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ABSTRACT

The employment of deep convolutional neural networks has recently contributed to significant progress in single
image super-resolution (SISR) research. However, the high computational demands of most SR techniques hinder
their applicability to edge devices, despite their satisfactory reconstruction performance. These methods commonly
use standard convolutions, which increase the convolutional operation cost of the model. In this paper, a lightweight
Partial Separation and Multiscale Fusion Network (PSMFNet) is proposed to alleviate this problem. Specifically, this
paper introduces partial convolution (PConv), which reduces the redundant convolution operations throughout
the model by separating some of the features of an image while retaining features useful for image reconstruction.
Additionally, it is worth noting that the existing methods have not fully utilized the rich feature information,
leading to information loss, which reduces the ability to learn feature representations. Inspired by self-attention,
this paper develops a multiscale feature fusion block (MFFB), which can better utilize the non-local features of an
image. MFFB can learn long-range dependencies from the spatial dimension and extract features from the channel
dimension, thereby obtaining more comprehensive and rich feature information. As the role of the MFFB is to
capture rich global features, this paper further introduces an efficient inverted residual block (EIRB) to supplement
the local feature extraction ability of PSMFNet. A comprehensive analysis of the experimental results shows that
PSMFNet maintains a better performance with fewer parameters than the state-of-the-art models.
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1 Introduction

Single image super-resolution (SISR) seeks to generate a high-resolution (HR) image from its
low-resolution (LR) counterpart by recovering lost information. The swift advancement of high-speed
internet transmission has led to a surge in high-quality data, such as high-definition images and videos,
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resulting in the extensive application of SISR across various domains [1]. Consequently, devising an
efficient and potent SR technique is crucial for enhancing the visual experience.

The progress of deep learning (DL) has led to the emergence of various SISR approaches
that exhibit outstanding performance. The SRCNN [2] achieved superior performance compared
to traditional methods using only three convolutional layers. On the basis of residual learning, the
VDSR [3] was developed to a depth of 20 layers, while RCAN [4] goes a step further to 400 layers.
These networks have achieved impressive performance, but their most significant drawback is the
high computational cost, which is not conducive to the practical needs of resource-limited devices.
On the other hand, the introduction of Transformer architecture has further developed the field of
image restoration. For example, SwinIR [5] achieved more advanced performance than CNN models
at the time. Although these models require high computational costs, they have also demonstrated the
importance of non-local feature interactions in image reconstruction.

To reduce model parameters and complexity, many lightweight SR networks have been proposed.
These networks have employed various strategies to achieve high efficiency, including lightweight
module design [1–3], neural network architecture search [4,5] structural reparameterization [6,7],
knowledge distillation [8–10] and attention mechanisms [11–15]. They have implemented efficient
architecture and modules to significantly reduce the parameters and complexity of the model, but there
is still redundancy in the convolution operation. By reducing unnecessary calculations and developing
more effective modules, we can construct a more efficient SR model.

Motivated by the aforementioned observations, this paper has proposed a novel lightweight
SR network, called partial separation and multiscale fusion network (PSMFNet). By optimizing
convolution operations and introducing multiscale feature modulation, it achieves a favorable balance
between performance and complexity. Specifically, PSMFNet uses partial convolution (PConv) [16]
to construct its basic modules, which reduces a significant amount of calculation redundancy while
maintaining feature extraction capability. PConv is advantageous for efficient SR. Moreover, the
implementation of long-range dependencies and attention mechanisms can effectively boost the
performance of SR networks. In this paper, a multi-scale feature fusion block (MFFB) is proposed
to achieve this goal. The MFFB combines a multi-scale spatial feature modulation mechanism and
spatial attention enhancement group to deeply explore features in both spatial and channel directions,
resulting in better image detail restoration. This paper also proposes an efficient inverse residual block
(EIRB) to enhance the extraction of local contextual information.

The specific contributions of this paper are as follows:

Standard convolutions, including grouped convolutions, often involve redundant computations.
In order to improve the utilization of convolutions and ensure reconstruction effectiveness, local
convolutions are introduced to construct basic modules, demonstrating their effectiveness for super-
resolution tasks;

Multiscale feature information is crucial for image reconstruction. In order to address the issue of
single-feature extraction, a multiscale feature fusion block is proposed to capture more representative
features in both spatial and channel directions. It is combined with effective inverse residual blocks to
compensate for the weak local contextual information interaction capability of the network;

In this paper, EIRB and MFFB have been merged into a lightweight feature enhancement block
(LFEB) and used to construct PSMFNet. Benchmark dataset evaluations indicate that our PSMFNet
strikes an advantageous balance between its performance and the complexity of the model.



