text message.
Output: Stego image

1. Start
2. Read a Secret Message

2.1. Read the secret text message from a text file.
2.2. Define a “strlen” variable and store the length of the secret message inside this variable.

(Continued)



CMC, 2024, vol.81, no.1 193

Table 2 (continued)

2.3. Convert the “strlen” into a binary number and store it in a new “strlenbin” variable with
30 digits.

2.4. Read the secret text message and store it in a “secretmessage” variable.
2.5. Convert the “secretmessage” characters into binary.
2.6. Concatenate the string from Steps 3 and 5, then store them in a “strmesgbin” variable.
2.7. Define an integer variable “ strlen2”.
2.8. Set strlen2=string length of (strmesgbin)

3. Reading the pixels of a cover image.
3.1. Load the cover image from the selected image directory.
3.2. Read RGB image pixels as integers.
3.3. Build an AVL tree data structure balanced based on the green channel value.

4. Concealing the bits of the secret message:
4.1. Define the needed node variable (neededNode) that indicates the maximum length of text

that can be stored in the cover image.
4.2. Set neededNode = strlen2 divided by 2.
4.3. If neededNode >image size, then throw an exception (“Message can’t be hidden in this

image”)
4.4. Else, go to the next step.
4.5. Convert integer pixels of RGB from part C) into a binary system (red, green, and blue)
4.6. While (strmesgbin = 0), and (AVL tree).

1. Read the LSB of the green-bit pixel channel of a node in the AVL tree
2. Read the 2 most significant bits from part B) Step 8.
3. If the LSB 2 bits of green pixel == “00” or “11”
4. Then, store the 2 MSB encrypted bits in the LSB 2 bits of the red pixel
5. Else, store these 2 bits in LSB bits of the blue pixel.
6. update, strlen2 = strlen2-2

5. Store the AVL-tree back to the buffered image file:
5.1. Read the AVL-tree pixels from part C) and store them in a new AVL-tree that is

balanced according to the pixel number (pixel_no)
5.2. Read the pixels from the last step into the image file.
5.3. Stego image is the output.

The comparison with other hiding schemes shows that the proposed scheme has higher impercep-
tibility while maintaining high visual quality. Additionally, the proposed method shows a high level of
security since steganalysis tools can’t detect it. It’s better than other techniques since the secret message
isn’t encrypted like other methods and is resistant to steganalysis tools. An example is given for this
algorithm, as shown in Table 2. This example illustrates hiding the secret “hello” message inside the
cover image.

The example starts with creating the AVL tree and then embedding the secret message “hello”
inside the tree. This example will be illustrated in the following steps:



194 CMC, 2024, vol.81, no.1

1. Read the secret text message from a file.
2. Set the length to 5, as “hello” has five characters.
3. Convert the length into binary with 30 digits: 01000 00000000 00000101.
4. Convert “hello” into binary, totaling up to 40 bits (shown in Table 3).
5. The algorithm builds the AVL tree, as shown in Fig. 3. The construction of the AVL tree steps

is illustrated in Fig. 2.

Table 3: “hello” ASCII code

h e l l o

01101000 01100101 01101100 01101100 01101111

Figure 3: Part of AVL tree for image bits of Table 4

Table 4 shows a sample of pixels’ cover image. These decimal values represent the decimal values
for the RGB channel from pixels 1 to 40.

Table 4: Before embedding bits’ message

Pixel 1 2 3 4 5 6 7 8
Red 163 204 173 157 255 212 233 7
Green 164 202 55 78 102 99 212 76
Blue 158 202 46 76 77 92 211 75
Pixel 9 10 11 12 13 14 15 16
Red 112 214 171 25 25 21 23 77
Green 10 222 59 7 10 99 22 75
Blue 15 212 47 9 7 92 21 76
Pixel 17 18 19 20 21 22 23 24
Red 13 214 171 157 208 23 72 123
Green 14 22 155 78 94 21 73 124

(Continued)



CMC, 2024, vol.81, no.1 195

Table 4 (continued)

Blue 15 21 47 71 93 210 72 148
Pixel 25 26 27 28 29 30 31 32
Red 201 179 159 215 212 233 78 143
Green 199 53 178 112 199 202 77 134
Blue 199 48 176 79 191 201 76 148
Pixel 33 34 35 36 37 38 39 40
Red 202 173 151 253 223 231 75 220
Green 201 155 178 112 199 215 72 112
Blue 200 146 176 78 192 223 73 68

Explanation of the example:

1. Preparation:

The secret message “hello” has a length of 5 = (101)2 = (0000000000 0000000000 0000000101)2,
and the message “hello” in binary = (0110100001100101011011000110110001101111)2.

After the secret message is concatenated with the binary length, the binary result will be:
(0000000000000000000000000001010110100001100101011011000110110001101111).

2. Embedding process:

The secret bits representing the length of the message: 000000000000000000000000000101 will be
embedded starting from the first level and up to the fourth level, which will then be followed by the
secret message 0110100001100101011011000110110001101111.

The embedding process starts by traversing the tree level by level, starting from the first level, the
root node (green pixel is 102). This pixel node contains (R:255, G:102, B:77, Pixel_no:5). Converting
the node into binary will give: (102)10 = (1100110)2, (255)10 = (1111111)2, and (77)10 = (1001101)2.
Then, according to Table 4, check the LSB two bits of the green channel, pixel 5. If it is equal to 00 or
11, then hide the two bits of the secret message in the red channel. Otherwise, the algorithm will hide
the two secret bits in the blue channel.

According to the least significant two bits of the green value of pixel 5, which is (10), the two bits
of the secret message from left (00) will be hidden in the blue channel of 77 value as highlighted in
cyan in Table 4. After modification of the blue channel value, the pixel will be changed from 77 =
(1001101)2 to 76 = (1001100) since the last two significant bits of the blue channel (01) were replaced
by (00).

The following levels are considered for hiding the secret message bits:

(112,10,15), (13,14,15), (174,53,48), (171,59,47), (77,175,76), (157,78,76), (212,99,92), (215,112,79),
(143,134,148), (173,155,146), (201,199,199), (202,201,200), (204,202,201), (214,222,212), (25,7,9),
(23,21,210), (75,72,73), (78,77,76), (208,94,93), (21,99,92) contain the secret message, while the pairs
(151,178,176), (253,112,78), (231,215,223), (233,199,192), and (220,112,68) do not contain concealed
bits. Note that the pairs of pixels containing no secret information are not used and, therefore, are
stopped.



