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ABSTRACT

To improve the estimation accuracy of state of charge (SOC) and state of health (SOH) for lithium-ion batteries,
in this paper, a joint estimation method of SOC and SOH at charging cut-off voltage based on genetic algorithm
(GA) combined with back propagation (BP) neural network is proposed, the research addresses the issue of data
manipulation resulting from cyber-attacks. Firstly, anomalous data stemming from cyber-attacks are identified and
eliminated using the isolated forest algorithm, followed by data restoration. Secondly, the incremental capacity (IC)
curve is derived from the restored data using the Kalman filtering algorithm, with the peak of the IC curve (ICP) and
its corresponding voltage serving as the health factor (HF). Thirdly, the GA-BP neural network is applied to map
the relationship between HF, constant current charging time, and SOH, facilitating the estimation of SOH based
on HF. Finally, SOC estimation at the charging cut-off voltage is calculated by inputting the SOH estimation value
into the trained model to determine the constant current charging time, and by updating the maximum available
capacity. Experiments show that the root mean squared error of the joint estimation results does not exceed 1%,
which proves that the proposed method can estimate the SOC and SOH accurately and stably even in the presence
of false data injection attacks.
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1 Introduction

Characterized by low self-discharge and high output voltage, the lithium-ion battery is a green
energy storage device, which is highly valued in many fields. To ensure optimal performance of vehicle
power batteries, a battery management system (BMS) is configured [1].

Additionally, due to the continuous development of network technology, BMS has become a
cyber-physical system whose safety directly impacts the vehicle’s driving status. However, this also
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means the BMS faces the threat of cyber-attacks [2,3]. Once the system is subjected to false data
injection attacks (FDIAs) [4,5], the estimation accuracy of the battery’s SOC and SOH will be affected.
Hence, detecting and repairing FDIAs is significant for accurately estimating SOC and SOH. In
Reference [6], Gallo et al. propose a distributed monitoring approach to detect false data, but it
has low sensitivity and slow detection speed. In Reference [7], an FDIAs detection approach that
combines model predictive control and artificial neural networks is proposed, but this method is
prone to localized convergence during online identification. The isolated forest algorithm can detect
anomalous data quickly and is well suited to deal with large-scale datasets, so this algorithm is used
to detect and remove FDIAs widely [8].

The common methods for estimating SOC include the ampere-hour integration method, the
open circuit voltage method (OCV), the filtering method, and the data-driven method. Among these,
the ampere-hour integration method is simple in principle and computationally efficient, but it is
susceptible to interference, and has high initial value requirements [9]. The OCV method requires long-
term static processing of the battery and is inadequate for online applications [10]. The filtering method
is generally combined with the equivalent circuit model (ECM) of the battery [11], offering strong
self-correction ability as well as high accuracy, but the parameter calculation of ECM is cumbersome.
Unlike methods relying on the intrinsic mechanism of the battery, the data-driven method employs
a machine learning model to construct a SOC estimation model using extensive training data [12].
This method is easy to implement and offers high prediction accuracy, but it demands substantial
computational resources and training data. The continuous rise of big data offers effective solutions
to the aforementioned challenges.

Currently, the main SOH estimation methods include direct measurement method, empirical
recession models method, and data-driven method. The direct measurement method assesses the
parameters directly impacting battery life and constructs a function mapping to determine the SOH.
While its principle is straightforward, its practical application is constrained by demanding accuracy
requirements and computational complexity [13]. The empirical recession model utilizes functions
to align with the battery’s capacity decline trend [14], it demonstrates strong robustness but faces
challenges in adapting to diverse capacity decay trends due to individual variations. The data-driven
method reduces the process of physical modeling and parameter identification. Its accuracy largely
hinges on the selection of HF and algorithms [15].