CMC, 2024, vol.81, no.1 1493

2 Related Work
2.1 Deep Learning-Based Image Super-Resolution

With the introduction of the groundbreaking SRCNN [17] network, deep learning has experienced
substantial progress in the domain of super-resolution. For example, VDSR [18] has achieved better
performance by deepening the network layer. EDSR [19] showed that batch normalization (BN) layers
are unnecessary for SR tasks and remove them to enhance the expressive power of model. CARN [20]
incorporated dense connections into the network to offset the loss resulting from recursive networks.
Lately, image SR tasks have exhibited superior performance compared to CNN models when utilizing
the ViT [21] architecture. SwinIR [22] introduces a baseline model based on the Swin Transformer
and incorporates it as the feature extraction module in the composite model. The powerful feature
extraction capability enables the model to achieve outstanding performance. The GRL [23] network
architecture utilizes self-attention mechanism and integrates channel feature information to model
image features at different levels of global, regional, and local scopes, leading to improved image
restoration results. However, these methods [22,24–27] have brought expensive computational costs
along with their excellent performance, making deployment on resource-constrained devices more
challenging. This has also prompted developers to develop more efficient SR methods.

2.2 Efficient Image Super-Resolution

Aiming to lower the computational cost associated with the model, many effective SR methods
utilizing CNN have been introduced [28,29]. FSRCNN [30] adopted a post-upsampling method to
reduce complexity while maintaining performance. ESPCN [31] developed a sub-pixel convolution
that directly transforms LR images into HR images at the end, thereby reducing time complexity.
PAN [14] proposed a pixel attention approach that greatly reducing the parameters and achieving
better SR performance. IMDN [9] developed an information distillation block to separate and refine
features, thereby enhancing the restoration of image details. RFDN [10] reevaluated the network
structure of IMDN and introduced a shallow residual block as the foundational module of RFDN.
By incorporating feature distillation connections, RFDN achieved a lighter architecture compared to
IMDN. ShuffleMixer [32] explored image feature extraction from a different perspective by employing
large convolutions and channel-wise shuffle operations instead of stacking multiple small-kernel
convolutions. It also introduces Fused-MBConvs to enhance local connectivity, effectively restoring
image details. RLFN [33] simplified the feature aggregation operation of RFDN by employing three
layers of standard convolution for residual connections, enhancing the learning of local features
and significantly improving the model’s runtime. FMEN [34] designed a high-frequency attention
block to enhance image details, and applied structural reparameterization to reduce feature fusion
and further accelerate network inference speed. BSRN [35] built the model based on blueprint
separable convolution [36], reducing redundant operations in depthwise convolution (DWConv) but
also increasing inference time. To incorporate the benefits of ViT, SAFMN [37] proposed a lightweight
spatially adaptive feature modulation module to learn long-range dependencies from multiscale
features. The above methods have made improvements to the model in different aspects, but there
is still room for trade-offs.

3 Method
3.1 Network Architecture

The architecture of Partial Separation and Multiscale Fusion Network (PSMFNet) that has been
proposed in this paper is shown in Fig. 1. The PSMFNet is composed of three primary components:
Shallow feature extraction, multiple stacked lightweight feature enhancement modules (LFEB), and
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an image reconstruction module. In the initial segment, a 3 × 3 convolutional layer is employed to
extract shallow features from the input image. In this paper, the ILR has been represented as an input
to PSMFNet, and the operation can be represented as:

F0 = Hsfe (ILR) (1)

where Hsfe (·) denotes the module for extracting shallow features, and F0 is the extracted shallow
features. A stack of LFEBs is then utilized to extract deep features from F0. This process can be denoted
as:

Fn = Hn
LFEB(Fn−1) = Hn

LFEB((H
n−1
LFEB(. . . H0

LFEB(F0))) (2)

where Hn
LFEB (·) denotes the n-th LFEB function, while Fn−1 and Fn represent the input and output

features of the n-th LFEB, respectively.

Figure 1: The architecture of partial separation and multiscale fusion network (PSMFNet)

Subsequently, in this paper, 3 × 3 convolutional layers have been used to smooth the extracted
depth feature maps and introduce long jump connections before image reconstruction. Finally, the
image reconstruction module is employed to produce the final output ISR, which can be depicted as:

ISR = Hrec (Hsmooth (Fn) + F0) (3)

where Hrec (·) denotes the image reconstruction module function, encompassing a 3 × 3 convolutional
layer and a sub-pixel convolution [31] operation. Hsmooth (·) represents the 3 × 3 convolutional
operation. We optimized the model using the L1 loss function, which can be expressed as:

L1 (ISR, IHR) =
m∑

i=1

|ISR − IHR| (4)

where IHR denotes the ground-truth image. The L1 loss calculates the sum of the absolute differences
between the actual values and the target values. In image super-resolution tasks, the goal is to make
the generated image as close as possible to the real high-resolution image. The L1 loss calculates the
error between the values at corresponding pixel positions in the super-resolved and high-resolution
images.