196 CMC, 2024, vol.81, no.1

4.4 Extracting the Secret Message

To extract the secret message from the stego image, the same algorithm will be rebuilt using the
same techniques but in reverse order.

5 Performance Analysis

This paper has experimented with the proposed techniques using various authentic color images
and 24-bit BMP images of different sizes to represent the flexibility of the technique on different types
of images. For experimental purposes, this paper used 24-bit images as a cover image to compare
the resulting stego image with the original cover image in terms of quality and hiding capacity. For
each image size, the proposed method embedded data equal to a lesser 50% and 40% of the size of
the cover image to represent the quality and hiding capacity of the stego image with minimal change
in the actual image. The sample images used for experimentation are shown in Fig. 4a–c, and the
corresponding resultant stego images are shown in Fig. 5a–c.

Figure 4: Cover sample images (a) Tiffany; (b) Papper; (c) Baboon

MSE is the mean square error between the ith pixel of the cover image C and stego image S, and
M and N are the image’s dimensions.

5.1 Experimental Environment

All examples of steganography discussed in this paper are limited to bitmap files. There are two
reasons for this. First, working with bitmap files allows the manipulation of every bit of data in the
file, and second, this provides a more accurate measurement of the capacity of the least significant bit
available for secret message storage. However, the limitation of AVL tree steganography (hereafter will
be called AVLTree-Steg) to one file type is arbitrary and was done to demonstrate the capabilities of
steganography. Working with any file format is a simple exercise in code development. Several software
programs were developed for this document to read and display the BMP image files produced on the
Macintosh platform. Steganography is a technique used to hide files in digital media, such as images,
videos, and audio. It can be used in image tools to hide files in digital images like BMP and JPEG,
video tools in video files like AVI and MPEG, and audio tools in sound files like WAV and MP3.
Some applications can hide files in executables, but this is more memory intensive. Most steganography
tools are easy to handle and require no special knowledge. However, interface complexity can lead to
confusion when introducing these tools.



CMC, 2024, vol.81, no.1 197

Figure 5: Stego result images (a) Tiffany; (b) Pepper; (c) Baboon

Most steganography tools fall into the image, video, and audio categories. This paper will focus
on images because many can be exchanged between clients simultaneously. Additionally, the size of
images is preferable to other media, such as audio and video. The AVLTree-Steg program was written
and compiled in Java using the Eclipse 2023 environment. Eclipse 2023 was chosen for the compiler
platform due to its accessibility, cost-effectiveness, and cross-computer usability. No specific assembler
command or function was used. The MacBook Pro (2021) and Enhanced IDE were utilized during
the initial stages of the program. The development platform was an Apple M1 Pro with 16 megabytes
of RAM and a 500-gigabyte hard disk.

5.2 Evaluation Metrics

This section presents a review of existing evaluation metrics. Since they departed from one another,
the following different evaluation metrics are categorized into three different groups.

5.2.1 PSNR, MSE, and NCC Analysis

The metrics used to evaluate the approach are MSE and PSNR, as shown in Eqs. (1) and (2). High
values of the PSNR criterion are preferred for evaluating the stego image’s quality. Here’s the formula
to compute MSE and PSNR:

PSNR = 10 log10

2552

MSE
(1)

MSE =
∑W

i=1

∑H

j=1

(
Xij − Yij

)

WXH
(2)

The image’s dimensions are denoted by the values W and H, the image coordinates by i and j,
and the cover and stego images by X and Y . If the PSNR values are more than 50 dB, the images are
considered high quality [12].

Eq. (3) shows the embedding capacity, also known as “embedding payload”, refers to the
proportion of the embedded secret bits in the cover image’s pixels. The abbreviation ER stands for
embedding rate.

ER = N
WXH

bpp (3)

where N is the number of hidden bits, W is the width, and H is the height of the cover image.



198 CMC, 2024, vol.81, no.1

Normal Cross Correlation (NCC): The NCC value is calculated in Eq. (4). The Normalized
Correlation Coefficient (NCC) can be used to assess the robustness of extraction results. If the NCC
value is near 1, the likeness to the original message image is also close [13].

NCC =
∑W

i=1

∑H

j=1 I
(
Xij, Yij

) ∗ I ′ (Xij, Yij

)
√∑W

i=1

∑H

j=1 I
(
Xij, Yij

)√∑W

i=1

∑H

j=1

(
Xij, Yij

) (4)

where W and H are the width and height of the image, I
(
Xij, Yij

)
represents the coordination of the

cover image and, I ′ (Xij, Yij

)
represent the coordination of stego image.

5.2.2 Histogram Analysis

The security level of the proposed methods is evaluated by comparing the cover image histogram
with the stego image. The method is considered secure if there is no significant difference between
them. When the payload is small (2 KB) the histogram of the stego image of the three techniques is
relatively similar to the cover image histogram, implying low distortion. This will be explained in the
next section.

The distortion remained low when the payload capacity was increased (32 KB). Because one
channel was left unaltered and two channels were used for the embedding procedure, those two
channels bore the brunt of the histogram’s distortion. On the other hand, the original cover image’s
histogram and the other channel’s histogram are the same. This will be explained in more detail in the
following section.

5.2.3 The Probability of Detection Using Statistical Attack

The stego images were subjected to statistical analytical attacks such as RS Analysis and Sample
Pairs Analysis to determine the probabilities of detecting the stego images [49]. It is based on the
idea that the statistical characteristics of the cover media, the unaltered file, and the stego media
that contains hidden data are different. The stego image steganography replacement technique
involves hiding information by modifying the least significant bit of pixel values in a digital image.
This technique reduces the difference in frequency between adjacent colors, making the changes
less noticeable to the human eye. However, the number of pairings remains the same, maintaining
the image’s visual quality. The confidentiality of encrypted hidden messages using cryptography
technology can make the hidden information harder to detect through statistical analysis. Even though
the chi-square detection technique can successfully locate images with sequentially embedded data,
it will only work if the data are integrated consecutively. The only images that chi-square detection
technology can find are those that have been continuously implanted with secret messages [50]. For
the stego image to resist statistical attacks, it must achieve a probability of detection near zero (0).
Steganalysis tools save time and offer new attack angles for forensic analysts. StegExpose is a real-
world solution that efficiently analyzes LSB steganography images using proven attacks. Its focus is
intelligently combining steganalytic methods for more accurate results [51].