From the concept of SOC and SOH, it is evident that the common parameter between them is the
current maximum available capacity, which decreases with an increased number of cycles, Therefore,
conducting a joint estimation of SOC and SOH is essential. In Reference [16], Yin et al. propose a
joint estimation method of SOC and SOH using the particle filtering algorithm. Li et al. [17] employ a
combination of gate recurrent units and convolutional neural networks to estimate both parameters.
However, the accuracy of filtering methods is influenced by model accuracy, and the deep learning
method has high requirements on training data and hardware equipment, posing challenges for rapid
updates of SOC and SOH. GA-BP neural network can effectively avoid the above problems, with high
prediction accuracy and strong generalization ability, so it is used to construct the estimation model
widely. Considering that the critical point of constant current charging and constant voltage charging
is the charging cut-off voltage, and the SOC value is already at a very high level during constant voltage
charging, the battery’s capacity decline becomes more pronounced with the growth of charging time.
Therefore, this paper investigates the joint estimation of SOC and SOH specifically at the charging
cut-off voltage.
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From the above introduction, it can be seen that the isolated forest algorithm can detect and
eliminate FDIAs quickly, and the data-driven method has a good potential for application in the field
of lithium-ion battery state estimation. Therefore, in this paper, the isolated forest algorithm is used to
detect the abnormal data, after which the GA-BP neural network is used to build the estimation model.
By combining the global search ability of GA and the nonlinear fitting ability of BP neural network,
the neural network model can be effectively optimized to improve the accuracy and generalization
ability of prediction. Experimental validation demonstrates that this method can estimate the SOC
and SOH accurately and stably even in the presence of cyber-attacks.

2 Data Processing
2.1 SOC and SOH

SOC is defined as the ratio of the battery’s current capacity to maximum available capacity, the
SOC is calculated at charging cut-off voltage in the paper. The SOH is defined as the ratio of the
current maximum available capacity to the rated capacity. The formulas are as follows:⎧⎪⎪⎨
⎪⎪⎩

SOC = IT
Cm

× 100%

SOH = Cm

Co

× 100%
(1)

where: I represents the current value of constant current charging; T is the constant current charging
time; Cm is the current maximum available capacity; Co indicates the rated capacity.

2.2 Datasets

To validate the method proposed in this paper, the dataset comprises normal data points and
anomalies. The normal points include data from the following lithium-ion battery datasets, while
anomalies consist of artificially altered data aimed at simulating the FDIAs.

Eight batteries from the Oxford University battery dataset are selected as experimental data [18],
these batteries are experimented at 40°C, with a rated capacity of 740 mA·h and a nominal voltage of
4.2 V. The experimental procedure is as follows: firstly, charge at a constant current of 1.48 A; secondly,
discharge under simulated urban driving dynamic conditions; finally, repeat the above steps, and every
100 cycles, discharge occurs at a constant current until the voltage reaches 2.7 V. Fig. 1 depicts the SOH
change curves of these eight batteries post-simulated cyber-attack.

Figure 1: SOH curves for simulated cyber-attacks on the Oxford University battery dataset



4500 CMC, 2024, vol.80, no.3

As shown in Fig. 1, each battery exhibits significant variability in SOH change curves, but all of
them have a tendency to decrease SOH with an increased number of cycles. Additionally, the curves
display abnormal fluctuations attributed to the cyber-attack.

Four batteries from the Center for Advanced Life Cycle Engineering (CALCE) of Maryland
University battery dataset were selected as experimental data [19]. These batteries are rated at 1.1 A·h
and are experimented at an ambient temperature of 1°C. The aging experimental process adopts a
constant current charging plus constant voltage charging mode. In this mode, the charging stage
was conducted at a constant current of 0.5 C with a charging cut-off voltage set to 4.2 V, and the
charging was terminated when the current decreased to 0.05 A; the discharging stage was carried out
at a constant current of 1C until the voltage dropped to 2.7 V, and then the aforementioned steps
were repeated. The SOH change curves for batteries CS2_35, CS2_36, CS2_37, and CS2_38 after the
simulated cyber-attack are depicted in Fig. 2.