3.2 Efficient Inverted Residual Block

In previous work, MobileNetv2 [3] proposed a depthwise convolution-based inverted residual
block. Although the introduction of depthwise convolution (DWConv) [2] reduces the computational
complexity and parameters of the model, expanding the channels increases the time required for
convolutional operations. Recently, a novel approach [16] has been developed, which utilizes an
efficient module based on PConv. This module directly connects to the inverted residual block after
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PConv, eliminating the DWConv in the residual block and reducing the computational burden of
convolution, resulting in faster inference speed.

Given an input I ∈ RH×W×C1 , convolution operation is performed on it using a kernel of size k × k,
resulting in an output O ∈ RH×W×C2 . In standard convolution, the number of floating point operations
is:

FLOPsregular = k2 × H × W × C1 × C2 (5)

From Fig. 2, it is evident that when r is 4, which means one-fourth of the input features undergo
convolution, the FLOPs of local convolution is:

FLOPsPConv = k2 × H × W × C1

4
× C2

4
(6)

In general, the number of output channels in convolution matches the number of input channels.
In this scenario, the FLOPs of local convolution is only 1/16 of the standard convolution.

Figure 2: Partial convolution

This module has been further optimized in this paper according to specific SR tasks. The batch
normalization layer has been shown to potentially cause unexpected artifacts in image reconstruction
[19,38], so we removed it. Additionally, GELU [39] has become the preferred choice for recent SR
methods [22,35,37]. As shown in Fig. 3, given the input feature Fin, the entire structure can be
described by as:

Fshortcut = Fin (7)

FEIRB = HEIRB (Fin) + Fshortcut (8)

where Fshortcut denotes the shortcut operation, HEIRB (·) denotes the EIRB function, and FEIRB represents
the output feature of EIRB.

Figure 3: The structure of EIRB. Partial convolution (PConv) only extracts features through convolu-
tion on a portion of the input channels, without affecting the remaining channels
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3.3 Multiscale Feature Fusion Block

Self-attention mechanisms [23–25] have the ability to capture long-range dependencies within neu-
ral networks and boost model performance. However, the adoption of self-attention mechanisms leads
to a marked increase in parameters and computational complexity. Some researchers have proposed
alternative approaches to self-attention mechanisms, such as the utilization of large convolutional
kernels [40] or spatially adaptive feature modulation [37]. All of these methods share a common feature
of utilizing DWConv, which results in a reduction of the feature extraction ability. Moreover, they
frequently neglect the channel information of the image, which results in incomplete information
for image reconstruction. Therefore, in this paper, we have proposed a lightweight multiscale feature
fusion block (MFFB) that explores important features in the spatial and channel domains while
learning long-range dependencies. As illustrated in the Fig. 4, MFFB focuses on a wider range of
pixel information, ensuring the reconstruction of image details as much as possible.

Figure 4: Multi-scale feature fusion

The MFFB primarily consists of multiscale spatial feature modulation (MSFM) block and
channel attention enhancement group (CAEG). As shown in Fig. 5, the MFFB divides the features
output by EIRB into three parts for processing. In the first part, spatial features are extracted from
a long-range perspective through MSFM. Firstly, the features undergo channel split operations, and
then each feature component is sent to different levels of spatial feature extraction channels. This
procedure can be expressed as:

[Fd0, Fd1, Fd2, Fd3] = Split (FEIRB)

F0 = Hpconv (Fd0)

Fi = ↑2i

(
Hpconv

(
↓ 1

2i
(Fdi)

))
, 1 ≤ i ≤ 3

(9)

where Split (·) represents channel split operation. Hpconv (·) represents the PConv operation. ↑2i repre-
sents upsampling the feature map to the original input size using nearest neighbor interpolation. ↓ 1

2i

represents downsampling the input feature to a size of 1
2i . In this paper, we have concatenated features

from different spatial levels, aggregated them using 1 × 1 convolution and activated them nonlinearly
using GELU. This procedure can be expressed as:

Fpart1 = GELU
(
Hpwconv (Concat ([Fd0, Fd1, Fd2, Fd3]))

)
(10)
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where Fpart1 represents the output of MSFM, Hpwconv (·) and Concat (·) denote pointwise convolution
(PWConv) and concatenation operations, respectively. In the second part, this paper has used Partial
Convolutional Enhancement Group (PCEG) consisting of 3 × 3 PConv and PWConv to filter the
input features and the process can be formulated as follows:

Fpart2 = HPCEG (FEIRB) (11)

where Fpart2 denotes the output of PCEG, and HPCG (·) denotes the PCEG function. In the final part,
CAEG is used to prevent the loss of channel information. CAEG consists of two parts, and in order to
obtain useful channel information from deeper layers, we use PCEG for feature enhancement before
CA [11]. This procedure can be formulated as:

Fpart3 = HCA (HPCEG (FEIRB)) (12)

where Fpart3 denotes the output of CAEG, and HCA (·) denotes the CA function.