5.3 Details of Dataset

We use steganography to hide the secret message (binary text) in the cover images and generate
the stego images. Each cover image will conceal 1000 random-length secret messages to ensure the
safety of the steganography. Since a greater payload may lead to a larger payload, the secret message
length is randomly selected from {2, 4, 8, 16, and 32} kilobytes by combining more than the file. This



CMC, 2024, vol.81, no.1 199

dataset is a collection of newsgroup documents. The ten newsgroups collection has become a popular
data set for experiments in text applications of machine learning techniques, such as text classification
and clustering. This paper will use the same dataset for the steganographic system. Each newsgroup
file in the bundle represents a single newsgroup. Each message in a file is the text of some newsgroup
document posted to that newsgroup. This is a list of the ten newsgroups: “business,” The categories
include “entertainment,” “food,” “graphics,” “historical,” “medical,” “politics,” “space,” “sport,” and
“technology” [52].

This paper’s dataset contains 3000 RGB-BMP images, dimensions 512 × 512, for steganography,
steganalysis, and similar image processing applications. The dataset includes various image captures
such as “paper,” “flowers,” “farmers,” “beach,” “birds,” “river,” “cow,” “grapes,” “strawberries,” and
“trees.” All images are color images with 512 × 512 resolutions from a regular, high-definition camera.
Moreover, we randomly select an additional seven cover images, “Tiffany,” “Pepper,” and “Baboon,”
from the internet as a benchmark. These images have pixel values whose size is 512 × 512, ensuring
that all the resolutions of the cover images match those of the dataset. This paper uses the 3000 image
matrices mentioned above as the cover images [53].

Finally, the number of cover image-containing stego images containing the secret message with a
size of 16 KB, “steganography,” accounts for 10% of all steganographic images, thus leading to a total
of 300 stego images generated by steganography methods.

5.4 Results and Discussion

The simulation results using both the LSB image steganography, pixel indicator technique, and the
proposed method applied to the Tiffany, Pepper, and Baboon benchmarks are shown in this section.
The histogram, PSNR, MSE, NCC, and file size analyses for the dataset are also presented. The salient
outcomes are discussed as follows:

5.4.1 Preparation

Select a set of cover images of varying sizes and content. These images represent a natural scene.
Create a cover image that conceals a secret message. These messages are text files. We will load the
AVL tree method. This technique uses the least significant bit (LSB) substitution method and random
and pixel indicator techniques, where the least significant bits of pixel values are modified to encode
the secret data.

5.4.2 Experimental Steps

Step 1: Load a cover image into the software.

Step 2: Apply the steganography algorithm to embed a secret message within the cover image.

Step 3: Save the modified image as a stego image.

Step 4: Repeat steps one to three for multiple cover images using the same secret message.

Step 5: Randomize the order of the stego images to avoid bias.

Step 6: Prepare a control group by selecting the original cover images without any embedded data.

Step 7: Conduct statistical analysis or evaluation metrics to measure the effectiveness of the
steganography technique.



200 CMC, 2024, vol.81, no.1

5.4.3 Image Steganography Using Benchmarks from the Proposed Method Dataset

The results regarding the imperceptibility compared with similar techniques are shown in Table 5.
PSNR is another popular way of measuring the distortion of the cover image caused by embedding.
It is the relationship between a signal’s maximum value and distortion’s noise power (MSE). A higher
value of PSNR indicates better-quality embedding. As can be seen, the PSNR value (imperceptibility)
of the proposed AVL tree method is highly satisfactory compared with other proposed methods. It
fulfills the imperceptibility requirement at this stage since the MSE of this method converges to zero
for all compared proposed methods. Fig. 6 shows the cover image “Tiffany” and the stego image after
the proposed method is used.

Table 5: Results of the AVL tree proposed method

Cover capacity Tiffany Baboon Pepper

Text file size (KB) MSE PSNR NCC MSE PSNR NCC MSE PSNR NCC

1 0.0209 64.92 1.00 0.0218 64.75 1.00 0.0195 65.23 1.00
2 0.0392 62.20 1.00 0.0416 61.94 1.00 0.0373 62.42 1.00
4 0.0787 59.17 1.00 0.0820 58.99 1.00 0.0727 59.51 1.00
8 0.1573 56.16 1.00 0.1647 55.96 1.00 0.1466 56.49 1.00
16 0.3211 53.06 1.00 0.3249 53.01 1.00 0.2931 53.46 1.00
32 0.5720 50.56 1.00 0.5310 50.88 1.00 0.5326 50.87 1.00

Figure 6: Tiffany’s sample for Cover and Stego images (a) Cover image; (b) Stego image

Table 5 shows the metric results (MSE, PSNR, and NCC) of the proposed AVL tree method,
tested on benchmarks (Tiffany, Baboon, and Pepper) with different plaintext file sizes (1, 2, 4, 8, 16,
and 32 kilobytes). It is evident from Fig. 7 that the PSNR values of the cover object are approximately
the same as those of the stego image for all three RGB layers. This indicates that the proposed method
does not damage the cover object, and the stego image quality is sufficient to resist attacks from any
harmful intruder. Additionally, comparing the results across all RGB layers shows that the PSNR
values do not vary significantly. This consistency is due to the AVL tree technique, which hides secret
message bits randomly in the cover image without sharing a stego key, as discussed in this proposed
method. This technique embeds the secret message bits into the two significant bits of the red and
blue channels, resulting in similar statistics for both the cover and stego objects. We achieve this by
alternately hiding the two bits, once in the red channel and the next time in the blue channel.