Figure 2: SOH curves for simulated cyber-attacks on the CALCE battery dataset

2.3 Detection and Interpolation of Abnormal Data

In this paper, the isolated forest algorithm is employed for monitoring and removing anomalous
data. The isolated forest algorithm is an unsupervised method for detecting anomalous data, its main
idea is to map data into a binary tree structure through constantly randomized divisions and assess
the isolation degree of each data based on its path length within the tree [20]. The steps for detecting
anomalous data based on isolated forest algorithm are outlined below:

(1) Import the sample dataset;

(2) Select a factor and threshold randomly from the dataset for binary fission;

(3) Repeat Step 2 until the tree reaches the specified height;

(4) Calculate the length of the path from the sample data point to the root node;

(5) Assess outliers based on the anomaly evaluation coefficients of the data points as follows:

S (x, n) = 2
{

E[h(x)]
c(n)

}
(2)

where: n represents the total number of samples in the dataset; c(n) denotes the average path length of
the binary tree; h(x) indicates the path length of the tested sample in a binary tree; E[h(x)] represents
the average path length of the tested sample across all binary trees. If S(x,n) tends to approach 1, there
is a higher probability of it being an anomaly; if all S(x,n) is less than or distributed around 0.5, the
data is confirmed to be normal.



CMC, 2024, vol.80, no.3 4501

As abnormal data are excluded from the dataset, the measurement data of this node are missing,
considering that the state estimation of lithium-ion battery is a time series problem, it is necessary to
supplement the missing data. This paper employs the polynomial interpolation method to supplement
the excluded anomalies. The method aims to make the sum of squares of the errors (I) between the
fitted function and the actual curves corresponding to each point (ti, yi) (i = 0, 1, 2, . . . , n) reach a
minimum value. The formula is as follows:

∂I
∂aj

= 2
m∑

i=0

(
n∑

k=0

aktk
i − yi

)
· tj

i = 0 (3)

where: j = 0, 1, 2, . . . , n, the optimal fitted curve is derived by solving a0, a1, a2, . . . , an.

2.4 Health Factor Extraction

Health factor extraction is performed on the data following abnormal data repair, and the
extracted HF should have a high correlation with variables, be easy to extract, and conform to
practical applications. Battery charging and discharging curves change significantly with an aging
degree, in the actual situation, the battery is strongly affected by the random load discharge during the
discharging process. Conversely, charging processes are stable, resulting in smoother voltage curves
conducive to HF extraction. Consequently, this study employs incremental capacity analysis (ICA)
[21] to numerically differentiate the charging curves and approximate corresponding dQ/dV curves,
the calculation formula is shown in Eq. (5). This method can better reflect the changes in the charging
voltage curve caused by the aging.

dQ
dV

(k) ≈ Q (k) − Q (k − L)

V (k) − V (k − L)
(4)

where: Q is the capacity; L is the differential step; V is the voltage; k is the sampling moment.

Due to the low accuracy of current voltage and current sensors, causing the problem of noise
interference when calculating the difference between capacity and voltage, the Kalman filter (KF)
algorithm is used for smoothing [22]. One of the battery Cell1 IC curves is shown in Fig. 3.

Figure 3: IC curves of the Cell1 under full cycles

As shown in Fig. 3, the curve from bright to dark in the graph indicates the more serious the aging
of the battery is, the lower the ICP value will be, and the higher the voltage corresponding to ICP (Up)
will be. It can be seen that ICP and Up have a good correlation with the SOH.
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To quantify the correlation between ICP and SOH, Up and SOH, this section evaluates them using
Pearson and Spearman correlation coefficients expressed as:

Pearson = E (XY) − E (X) E (Y)√
E (X 2) − E2 (X)

√
E (Y 2) − E2 (Y)

(5)

Spearman =
∑

i (xi − x) (yi − y)√∑
i (xi − x)

2
√∑

i (yi − y)
2

(6)

where: X is the health factor; Y is SOH; xi and yi are sample data, respectively.