Figure 5: Global feature fusion block (MFFB)

After obtaining representative features, in this paper, they have been aggregated using 1 × 1
convolution method and normalized using GELU nonlinear function. The feature aggregation is
formulated as:

FMFFB = GELU
(
Hpwconv

(
Fpart1 + Fpart2 + Fpart3

))
(13)

where FMFFB denotes the output of MFFB.

3.4 Image Reconstruction Module

The high-resolution images obtained by networks like SRCNN through bicubic interpolation
may lead to increased time complexity. Therefore, in this paper, the PixelShuffle operation is used
to upsample images.

As shown in Fig. 6, After the feature extraction module, a convolutional layer is utilized to gener-
ate r × r channel feature maps, where r represents the upsampling factor. Subsequently, PixelShuffle
is employed to reorganize the r × r channel feature maps into an upsampled image of size W × r, H ×
r, where W and H denote the width and height of the low-resolution image, respectively.
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Figure 6: Image reconstruction module

4 Experiment
4.1 Datasets and Metrics

The training image collection consists of 800 images originating from DIV2K [41] and 2650 images
derived from Flickr2K [19]. In this paper, our model has been evaluated using five commonly used
benchmark datasets: Set5 [42], Set14 [43], BSD100 [44], Urban100 [45], and Manga109 [46].

Set5 and Set14 contain 5 and 14 test images, respectively, covering a variety of scenes and
content. These images are used to comprehensively evaluate the performance of algorithms in different
scenarios and settings. BSD100 contains 100 test images with higher complexity and diversity, designed
to evaluate algorithms in real-world scenarios. Urban100 is a super-resolution reconstruction dataset
tailored for urban landscapes, comprising 100 test images typically featuring buildings, streets, and
cityscapes to assess algorithm performance in urban environments. Manga109 is a super-resolution
reconstruction dataset specifically curated for manga images, which often exhibit unique styles and
details, aimed at evaluating algorithm performance in handling manga-style images.

In this paper, Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM) [47]
have been used as evaluation metrics. All PSNR and SSIM values are computed on the Y channel of
images converted to the YCbCr color space. Given the ground-true image IHR and the super-resolution
image ISR, PSNR is defined as:

PSNR
(
IHR,ISR

) = 10 log10

max2
value

MSE
(14)

where

MSE = 1
M × N

M∑
i=1

N∑
j=1

(ISR (i, j) − IHR (i, j))2 (15)

MaxValue represents the maximum pixel value, and M and N respectively denote the height and
width. The definition of SSIM is as follows:

SSIM (IHR, ISR) = (2μhrμsr + c1) (2σhr·sr + c2)(
μ2

hr + μ2
sr + c1

) (
σ 2

hr + σ 2
sr + c2

) (16)

The variables μhr and μsr represent the mean grayscale value, σhr and σsr is the variance of the image,
and σhr·sr is the covariance of the image. c1 = (K1L)

2 and c2 = (K2L)
2 are two constant terms, where L

represents the range of pixel values.
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4.2 Implementation Details

During the data augmentation process for training, this paper applied random rotations of 90, 180,
and 270 to the images, as well as horizontal flipping. Furthermore, this paper randomly extracted 64
patches of 48 × 48 pixels from the LR images to serve as training inputs for the model. The model
in this paper needs to balance the accuracy and complexity of the model. When the number of LFEB
is 9, Param (K) is 435, FLOPs (G) is 24.5, and Acts (M) is 270, which is obviously higher than the
current advanced SR method such as ShuffeMixer and does not meet the lightweight requirements.
When LFEB is 7, Param (K) is 353, FLOPs (G) is 19.9, Acts (M) is 212, and the reconstruction quality
cannot be guaranteed. Therefore, the number of LFEB selected in this paper is 8, which can improve
the quality of image reconstruction as much as possible under the premise of lightweight. The proposed
PSMFNet consists of 8 LFEBs with a channel number of 64, and PConv preserves three-quarters of
the channels. This paper utilized the Adam [48] optimizer with β1 = 0.9 and β2 = 0.999 to solve the
proposed model. The iteration quantity is fixed at 1 × 106. The initial learning rate is configured at
5 × 10−4, which is updated by the Cosine Annealing scheme [49]. All experiments are conducted using
the Pytorch framework on a GeForce RTX 3090 GPU.