CMC, 2024, vol.81, no.1 201

Figure 7: Tiffany.bmp (512 × 512) Histogram with a secret message size of 2 KB

The results of the proposed method are presented in line diagrams and tables, which authenti-
cate the success of the proposed approach over existing methods. Figs. 7 through 12 represent the
histograms of cover images vs. stego images for the benchmarks (Tiffany, Baboon, and Pepper).
These figures were captured (via screenshots) from the developed AVLTreeStego App. As shown in
Table 5, the benchmark results have a PSNR greater than 50 dB, indicating the high imperceptibility
of the proposed method. Additionally, the mean standard error for this experiment is low, reflecting
undetectable distortion and high image quality, with a Nice Cross-Correlation (NCC) of 1.0. This
algorithm shows high imperceptibility because, when compared with recent research, the PSNR is
consistently better than others except in studies [10] and [38]. In [38], the authors hide one character
per pixel, whereas the AVL tree method hides only four bits. In [10], the image distortion is high due
to a high MSE. The MSE of the AVL tree method is also better than that of other proposed methods,
indicating high stego image quality. Furthermore, all compared methods use a stego key to conceal
secret messages in the cover image, which must be shared with the recipient, but the AVL tree method
does not. The capacity of this proposed method is also commendable.

5.4.4 Image Steganography Using Comparative Methods Benchmarks

In Table 6, the results of the comparative methods [8–10,30], and [36–38] are listed and compared
with the proposed AVL tree method. These methods were tested on different 24-bit RGB cover images
of various sizes (256 × 256, 481 × 321, or 512 × 512) and with different secret message lengths
(114 bytes, 2 kilobytes, 5.3 kilobytes, 8 kilobytes, 10 kilobytes, and 18 kilobytes).



202 CMC, 2024, vol.81, no.1

Table 6: Comparison of MSE and PSNR of the proposed method (AVL tree) with other techniques

Criteria [8] AVL tree [9] AVL tree [10] AVL tree [30] AVL tree [36] AVL tree [37] AVL tree [38] AVL tree

File size 114 bytes 18 KBytes 18 KBytes 10 KBytes 8 KBytes 5.3 KBytes 2 KBytes

Image size 512 × 512 512 × 512 512 × 512 512 × 512 481 × 32 256 × 256 512 × 512

PNSR 48.3 76.5 40.5 53.0 67.3 54.13 48.40 56.98 49.9 52.16 59.69 66.81 69.3 63.9

MSE 0.95 0.001 7.67 0.33 2.55 0.251 0.939 0.130 – 0.396 0.007 0.014 0.01 0.026

Colored Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Share keys Yes No Yes No Yes No Yes No Yes No Yes No Yes No

The methods were tested on the same samples (cover images and secret messages). The PSNR
results of [8,9,30] and [36] are above 50 dB, while those of [10], and [37,38] are below 50 dB. All
proposed methods were shared with the recipient using stego keys. Testing the same dataset revealed
that the suggested method had a PSNR of over 50 dB. The proposed method does not share any stego
keys. Figs. 7 to 12 show some of the images’ histograms. The small payload (2 KB) (Figs. 7, 9, and 11)
resulted in a similar histogram for the stego image, where the payload capacity increased to 32 KB,
resulting in low distortion as shown in Figs. 8, 10, and 12.

Figure 8: Tiffany.bmp (512 × 512) Histogram with a secret message size of 32 KB



CMC, 2024, vol.81, no.1 203

Figure 9: Baboon.bmp (512 × 512) Histogram with a secret message size of 2 KB

Figure 10: Baboon.bmp (512 × 512) Histogram with a secret message size 32 KB



204 CMC, 2024, vol.81, no.1

Figure 11: Pepper.bmp (512 × 512) Histogram with a secret message size of 2 KB

Figure 12: Pepper.bmp (512 × 512) Histogram with a secret message size of 32 KB



CMC, 2024, vol.81, no.1 205

5.4.5 Image Steganography Using Benchmark of Proposed Methods

The probabilities of detecting the stego images with RS and chi-square using the StegoExpose tool
[51] have averages of 0.05408144 for the RS Analysis and 0.13303362 for the chi-square analysis. When
the same samples of the [8] method are tested with the proposed AVL tree data structure proposed
method, the results show averages of 0.13303362 for the RS analysis and 0.05408144 for the chi-square
analysis.

In Table 7, the results of the comparative method [8] are provided for security analysis obtained
for the sample of stego images in Fig. 13.

Table 7: Security analysis comparison between [8] and AVL tree data structure proposed method

Method [8] AVL tree data structure method

Images Chi-Square RS Analysis Chi-Square RS Analysis
Butterfly 0.02026724 0.02654193 0.25961672 0.16178021
Apple 0.29121700 0.01922108 0.24458866 0.01447541
Building 0.00509353 0.00480165 0.00315208 0.01529719
Fruit 0.02162384 0.02754041 0.02477702 0.02477294
Average 0.08455040 0.01952627 0.13303362 0.05408144

Figure 13: Cover samples for proposed method reprinted with permission from Tiwari et al. [8]

6 Discussion

As mentioned in Section 2, randomization techniques were used in many proposed methods to add
more security to the hidden bits by selecting the pixels randomly. These techniques achieved random
pixel selection differently. Many techniques use PRNG with seed keys like [9] and [37], while other
proposed methods use mathematical equations to generate a random sequence number like [8,30], and
[38]. The proposed methods [10,36] use patterns and matrices stored in files. All mentioned random
techniques require sharing keys with the recipients. However, the method suggested in this paper does
not share the stego key with the recipient to extract the secret data from the stego image, as it uses an
AVL tree and queue data structure. The AVL tree data structure has the properties of sorted data and
balanced node access, which is more efficient since accessing the tree nodes is O(log n). New integer
nodes are added to the tree on the left side of the parent if their value is less than the parent node’s
value. Greater or equal values are placed on the right side after constructing the AVL tree, as shown
in Fig. 3, based on the integer values of the green channel. This channel is sensitive to human eyes,



206 CMC, 2024, vol.81, no.1

so changes may be detected quickly. The traversal of the tree level by level can be done using a queue
data structure. The root node is added to the queue. While the queue is not empty, access the root
node and pop it from the queue. If the root has left or right nodes, push them to the queue. In this
technique, the proposed method can access all nodes from top to bottom and from left to right, level
by level, as shown in Fig. 3. These nodes [5, 3, 27, 15, 4, 19, . . . , 38] are accessed randomly as tagged
with the red numbers representing the pixels from the cover image. While traversing nodes of the tree
from top to bottom, the 2-bit LSB of each red and blue channel will be altered with bits of length and
secret message based on the two least significant bits of the green channel. The fluctuation between
the red and blue channels to hide the message bits of a secret message depending on the two least
significant bits of the green channel will enhance security because the sequence of hidden bits will not
be in consecutive channels.