The correlation between two variables can be measured by Pearson and Spearman correlation
coefficients. A higher absolute value indicates a stronger correlation between two variables. If the
absolute value is 1, the variables are perfectly correlated. Tables 1 and 2 present the Pearson and
Spearman correlation coefficients for ICP with SOH and Up with SOH, respectively. It can be seen
that the correlation coefficients for each battery almost all exceed 0.95, indicating a strong correlation
between the selected HFs and SOH.

Table 1: Coefficient between ICP and SOH

Battery number Pearson Spearman

Cell1 0.96468 0.99825
Cell2 0.95414 0.99546
Cell3 0.96889 0.99902
Cell4 0.97604 0.99931
Cell5 0.90186 0.99914
Cell6 0.97364 0.99908
Cell7 0.97131 0.99937
Cell8 0.96778 0.99880
CS2_35 0.95028 0.98789
CS2_36 0.96539 0.99508
CS2_37 0.96196 0.99164
CS2_38 0.96119 0.99090

Table 2 : Coefficient between UP and SOH

Battery number Pearson Spearman

Cell1 −0.97752 −0.98876
Cell2 −0.97821 −0.98988
Cell3 −0.98421 −0.99327
Cell4 −0.98573 −0.99326
Cell5 −0.98128 −0.99482
Cell6 −0.98327 −0.99117

(Continued)
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Table 2 (continued)

Battery number Pearson Spearman

Cell7 −0.98450 −0.99525
Cell8 −0.98299 −0.99070
CS2_35 −0.98153 −0.97835
CS2_36 −0.98077 −0.98169
CS2_37 −0.97962 −0.97376
CS2_38 −0.90031 −0.85771

3 Joint Estimation of SOC and SOH
3.1 BP Neural Network

The structure of the BP neural network is depicted in Fig. 4 [23]. BP neural network comprises
a three-layer structure consisting of input, hidden, and output layers. Neurons are present in each
layer, with thresholds on them, and neurons in each layer are connected by weights. The process of
neural network training can be described as follows: a sample is brought into the network model
and transmitted to the neurons of the input layer, then it is processed sequentially through the
hidden and output layers to produce the final output. This process known as forward propagation
involves continuous layer-by-layer advancement and modification of the weights. If discrepancies
occur between the output result and the actual value, an error is propagated in the reverse direction,
similar to the forward propagation process. These steps are repeated until the error is minimized,
ensuring sample outputs fall within acceptable error limits.

Figure 4: The BP neural network structure

To summarize, the process of training a BP neural network involves iteratively adjusting weights
and thresholds to minimize errors. The weight update formula is as follows:

Δω = η
∂E
∂ω

(7)

where: η is the learning rate; ω is the weight; E is the error.
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Define the input information as S = (s1, s2, s3, . . . , sn)T, the output information as C = (c1, c2, c3,
. . . , cm)T, the input layer has n nodes, the hidden layer has h nodes, and the output layer has m nodes.
The output expressions of the hidden layer and the output layer are as follows:

Pj = g

(
n∑

i=1

αijxi

)
, j = 1, 2, 3, . . . , h (8)

Of = g

(
h∑

j=1

βjf Pj

)
, f = 1, 2, 3, . . . , m (9)

where: Pj represents the output of the hidden layer, xi denotes the output of the input layer, αij signifies
the weight between the input and hidden layers, Of donates the output of the output layer, β jf donates
the weight between the hidden and output layers, and g denotes the activation function.

3.2 GA-BP Neural Network

The BP neural network exhibits some randomness in selecting initial weights and thresholds,
potentially reducing the estimation accuracy. Therefore, this paper combines the GA with BP neural
network, which can effectively overcome the shortcomings of the respective algorithms, such as slow
convergence, falling into the local minima, high time cost, and so on. Thus, the neural network
model can be optimized to improve the accuracy and training speed of regression prediction [24].
The flowchart of the GA-BP neural network is depicted in Fig. 5.