4.3 Ablation Study

This paper conducted extensive ablation experiments in this section to further evaluate the
effectiveness of each component of PSMFNet. We trained all experiments based on ×4 PSMFNet
with the same settings.

4.3.1 Effectiveness of the Partial Convolution

Unlike DWConv [2] and group convolution (GConv) [50], PConv only performs convolution on
a portion of the input channels, while the remaining channels are preserved. Compared to standard
convolution, PConv has fewer parameters and FLOPs, while also possessing superior spatial feature
extraction capabilities compared to DWConv and GConv. As shown in Table 1, when PConv was
replaced with DWConv in the backbone network, the PSNR decreased by 0.05 and 0.16 dB on
the DIV2K-val and Urban100 datasets, respectively. Similarly, when GConv was used, the PSNR
decreased by 0.03 and 0.13 dB on the same datasets after replacing PConv with DWConv in the
backbone network. The experimental results demonstrate that PConv not only maximizes the feature
extraction capabilities, but also positively contributes to subsequent modeling through the preserved
features.

4.3.2 Effectiveness of the Lightweight Feature Enhancement Block

This paper visualized the feature maps in Fig. 7 to illustrate the effectiveness of LFEB. LFEB
consists of two modules, MFFB and EIRB, which explore global and local features, respectively. To
verify their importance, this paper conducted the following experiments: (1) Using only two MFFB
blocks in LFEB, and (2) using only two EIRB blocks in LFEB. The reason for doing this is to
ensure that the models have similar parameters and achieve a fairer comparison. In Table 1, w/o EIRB
indicates the use of only two MFFBs in LFEB, while w/o MFFB indicates the use of only two EIRBs in
LFEB. Table 1 shows that using only MFFB resulted in a decrease of 0.03 and 0.12 dB in PSNR on the
DIV2K-val and Urban100 datasets, respectively, while using only EIRB resulted in a decrease of 0.11
and 0.3 dB in PSNR on the same datasets. As shown in Fig. 8, The decrease in performance indicates
that using only GFFB or EIRB alone will result in the loss of some useful information, leading to a
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decrease in image reconstruction quality. However, using both modules simultaneously can fuse rich
features and improve model performance.

Table 1: Ablation for PSMFNet on DIV2K-val and Manga109 datasets. PSMFNet with a scaling
factor of ×4 is utilized as the baseline for ablation studies. The PSNR/SSIM values on benchmarks
are reported. “X→Y” is to replace X with Y. “FA” is an abbreviation for feature aggregation. The
numbers of parameters, FLOPs, and Acts are counted by the fvcore library with a resolution of 320 ×
180 pixels

Ablation Variant Param FLOPs Acts DIV2K-val Urban100
(K) (G) (M) PSNR/SSIM PSNR/SSIM

Baseline – 394 22.2 241 30.53/0.8397 26.31/0.7918

Main module

PConv→DWconv 355 19.8 315 30.48/0.8387 26.15/0.7873
PConv→GConv (16 groups) 396 22.2 315 30.50/0.8390 26.18/0.7886
w/o MFFB 365 21.0 202 30.42/0.8371 26.01/0.7826
w/o EIRB 423 23.4 28 30.50/0.8387 26.19/0.7885

MFFB

w/o MSFM 375 21.3 217 30.42/0.8370 26.13/0.7856
w/o CA 389 22.2 241 30.52/0.8397 26.21/0.7895
w/o PCEG 343 19.3 204 30.48/0.8386 26.15/0.7872
w/o FA 361 20.4 212 30.46/0.8379 26.14/0.7868

EIRB
w/o BN 396 22.5 241 30.51/0.8390 26.27/0.7902
EIRB→FasterNet Block 396 22.5 241 30.50/0.8389 26.24/0.7901
EIRB→IRB 427 24.5 322 30.50/0.8389 26.28/0.7908

(a) LR input (b) Fsf (c) Fglobal (d) FLFEB

Figure 7: Illustration of learned deep features from the LFEB ablation: (a) Input image; (b) Shallow
features of input images; (c) The feature map after obtaining global information by MFFB; (d) The
feature map after the supplementation of local information by EIRB

4.3.3 Effectiveness of the Efficient Inverse Residual Block

Compared to the FasterNet Block [16], the EIRB has made modifications by removing the BN
layer [51]. Additionally, this paper have utilized the GELU [39] activation function to better suit the
SR task. This paper will conduct a sequence of ablation experiments to show its ability to effectively
extract local contextual information.
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(a) HR (b) w/LFEB