One of the main advantages of using the AVL tree data structure is sorting the object nodes in
order. Traversing the AVL tree sequentially from left, parent, and right will result in an orderly printing
of this tree. When the AVL tree in the figure is traversed, the result will be like 7, 10, 10, 14, 21, 22, . . . ,
215. This property is potent for sorting the color intensity in ascending order. So, when hiding two
bits in LSB, the value of the red or blue channel will be incremented by +3, +2, +1, or decremented
by –1, –2, –3, or unchanged. As a result, the changes in red and blue channels will be undetectable
by attacker tools like StegoExpose. Furthermore, this proposed method uses traversal of the node of
the AVL tree level by level to conceal the secret message bits in nonadjacent pixels to enhance the
security level because when the bits are hidden in nonadjacent pixels, the attack tools, which depend
on statistical analysis, cannot detect the existence of a bit or bits in these pixels.

When the AVL method is compared with the proposed method in [8], the tool detects one
(Butterfly.bmp) image out of five from the sample in Fig. 13 that might have concealed data inside.
However, it can detect the secret message, but the estimated file size was 37,008 bytes, which is not
the correct size of the secret message because it was 114 bytes. Also, the extraction of secret messages
cannot be done without an extraction algorithm. The AVL tree data structure showed strong security
against the attack tool, although it doesn’t use any encryption method to encrypt the secret message
as in the method [8].

The chi-square statistical test is the foundation of the chi-square steganalysis algorithm, which
compares the expected distribution of pixel values in a cover image to the distribution in an image
under steganalysis. This method detects hidden information in steganographic methods, which often
involve minor modifications to the image’s statistical characteristics, such as shifting the pixel value
distribution or adding correlations between nearby pixels [49]. Residual statistics (RS) refer to the
statistical properties of differences between original cover media and stego media, obtained by
subtracting the cover media from the stego media [13]. When the statistical results of both techniques
are near zero, the attacker fails to detect the existence of the secret message in the stego images.

The proposed method was tested on a benchmark (Tiffany, Baboon, and Pepper) from the dataset,
and the test showed high security after being checked by the StegoExpose tool. This tool 100% fails
to detect secret messages in the cover images of traditional datasets (Baboon, Tiffany, Pepper) with
different lengths of secret files (1, 2, 3, 4, 5, 8, 16, and 32 KB). When the chi-square test is applied to
the sample images (Tiffany, Baboon, and Pepper) of the research using the StegExpose tool [51], the
probability of detecting the stego images (Tiffany.bmp, Baboon.bmp, and Pepper.bmp) using Chi-
square detection averages is 0.00683106. The results showed that chi-square failed to discover the
existence of the hidden message in the stego image. Also, the suggested scheme shows that the system is
resistant to RS attacks in various payloads. The probability of detecting the stego images (Tiffany.bmp,



CMC, 2024, vol.81, no.1 207

Baboon.bmp, and Pepper.bmp) using RS analysis averages is 0.09962817. The results showed that RS
analysis failed to discover the hidden message in the stego image.

Authors in [8] use the Advance Encryption Standard (AES) algorithm to encrypt the message
before hiding bits in the cover image to show that the proposed algorithm is highly secure. Still, the
AVL tree data structure algorithm showed the same resistance to attackers with approximately the
same results as Table 7 shows without encrypting the message.

It is feasible to spot possible alterations that point to the existence of steganographic content by
comparing the histograms of the stego and cover images. Depending on the needs of the investigation,
the entire image can be subjected to histogram-based steganalysis or just particular sections of interest.
The presence of concealed information can be found by looking at the distribution of pixel values
and finding disparities. It’s crucial to remember that although histogram analysis might be helpful in
steganalysis, it is not infallible.

7 Conclusion and Future Work

In conclusion, the current practice uses simple data structures that do not require a steganographic
context or data modeling. This paper offers more sophisticated data structures, which can be
considered robust against common steganalytic attacks. In steganography, a high PSNR indicates
the hidden data is less detectable, making the stego image appear more like the original cover
image. This ensures that the embedded data remains secure and undetected by casual observers or
automated detection methods. Testing the AVLTree-Steg method on the benchmark demonstrates
high imperceptibility, with the PSNR exceeding 50 dB for all tested benchmark step images. The
MSE is critical in steganography as it quantifies the average squared difference between the cover and
stego images. A lower MSE indicates that the stego image closely resembles the original cover image,
reducing the likelihood of detecting hidden data. Minimal distortion is essential for maintaining the
cover image’s quality and ensuring the steganographic method’s security and effectiveness.

The proposed method demonstrates a low MSE, indicating minimal distortion between the cover
and stego images. The NCC measures the similarity between the original cover image and the stego
image, with a value close to 1.0 indicating strong similarity. This NCC value is crucial as it guarantees
the inconspicuousness of the embedded data and the preservation of the cover image integrity. All
stego images in the benchmark exhibit an NCC of approximately 1.0. Moreover, when comparing the
benchmark images to the stego images, the histograms of all channels closely match those of the cover
images, indicating the method’s excellent security.

Comparing the AVLTree-Steg method with other recent methods reveals high imperceptibility
and large capacity. Furthermore, the proposed method has a high level of security, as steganalysis
tools cannot detect it. This work uses an AVL tree in steganography to generate random pixel
locations that conceal secret bits. This paper implements a randomization technique that eliminates
the need for sharing stego keys, significantly reducing the risk of interception or unauthorized access.
Steganography becomes inherently secure without the need for stego keys. One example of keyless
steganography is using image-based techniques, where secret messages are hidden within the pixel
values of an image. By slightly altering the least significant bits of the image’s pixels, hidden data
can be embedded without noticeable changes to image quality. This method allows the message to be
extracted simply by reversing the pixel alterations. This paper demonstrates improved imperceptibility,
by altering the red or blue pixels of the cover image to occur in a different order. This AVL tree
contains information from top to bottom and left to right, enhancing the concealment method and



208 CMC, 2024, vol.81, no.1

significantly reducing the detectability of hidden data. The node-hiding process relies on the green
channel, providing consistent results when analyzing the tree horizontally and level-by-level.