Figure 5: Flowchart of the GA-BP neural network algorithm

The implementation process of the GA-BP neural network is described as follows: firstly, delineate
the training set and testing set. Secondly, initialize the BP neural network determine its parameters,
and then initialize the parameters of the genetic algorithm, including the initial population size and
the maximum number of genetic generations. Thirdly, encode the chromosomes gene. Subsequently,
train the BP neural network using the training set, calculate individual fitness, and evaluate whether
termination conditions are satisfied; if not, carry out the next operations with selection, crossover, and
mutation to update the genetic coding of the population and then return to the step of training BP
neural network to repeat the above process until the termination conditions are met. Finally, assign the



CMC, 2024, vol.80, no.3 4505

optimal chromosome coding to the initial weights and thresholds of the BP neural network, train the
BP neural network using the optimized weights and thresholds, and verify its performance with the
testing set.

3.3 Joint Estimation of SOC and SOH Based on GA-BP Neural Network

The joint estimation based on the GA-BP neural network is illustrated in Fig. 6.

Figure 6: Flowchart of the joint estimation of the SOC and the SOH

The joint estimation of SOC and SOH of lithium-ion batteries based on the GA-BP neural
network is divided into two phases: offline training and online testing. The offline phase primarily
involves training the GA-BP neural network. Initially, anomalous data in the training set are repaired.
Subsequently, the KF algorithm is applied to extract smooth IC curves, with ICP and Up serving as
the health factors. Two BP neural networks are used to establish Model 1 and Model 2, respectively,
where HF is the input and SOH is the output, which are brought into Model 1 for training; SOH is
the input and constant current charging time is the output for Model 2 training. Theoretically, the
constant current charging time can be measured online. Considering that electric vehicle users have a
certain randomness during the startup charging phase, which makes it difficult to measure. Therefore,
it is necessary to obtain the constant current charging time by constructing Model 2. Table 3 presents
Pearson and Spearman correlation coefficients demonstrating a strong correlation, with coefficients
exceeding 0.99 across all cells, underscoring the robust relationship between constant current charging
time and SOH.

Table 3: Coefficient between constant current charging time and SOH

Battery number Pearson Spearman Battery number Pearson Spearman

Cell1 0.99982 0.99992 Cell7 0.99985 0.99984
Cell2 0.99856 0.99858 Cell8 0.99983 0.99991
Cell3 0.99979 0.99985 CS2_35 0.99671 0.99408
Cell4 0.99989 0.99988 CS2_36 0.99761 0.99718
Cell5 0.99974 1 CS2_37 0.99684 0.99526
Cell6 0.99968 1 CS2_38 0.97839 0.97023
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The online process focuses on estimating SOH and real-time correcting the SOC value at the
charging cut-off voltage. Firstly, repairing abnormal data in the testing set, extracting health factors,
and inputting them into trained Model 1 to obtain the SOH estimation value; secondly, the SOH
estimation value is brought into the trained Model 2 to obtain the predicted value of the constant
current charging time, and update the current maximum available capacity according to the SOH
estimation value; finally, calculating the SOC estimation value under the charging cut-off voltage
according to Eq. (1). In summary, the proposed method realizes the multi-step mapping from HF
to the SOC estimation value, completing the joint estimation of SOC and SOH.

The GA-BP neural networks designed in this paper all adopt a 3-layer structure. Model 1 has 2
nodes and Model 2 has 1 node in the input layer; they all have 8 nodes in the hidden layer, and 1
node in the output layer. The maximum number of genetic generations is set to 100, the number of
populations is 30, and the fitness function is the error of the BP neural network. Other designs of the
GA-BP neural network are detailed below:

(1) Data preprocessing. A normalization method is used to preprocess the data before experiment-
ing, the expressions for normalization and inverse normalization are as follows:

x̂ = 2 (x − xmin)

xmax − xmin

− 1 (10)

x = (xmax − xmin)
(
x̂ + 1

)
2

+ xmin (11)

where: x is the sample data value, xmax is the largest data value and xmin is the smallest data value.