Urban100( × 4): img011 (c) w/o MFFB (d) w/o EIRB

Figure 8: Effect of the MFFB and the EIRB in the LFEB for SISR

As shown in Table 1, this paper replaced EIRB with FasterNet Block, and the PSNR on the
Urban100 dataset decreased by 0.07 dB. This performance decrease was due to the influence of
the BN layer and activation function. When this paper replaced EIRB with IRB [3], although the
performance only decreased by 0.03 dB after channel expansion through the inverse residual block,
the corresponding parameter count and FLOPs increased by nearly 30 K and 2.0 G, respectively, and
the activations (Acts) also increased by nearly 80 M. It can be observed that the expansion of channels
in the inverse residual block leads to a significant convolutional computational burden. Additionally,
a performance decrease of 0.04 dB was observed when a BN layer was added after the first PWConv.
Therefore, the improved EIRB has a more efficient performance.

4.3.4 Effectiveness of the Multiscale Feature Fusion Block

The MFFB primarily consists of a multiscale spatial feature modulation block and channel
attention enhancement group. As shown in Fig. 9, this module enables the model to integrate more
diverse features. Here, this paper delved deeper into this module to uncover the reasons behind its
effectiveness.

• Multiscale spatial feature modulation. Here, “w/o MSFM” in Table 1 indicates that we replaced
the MSFM in the MFFB with a PConv of kernel size 3 × 3. Without modulation of spatial
features, a decrease of 0.18 dB in PSNR values was observed on the Urban100 dataset. It is
evident that the lack of learning spatial long-range dependency features has a significant impact
on performance;

• Channel attention enhancement group. When only used CA [11] without PCEG to filter
features, a decrease of 0.16 dB in PSNR values was observed on the Urban100 dataset. If only
PCEG is left, MFFB lacks channel information, leading to a decrease in image modeling ability
and a 0.1 dB decrease in PSNR value on the dataset;

Feature aggregation. This paper used 1 × 1 convolution to aggregate spatial and channel
information. After feature aggregation, the PSNR on the Urban100 dataset increased by 0.17 dB,
demonstrating the necessity of aggregating spatial and channel features.
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L
A

M

2.2973 2.4498 14.1193 31.8720DI

(a) LR input (b) CARN[20] (c) PAN[14] (d) RLFN[33] PSMFNet(Ours)

Figure 9: Comparison of local attribution maps (LAMs) [52] and diffusion indices (DIs) [52] between
PSMFNet and other efficient SR models. The LAM outcomes highlight the significance of each pixel
in the input LR image when processing the patches denoted by red boxes in SR. The DI value reflects
the range of pixels involved. A larger DI value corresponds to a broader attention range. The proposed
method can utilize more feature information

4.4 Comparisons with State-of-the-Art Methods

To gauge the performance of PSMFNet, this paper conducted a comparison with multiple
state-of-the-art lightweight image super-resolution approaches, including SRCNN [17], ESPCN [31],
VDSR [18], LapSRN [53], CARN [20], IDN [8], IMDN [9], PAN [14], LAPAR-A [54], RFDN [10],
ShuffleMixer [32], RLFN [33]. Fig. 10 shows that PSMFNet achieves comparable performance at
lower complexity.

Figure 10: The complexity and performance of proposed PSMFNet model are compared with other
lightweight methods on the Set5 dataset for ×4 SR

4.4.1 Quantitative Comparisons 1

The quantitative comparison findings for various upscaling factors on five benchmark datasets are
presented in Table 2. Along with the PSNR/SSIM indicators, this paper also included the number of
parameters (Params) and floating-point operations (FLOPs). Benefiting from the simple yet efficient
structure, the proposed PSMFNet achieved comparable performance with fewer parameters. Taking
the example of ×4 SR on the Urban100 dataset, PSMFNet has approximately 75% fewer parameters
than CARN, 28% fewer parameters than RFDN, and 27% fewer parameters than RLFN. The results
of quantitative comparison show that PSMFNet achieves the highest accuracy with fewer parameters.
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Table 2: A quantitative analysis is conducted, comparing this paper method to state-of-the-art
approaches on benchmark datasets. The optimal and suboptimal performances are denoted in red
and blue, respectively. FLOPs are computed using a 1280 × 720 GT image