In the future, we can enhance capacity by concealing confidential data in all channels of the cover
image and altering pixels based on various criteria. By distributing hidden data more evenly across the
red, green, and blue channels, we can increase the overall capacity and improve the imperceptibility
of the cover image. We can embed a higher volume of confidential information using this approach
without compromising the visual quality of the cover image. Additionally, spreading the data across
multiple channels reduces the likelihood of detection, as changes in pixel values are less concentrated
and, therefore less noticeable. We can also encrypt sensitive bits before embedding them inside the
cover image. We will also explore using alternative data structures, such as a hash, heap, stack, queue,
or graph, to improve capacity, imperceptibility, efficiency, or security. These data structures can store
a secret message that is extremely difficult to decipher. It is possible to further improve the security of
a secret message by encrypting it with encryption algorithms. For instance, the Advanced Encryption
Standard (AES) is widely used to secure sensitive data. AES is known for its robustness and efficiency,
making it a popular choice for both government and commercial applications. By using AES, you can
ensure that your message remains confidential and protected from unauthorized access. Finally, we can
utilize compression algorithms, such as Huffman coding, to further reduce the encrypted messages,
and improve the overall security of the method.

Acknowledgement: The authors would like to thank the editors and reviewers for their detailed review
and insightful advice.

Funding Statement: This research was funded by the University Kebangsaan Malaysia.

Author Contributions: The authors confirm their contribution to the paper as follows: Study concep-
tion and design: Murad Njoum, Rossilawati Sulaiman, and Zarina Shukur; Analysis and interpreta-
tion of results: Murad Njoum; Draft manuscript preparation: Murad Njoum, Rossilawati Sulaiman,
and Faizan Qamar. All authors reviewed the results and approved the final version of the manuscript.

Availability of Data and Materials: The data and codes supporting this study’s findings are available
from the corresponding authors upon reasonable request.

Ethics Approval: Not applicable.

Conflicts of Interest: The authors declare that there are no conflicts of interest to report regarding the
present study.

References
[1] V. K. Trivedi, S. Stalin, S. Joshi, M. H. Alkinani, P. K. Shukla and B. Gaur, “User data privacy in multimedia

domain using 3-3 LSB-based color image steganography with RC4 and Bernoulli map protection,” J.
Electron. Imaging, vol. 31, no. 3, 2022, Art. no. 033021. doi: 10.1117/1.JEI.31.3.033021.

[2] M. M. Iqbal, U. Khadam, K. J. Han, J. Han, and S. Jabbar, “A robust digital watermarking algorithm for
text document copyright protection based on feature coding,” in 2019 15th Int. Wirel. Commun. Mobile
Comput. Conf. (IWCMC), Tangier, Morocco, IEEE, Jun. 2019, pp. 1940–1945.

[3] K. C. Nunna and R. Marapareddy, “Secure data transfer through internet using cryptography and image
steganography,” in 2020 SoutheastCon, Raleigh, NC, USA, IEEE, vol. 2, 2020. doi: 10.1109/Southeast-
Con44009.2020.9368301.

https://doi.org/10.1117/1.JEI.31.3.033021
https://doi.org/10.1109/SoutheastCon44009.2020.9368301


CMC, 2024, vol.81, no.1 209

[4] V. B. Savant and R. D. Kasar, “A review on network security and cryptography,” Res. J. Eng. Technol., vol.
12, no. 4, pp. 110–114, 2021. doi: 10.52711/2321-581X.

[5] L. Akhila and V. J. Manoj, “Image steganography using pixel value differencing with modulus function and
optimization,” in 2022 4th Int. Conf. Smart Syst. Inventive Technol. (ICSSIT), Tirunelveli, India, 2022, pp.
1369–1373.

[6] F. Al-Shaarani and A. Gutub, “Securing matrix counting-based secret-sharing involving crypto
steganography,” J. King Saud Univ.–Comput. Inf. Sci., vol. 34, no. 9, pp. 6909–6924, 2022. doi:
10.1016/j.jksuci.2021.09.009.

[7] C. K. Deo, A. Singh, D. K. Singh, and N. K. Soni, “Developing a highly secure and high Capacity LSB
steganography technique using PRNG,” in 2020 Int. Conf. Comput. Perform. Eval. (ComPE), Shillong,
India, 2020, pp. 136–140.

[8] K. Tiwari and S. J. Gangurde, “LSB steganography using pixel locator sequence with AES,” in 2021 2nd
Int. Conf. Secure Cyber Comput. Commun. (ICSCCC), Jalandhar, India, 2021, pp. 302–307.

[9] U. M. E. Ali, E. Ali, M. Sohrawordi, and M. N. Sultan, “A LSB based image steganography using random
pixel and bit selection for high payload,” Int. J. Math. Sci. Comput., vol. 3, pp. 24–31, 2021.

[10] K. H. Abuhmaidan, A. K. Kayed, and M. Alrisia, “Steganography: A flexible embedded randomization
technique,” KSII Trans. Internet Inf. Syst., vol. 17, no. 1, pp. 120–144, 2023. doi: 10.3837/tiis.2023.01.007.

[11] D. Megías, W. Mazurczyk, and M. Kuribayashi, “Data hiding and its applications: Digital watermarking
and steganography,” Appl. Sci., vol. 11, no. 22, 2021, Art. no. 10928. doi: 10.3390/app112210928.

[12] S. Panchikkil, V. M. Manikandan, Y. Zhang, and S. Wang, “A multi-directional pixel-swapping approach
(MPSA) for entropy-retained reversible data hiding in encrypted images,” Entropy, vol. 25, no. 4, 2023, Art.
no. 563. doi: 10.3390/e25040563.

[13] M. N. M. Najih, E. H. Rachmawanto, C. A. Sari, and S. Astuti, “An improved secure image hiding
technique using PN-sequence based on DCT-OTP,” in 2017 1st Int. Conf. Inform. Comput. Sci. (ICICoS),
Semarang, Indonesia, 2017, pp. 47–52.