(2) Selection of loss function. The model employs the mean square error (MSE) function as its
loss function, expressed as follows:

MSE = 1
N

N∑
k=1

(
yk − ŷk

)2
(12)

where: yk and ŷk denote the true and estimated values of SOH and SOC of the battery, respectively; N
denotes the number of samples in the training set.

(3) Parameter optimizer selection. Adam is employed as the parameter optimization algorithm
for the model. The initial learning rate is set to 0.001 and the number of iterations for training is set
to 500.

4 Experimental Results and Analysis

To validate the feasibility and accuracy of the paper’s method, this section performs the joint
estimation of SOC and SOH based on the aforementioned battery datasets. Evaluation metrics, namely
root mean squared error (RMSE), mean absolute error (MAE), and maximum error (MAX), are
employed to assess performance. These metrics are calculated as follows:

RMSE =
√√√√ 1

N

[
N∑

i=1

(
xi − x̂i

)2

]
(13)

MAE = 1
N

N∑
i=1

∣∣xi − x̂i

∣∣ (14)
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MAX = max
(∣∣xi − x̂i

∣∣) (15)

The battery state estimation model is required to maintain independence between training and
testing datasets. The division results are summarized in Table 4.

Table 4: Testing set and training set division situation

Dataset Training set Testing set

Oxford Cell2, Cell3, Cell4, Cell5, Cell6, Cell8 Cell1, Cell7
CALCE CS2_35, CS2_36, CS2_38 CS2_37

4.1 Results of SOH Estimation

This section aims to demonstrate the superiority of the GA-BP neural network in estimating the
SOH of lithium-ion batteries. The SOH estimation model based on the BP neural network is trained
and tested using the Oxford and CALCE battery datasets, and the estimation results are compared
with those obtained using the method proposed in this paper. Figs. 7 to 9 illustrate the SOH estimation
curves and error curves for Cell1, Cell7, and CS2_37, respectively.

Figure 7: The SOH estimation results of Cell1. (a) SOH. (b) Estimation error curve

Figure 8: The SOH estimation results of Cell7. (a) SOH. (b) Estimation error curve
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Figure 9: The SOH estimation results of CS2_37. (a) SOH. (b) Estimation error curve

Evaluation of the Oxford battery dataset (Figs. 7 and 8) reveals that both methods exhibit accurate
SOH estimation curves. The BP neural network achieves an estimation error typically within ±0.6%,
whereas the GA-BP neural network achieves an error typically within ±0.4%, with a maximum of
±0.5%. This demonstrates superior SOH estimation accuracy with the GA-BP approach. Analysis of
Table 5 indicates that this paper’s algorithm achieves RMSE and MAE values within 0.3% and the
MAX value not exceeding 0.7%, demonstrating relatively small errors. It shows that the HF selected
in this paper can not only reveal the aging information of the battery well but also effectively deal with
the capacity decline changes due to battery inconsistency. Furthermore, it underscores the GA-BP
neural network’s robust mapping capability for precise SOH estimation of lithium-ion batteries.

Table 5: Results of the SOH estimation for each method

Battery number RMSE (%) MAE (%) MAX (%)

BP
Cell1 0.220 0.169 0.670
Cell7 0.289 0.227 0.749
CS2_37 0.914 0.733 4.253

GA-BP
Cell1 0.170 0.135 0.423
Cell7 0.207 0.167 0.624
CS2_37 0.897 0.724 3.726

Evaluation of the CALCE dataset in Fig. 9 reveals superior accuracy and better followability of
the GA-BP neural network compared to the BP neural network algorithm. Additionally, as shown
in Table 5, both MAE and RMSE are maintained below 1%, and the MAX not exceeding 4%,
which indicates the stable and reliable SOH estimation by the GA-BP neural network algorithm.
These findings show that the proposed method has good generalizability and can be applied to SOH
estimation for a variety of lithium-ion batteries.