Method Scale Params FLOPs Set5 Set14 B100 Urban100 Manga109

(K) (G) PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

Bicubic ×2 – – 33.66/0.9299 30.24/0.8688 29.56/0.8431 26.88/0.8403 30.80/0.9339
SRCNN [17] ×2 57 52.7 36.66/0.9299 32.45/0.9607 31.36/0.8879 29.50/0.8946 35.60/0.9663
ESPCN [31] ×2 21 5 36.83/0.9564 32.40/0.9096 31.29/0.8917 29.48/0.8975 –
VDSR [18] ×2 666 612.6 37.53/0.9587 33.03/0.9124 31.90/0.8960 30.76/0.9140 37.22/0.9750
LapSRN [53] ×2 251 29.9 37.52/0.9591 32.99/0.9124 31.80/0.8952 30.41/0.9103 37.27/0.9740
CARN [20] ×2 1952 222.8 37.76/0.9590 33.52/0.9166 32.09/0.8978 31.92/0.9256 38.36/0.9765
IMDN [9] ×2 694 158.8 38.00/0.9605 33.63/0.9177 32.19/0.8996 32.17/0.9283 38.88/0.9774
PAN [14] ×2 261 70.5 38.00/0.9605 33.59/0.9181 32.18/0.8997 32.01/0.9273 38.70/0.9773
LAPAR-A [54] ×2 548 171.0 38.01/0.9605 33.62/0.9183 32.19/0.8999 32.10/0.9283 38.67/0.9772
RFDN [10] ×2 534 95.0 38.05/0.9606 33.68/0.9184 32.16/0.8994 32.12/0.9278 38.88/0.9773
ShuffleMixer [32] ×2 394 91.0 38.01/0.9606 33.63/0.9180 32.17/0.8995 31.89/0.9257 38.83/0.9774
RLFN [33] ×2 527 115.4 38.07/0.9607 33.72/0.9187 32.22/0.9000 32.33/0.9299 –
PSMFNet (ours) ×2 373 84.0 38.12/0.9609 33.70/0.9185 32.24/0.9004 32.46/0.9307 39.13/0.9780
Bicubic ×3 – – 30.39/0.8682 27.55/0.7742 27.21/0.7385 24.46/0.7349 26.95/0.8556
SRCNN [17] ×3 57 52.7 32.75/0.9090 29.30/0.8215 28.41/0.7863 26.24/0.7989 30.48/0.9117
VDSR [18] ×3 666 612.6 33.66/0.9213 29.77/0.8314 28.82/0.7976 27.14/0.8279 32.01/0.9340
CARN [20] ×3 1592 118.8 34.29/0.9255 30.29/0.8407 29.06/0.8034 28.06/0.8493 33.50/0.9440
IMDN [9] ×3 703 71.5 34.36/0.9270 30.32/0.8417 29.09/0.8046 28.17/0.8519 33.61/0.9445
PAN [14] ×3 261 39.0 34.40/0.9271 30.36/0.8423 29.11/0.8050 28.11/0.8511 33.61/0.9448
LAPAR-A [54] ×3 544 114.0 34.36/0.9267 30.34/0.8421 29.11/0.8054 28.15/0.8523 33.51/0.9441
RFDN [10] ×3 541 42.2 34.41/0.9273 30.34/0.8420 29.09/0.8050 28.21/0.8525 33.67/0.9449
ShuffleMixer [32] ×3 415 43.0 34.40/0.9272 30.37/0.8423 29.12/0.8051 28.08/0.8498 33.69/0.9448
PSMFNet (ours) ×3 382 38.1 34.52/0.9281 30.42/0.8431 29.16/0.8063 28.36/0.8560 33.99/0.9496
Bicubic ×4 – – 28.42/0.8104 26.00/0.7027 25.96/0.6675 23.14/0.6577 24.89/0.7866
SRCNN [17] ×4 57 52.7 30.48/0.8628 27.49/0.7503 26.90/0.7101 24.52/0.7221 27.66/0.8505
ESPCN [31] ×4 25 1 30.52/0.8697 27.42/0.7606 26.87/0.7216 24.39/0.7241 –
VDSR [18] ×4 666 612.6 31.35/0.8838 28.01/0.7674 27.29/0.7251 25.18/0.7524 28.83/0.8870
LapSRN [53] ×4 813 149.4 31.54/0.8852 28.09/0.7700 27.32/0.7275 25.21/0.7562 29.09/0.8900
CARN [20] ×4 1592 90.9 32.13/0.8937 28.60/0.7806 27.58/0.7349 26.07/0.7837 30.47/0.9084
IMDN [9] ×4 715 40.9 32.21/0.8948 28.58/0.7811 27.56/0.7353 26.04/0.7838 30.45/0.9075
PAN [14] ×4 272 28.2 32.13/0.8948 28.61/0.7822 27.59/0.7363 26.11/0.7854 30.51/0.9095
LAPAR-A [54] ×4 659 94.0 32.15/0.8944 28.61/0.7818 27.61/0.7366 26.14/0.7871 30.42/0.9074
RFDN [10] ×4 550 23.9 32.24/0.8952 28.61/0.7819 27.57/0.7360 26.11/0.7858 30.58/0.9089
ShuffleMixer [32] ×4 411 28 32.21/0.8953 28.66/0.7827 27.61/0.7366 26.08/0.7835 30.65/0.9093
RLFN [33] ×4 543 29.8 32.24/0.8952 28.62/0.7813 27.60/0.7364 26.17/0.7877 –
PSMFNet (ours) ×4 394 22.1 32.35/0.8970 28.73/0.7842 27.65/0.7382 26.31/0.7918 30.87/0.9124