[14] M. Santhanalakshmi, K. Lakshana, and G. M. Shahitya, “Enhanced AES-256 cipher round algorithm
for IoT applications,” Sci. Temper, vol. 14, no. 1, pp. 184–190, 2023. doi: 10.58414/SCIENTIFICTEM-
PER.2023.14.1.22.

[15] P. Dijesh, S. Babu, and Y. Vijayalakshmi, “Enhancement of e-commerce security through asymmetric key
algorithm,” Comput. Commun., vol. 153, no. 7, pp. 125–134, 2020. doi: 10.1016/j.comcom.2020.01.033.

[16] R. Wazirali, W. Alasmary, M. M. Mahmoud, and A. Alhindi, “An optimized steganography hiding
capacity and imperceptibly using genetic algorithms,” IEEE Access, vol. 7, pp. 133496–133508, 2019. doi:
10.1109/ACCESS.2019.2941440.

[17] K. Maheswari, C. Siva, and G. Nalinipriya, “An innovative model for secure environment using steganog-
raphy,” in 2022 8th Int. Conf. Smart Struct. Syst. (ICSSS), Chennai, India, 2022, pp. 1–5.

[18] A. A. Almayyahi, R. Sulaiman, F. Qamar, and A. E. Hamzah, “High-security image steganography
technique using XNOR operation and fibonacci algorithm,” Int. J. Adv. Comput. Sci. Appl., vol. 11, no. 10,
pp. 511–522, 2020. doi: 10.14569/issn.2156-5570.

[19] A. H. Ali, L. E. George, A. A. Zaidan, and M. R. Mokhtar, “High capacity, transparent and secure audio
steganography model based on fractal coding and chaotic map in temporal domain,” Multimed. Tool Appl.,
vol. 77, no. 23, pp. 31487–31516, 2018. doi: 10.1007/s11042-018-6213-0.

[20] H. Zhao, Y. Liu, Y. Wang, S. Liu, and C. Feng, “A video steganography method based on transform
block decision for H. 265/HEVC,” IEEE Access, vol. 9, pp. 55506–55521, 2021. doi: 10.1109/AC-
CESS.2021.3059654.

[21] M. A. Majeed, R. Sulaiman, and Z. Shukur, “New text steganography technique based on part-of-speech
tagging and format-preserving encryption,” KSII Trans. Internet Inf. Syst., vol. 18, no. 1, pp. 170–191, 2024.

[22] O. H. Alhabeeb, F. Fauzi, and R. Sulaiman, “Developing a novel DNA-based steganography algo-
rithm using random table generation with segmentation,” Multimed. Tools Appl., vol. 83, no. 14,
pp. 40529–40567, Apr. 2024. doi: 10.1007/s11042-023-16699-7.

https://doi.org/10.52711/2321-581X
https://doi.org/10.1016/j.jksuci.2021.09.009
https://doi.org/10.3837/tiis.2023.01.007
https://doi.org/10.3390/app112210928
https://doi.org/10.3390/e25040563
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.1.22
https://doi.org/10.1016/j.comcom.2020.01.033
https://doi.org/10.1109/ACCESS.2019.2941440
https://doi.org/10.14569/issn.2156-5570
https://doi.org/10.1007/s11042-018-6213-0
https://doi.org/10.1109/ACCESS.2021.3059654
https://doi.org/10.1007/s11042-023-16699-7


210 CMC, 2024, vol.81, no.1

[23] Y. P. Astuti, E. H. Rachmawanto, and C. A. Sari, “Simple and secure image steganography using LSB
and triple XOR operation on MSB,” in 2018 Int. Conf. Inf. Commun. Technol. (ICOIACT), Yogyakarta,
Indonesia, 2018, pp. 191–195.

[24] A. Ahmed and A. Ahmed, “A secure image steganography using LSB and double XOR operations,” Int.
J. Comput. Sci. Net., vol. 20, no. 5, pp. 139–139, 2020.

[25] N. M. Al-Aidroos and H. A. Bahamish, “Image steganography based on LSB matching and image
enlargement,” in 2019 First Int. Conf. Intell. Comput. Eng. (ICOICE), Hadhramout, Yemen, 2019,
pp. 1–6.

[26] F. Baso, “Performance analysis of the last significant bit (LSB) method in steganography for data
hiding in image data,” J. Secur., Comput., Inf., Embedded, Netw., Intell. Syst., pp. 58–62, 2023. doi:
10.61220/scientist.v1i2.20234.

[27] S. Bilgaiyan, R. Ahmad, and S. Sagnika, “Adaptive image steganography using rotating color chan-
nels and inverted LSB substitution,” SN Comput. Sci., vol. 4, no. 5, 2023, Art. no. 565. doi:
10.1007/s42979-023-01949-0.

[28] Y. Y. Demircan and S. Ozekes, “A novel LSB steganography technique using image segmentation,” J.
Univers. Comput. Sci. (JUCS), vol. 30, no. 3, pp. 308–332, 2024. doi: 10.3897/jucs.105702.

[29] A. K. Patel and D. Vekariya, “A literature review on image quality and embedding payload for image
steganography,” in AIP Conf. Proc., AIP Publishing, Dec. 2023, vol. 2855, no. 1.

[30] N. A. F. Abbas, N. Abdulredha, R. K. Ibrahim, and A. H. Ali, “Security and imperceptibility improving of
image steganography using pixel allocation and random function techniques,” Int. J. Electr. Comput. Eng.,
vol. 12, no. 1, pp. 694–705, 2022.

[31] K. Joshi, S. Gill, and R. Yadav, “A new method of image steganography using 7th bit of a pixel as indicator
by introducing the successive temporary pixel in the grayscale image,” J. Comput. Netw. Commun., vol.
2018, no. 8, pp. 1–10, 2018. doi: 10.1155/2018/9475142.

[32] S. Ghoul, R. Sulaiman, and Z. Shukur, “A review on security techniques in image steganography,” Int. J.
Adv. Comput. Sci. Appl., vol. 14, no. 6, 2023. doi: 10.14569/issn.2156-5570.

[33] O. Kuznetsov, E. Frontoni, and K. Chernov, “Beyond traditional steganography: Enhancing security and
performance with spread spectrum image steganography,” Appl. Intell., vol. 54, no. 7, pp. 5253–5277, 2024.
doi: 10.1007/s10489-024-05415-z.