4.2 Results of SOC Estimation

Based on the accurate and reliable estimation of SOH, the joint SOC and SOH estimation is
conducted. Figs. 10 to 12 depict the SOC estimation results using both methods on the testing data.
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Specifically, the SOC estimation curves and error curves are shown for cells Cell1, Cell7, and CS2_37,
respectively. Table 6 presents the MAE, RMSE, and MAX values obtained by both algorithms.

Figure 10: The SOC estimation results of Cell1. (a) SOC. (b) Estimation error curve

Figure 11: The SOC estimation results of Cell7. (a) SOC. (b) Estimation error curve

Figure 12: The SOC estimation results of CS2_37. (a) SOC. (b) Estimation error curve

Figs. 10 and 11 depict the estimation results of both methods based on the Oxford battery dataset.
The estimation curve of this paper’s method demonstrates superior performance, with errors typically
within ±0.4% and the maximum not exceeding ±0.6%. Analysis of Table 6 reveals that the MAE
and RMSE obtained by this paper’s method are smaller compared to those derived from the BP
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neural network, with MAE and RMSE typically restricted to 0.3%, and the MAX not exceeding
0.5%, reflecting the advantages of this paper’s method in estimating SOC and underscoring the GA-BP
neural network’s robust mapping capability.

Table 6: Results of the SOC estimation for each method

Battery number RMSE (%) MAE (%) MAX (%)

BP
Cell1 0.262 0.208 0.763
Cell7 0.315 0.279 0.656
CS2_37 0.657 0.485 4.251

GA-BP
Cell1 0.182 0.150 0.472
Cell7 0.212 0.177 0.440
CS2_37 0.653 0.467 4.257

Examination of the SOC estimation results from the CALCE dataset in Fig. 12 shows that
although the SOC fluctuation of battery CS2_37 at the charging cut-off voltage is drastic, the paper’s
method effectively tracks the true values. Analysis of Table 6 indicates that errors are maintained at a
low level, with MAE and RMSE restricted to 0.7%, and the MAX not exceeding 5%, demonstrating
superior performance. These findings reveal that the paper’s method achieves high accuracy and broad
applicability, facilitating real-time correction of SOC under the corresponding charging cut-off voltage
of different types of lithium-ion batteries.

5 Conclusion

In this paper, a joint estimation method of SOC and SOH for lithium-ion batteries at charging
cut-off voltage based on GA-BP neural network is proposed, this method addresses data tampering
due to cyber-attacks on BMS. Firstly, FDIAs are detected and eliminated using the isolated forest
algorithm, and then normal battery data can be reconstructed through polynomial interpolation
method to supplement the eliminated data; secondly, the smooth IC curve is extracted using the KF
algorithm from the repaired data, with ICP and Up are taken as the HF; thirdly, mapping relationships
between HF and SOH as well as between SOH and constant current charging time are established using
the GA-BP neural network, facilitating the estimation of SOH through bringing HF into the trained
model; finally, the SOH estimation value is used to determine constant current charging time, update
the maximum available capacity, and compute SOC estimation, thereby achieving joint SOC and SOH
estimation. Experimental results based on the Oxford and CALCE battery datasets demonstrate that
despite BMS suffering from cyber-attacks, the paper’s method maintains high accuracy. It proves
effective across various battery types, ensuring reliable SOC and SOH estimates. Furthermore, this
method considers the correlation among state parameters during battery usage, achieving long-
term stable prediction of each parameter within a unified framework. However, this paper does not
validate the stability and accuracy of the method in estimating battery state under complex operating
conditions. Future research could extend this method to the state estimation of battery packs to assess
its applicability in complex operating conditions.
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