4.4.2 Quantitative Comparisons 2

In addition to quantitative evaluation, this paper conducted a qualitative analysis of proposed
PSMFNet by comparing it with state-of-the-art methods through visual comparison. It can be
observed in Fig. 11 that the images restored by PSMFNet exhibit superior performance in terms
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of texture details. The results validate that the proposed PSMFNet, which utilizes multiscale feature
fusion, can explore deeper and more effective features.

HR FSRCNN IMDN RFDN RLFN

Urban100(×4): img024 Bicubic CARN PAN ShuffleMixer PSMFNet(Ours)

HR FSRCNN IMDN RFDN RLFN

Urban100(×4): img092 Bicubic CARN PAN ShuffleMixer PSMFNet(Ours)

HR FSRCNN IMDN RFDN RLFN

Urban100(×4): img098 Bicubic CARN PAN ShuffleMixer PSMFNet(Ours)

Figure 11: Visual comparisons for ×4 SR on the Urban100 dataset

Urban100 is a dataset primarily focused on urban landscapes. To validate the performance of
the model in other scenarios, images from the Set14, Manga109, and B100 datasets were selected for
visualization, as shown in Fig. 12.

4.4.3 Memory and Running Time Comparisons

To further validate the efficiency of PSMFNet, this paper compared it with five representative
efficient SR methods, including CARN [21], IMDN [13], PAN [17], RFDN [14], and RLFN [51].
This paper conducted tests on the DIV2K-val ×4 dataset and recorded the maximum GPU memory
consumption (GPU Mem) and average running time (Avg.Time) during the inference process to
further validate the performance of PSMFNet. A comparison of memory consumption and runtime
has been presented in Table 3, where PSMFNet’s GPU consumption is only 30% of that of the CARN
series and 37% of that of IMDN; Compared with PAN, our method has a similar running speed
but significantly reduces GPU memory consumption. To fully leverage the advantages of Partial
Convolution, this paper employed Pointwise Convolution to enhance the fusion of features. However,
Pointwise Convolution is a computationally intensive operation in convolutional neural networks,
which may impact the utilization of hardware resources and consequently affect the execution speed of
tasks. This leads to certain drawbacks in terms of runtime compared to RFDN and RLFN. Tables 2
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and 3 demonstrate that proposed PSMFNet achieves a favorable balance between model complexity
and performance.

HR FSRCNN IMDN RFDN RLFN

Set14(×4): img014 Bicubic CARN PAN ShuffleMixer PSMFNet(Ours)

HR FSRCNN IMDN RFDN RLFN

Manga109(×4): img020 Bicubic CARN PAN ShuffleMixer PSMFNet(Ours)

HR FSRCNN IMDN RFDN RLFN

B100(×4): img007 Bicubic CARN PAN ShuffleMixer PSMFNet(Ours)

Figure 12: visual comparisons of ×4 SR on other SR datasets

Table 3: Memory and running time comparisons on DIV2K-val ×4. GPU Mem. denotes the maximum
GPU memory consumption during the inference phase, and Avg.Time denotes the average running
time. The testing method is based on the testing code of the NTIRE 2022 Challenge on Efficient
Super-Resolution [55]

Methods GPU Mem Avg.Time
(M) (ms)

CARN [20] 3058.11 51.26
IMDN [9] 2546.79 46.46
PAN [14] 1229.45 34.80
RFDN [10] 767.10 24.80
RLFN [33] 629.26 19.40
PSMFNet (ours) 957.02 35.96
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5 Conclusion

In this paper, a simple and efficient model has been proposed to solve the problem of effi-
cient image super-resolution, which is called Partial Separation and Multiscale Fusion Network
(PSMFNet). The lightweight feature enhancement module (LFEB), based on partial convolution
(PConv), is constructed as the basic module of PSMFNet. The efficient and lightweight architecture
design effectively reduces redundant convolution operations. This module consists of a multiscale
feature fusion block (MFFB) and an efficient inverse residual block (EIRB). This paper designed
MFFB can aggregate spatial and channel features and learn long-range dependencies, while EIRB
supplements the model with local contextual information extraction. By modeling the image at
multiple levels, including local, global, channel, and spatial levels, PSMFNet fully leverages the rich
feature information in the image. The wide-ranging experimental results indicate that our PSMFNet
offers a more competitive performance using a smaller number of parameters relative to the state-of-
the-art efficient SR approaches.
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