[34] Y. G. Yang, B. P. Wang, Y. H. Zhou, W. M. Shi, and X. Liao, “Efficient color image encryption by color-
grayscale conversion based on steganography,” Multimed. Tools Appl., vol. 82, no. 7, pp. 10835–10866,
2023. doi: 10.1007/s11042-022-13689-z.

[35] V. Rahmani and M. Mohammadpour, “High hiding capacity steganography method based on pixel
indicator technique,” in 2017 5th Iranian Joint Congress Fuzzy Intell. Syst. (CFIS), 2017, pp. 144–149.

[36] M. Zhang, S. Zhang, and L. Harn, “An efficient and adaptive data-hiding scheme based on secure random
matrix,” PLoS One, vol. 14, no. 10, 2019, Art. no. 222892. doi: 10.1371/journal.pone.0222892.

[37] A. Gahan and G. D. Devanagavi, “A secure steganography model using random-bit select algorithm,” in
2020 Third Int. Conf. Adv. Electron., Comput. Commun. (ICAECC), Bengaluru, India, 2020, pp. 1–5.

[38] K. Kordov and S. Zhelezov, “Steganography in color images with random order of pixel selection
and encrypted text message embedding,” PeerJ Comput. Sci., vol. 7, no. 11, 2021, Art. no. 380. doi:
10.7717/peerj-cs.380.

[39] W. Wu and H. Li, “A novel scheme for random sequential high-capacity data hiding based on PVD and
LSB,” Signal, Image Video Process., pp. 1–11, 2023.

[40] M. K. Abdul-Hussein and H. T. S. ALRikabi, “Secured transfer and storage image data for cloud
communications,” Int. J. Online Biomed. Eng., vol. 19, no. 6, pp. 4–17, 2023.

[41] L. Zhang, X. Song, A. A. A. El-Latif, Y. Zhao, and B. Abd-El-Atty, “Reversibly selective encryption for
medical images based on coupled chaotic maps and steganography,” Complex Intell. Syst., vol. 10, no. 2,
pp. 2187–2213, 2024.

[42] J. Horng, S. Xu, C. Chang, and C. Chang, “An efficient data-hiding scheme based on multidimensional
Mini-SuDoKu,” Sensors, vol. 20, no. 9, 2020, Art. no. 2739. doi: 10.3390/s20092739.

https://doi.org/10.61220/scientist.v1i2.20234
https://doi.org/10.1007/s42979-023-01949-0
https://doi.org/10.3897/jucs.105702
https://doi.org/10.1155/2018/9475142
https://doi.org/10.14569/issn.2156-5570
https://doi.org/10.1007/s10489-024-05415-z
https://doi.org/10.1007/s11042-022-13689-z
https://doi.org/10.1371/journal.pone.0222892
https://doi.org/10.7717/peerj-cs.380
https://doi.org/10.3390/s20092739


CMC, 2024, vol.81, no.1 211

[43] G. Shao, J. Liu, and D. Shen, “A novel steganography scheme for color image based on HLS translation,”
J. Phys.: Conf. Ser., vol. 2025, no. 1, 2021, Art. no. 12058. doi: 10.1088/1742-6596/2025/1/012058.

[44] N. Pan, J. Qin, Y. Tan, X. Xiang, and G. Hou, “A video coverless information hiding algorithm
based on semantic segmentation,” EURASIP J. Image Video Process., vol. 2020, no. 1, 2020. doi:
10.1186/s13640-020-00512-8.

[45] Q. Jiang, “An image hiding algorithm based on bit plane and two-dimensional code,” in 2021 Third Int.
Conf. Intell. Commun. Technol. Virtual Mobile Netw. (ICICV), Tirunelveli, India, 2021.

[46] Z. Tang, H. Nie, C. M. Pun, H. Yao, C. Yu and X. Zhang, “Color image reversible data hiding with double-
layer embedding,” IEEE Access, vol. 8, pp. 6915–6926, 2020. doi: 10.1109/ACCESS.2020.2964264.

[47] H. T. Elshoush, M. M. Mahmoud, and A. Altigani, “A new high capacity and secure image realization
steganography based on ASCII code matching,” Multimed. Tools Appl., vol. 81, no. 4, pp. 1–47, 2022. doi:
10.1007/s11042-021-11741-y.

[48] D. Deshmukh and D. G. Kurundkar, “Video steganography using edge detection techniques,” in Proc. Int.
Conf. Commun. Inf. Process. (ICCIP), Chongqing, China, 2019.

[49] C. C. Chang, G. D. Su, C. C. Lin, and Y. H. Li, “Position-aware guided hiding data scheme with reversibility
and adaptivity for dual images,” Symmetry, vol. 14, no. 3, 2022, Art. no. 509. doi: 10.3390/sym14030509.

[50] I. H. Pan, K. C. Liu, and C. L. Liu, “Chi-square detection for PVD steganography,” 2020 Int. Symp.
Comput., Consumer Control, no. 3C), pp. 30–33, 2020. doi: 10.1109/IS3C50286.2020.

[51] B. Boehm, “Stegexpose-A tool for detecting LSB steganography,” 2014, arXiv:1410.6656.
[52] J. Baxter, “Dataset text document classification,” 2020. Accessed: Jun. 8, 2020. [Online]. Available:

https://www.kaggle.com/datasets/sunilthite/text-document-classification-dataset
[53] M. Al-Jarrah, “RGB-BMP steganalysis dataset,” Mendeley Data, vol. V1, 2018. doi:

10.17632/sp4g8h7v8k.1.

https://doi.org/10.1088/1742-6596/2025/1/012058
https://doi.org/10.1186/s13640-020-00512-8
https://doi.org/10.1109/ACCESS.2020.2964264
https://doi.org/10.1007/s11042-021-11741-y
https://doi.org/10.3390/sym14030509
https://doi.org/10.1109/IS3C50286.2020
https://www.kaggle.com/datasets/sunilthite/text-document-classification-dataset
https://doi.org/10.17632/sp4g8h7v8k.1

	High-Secured Image LSB Steganography Using AVL-Tree with Random RGB Channel Substitution
	1 Introduction
	2 Background Studies
	3 Literature Review
	4 Proposed Method
	5 Performance Analysis
	6 Discussion
	7 Conclusion and Future Work
	References


