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ABSTRACT

In Unsupervised Domain Adaptation (UDA) for person re-identification (re-ID), the primary challenge is reducing
the distribution discrepancy between the source and target domains. This can be achieved by implicitly or explicitly
constructing an appropriate intermediate domain to enhance recognition capability on the target domain. Implicit
construction is difficult due to the absence of intermediate state supervision, making smooth knowledge transfer
from the source to the target domain a challenge. To explicitly construct the most suitable intermediate domain
for the model to gradually adapt to the feature distribution changes from the source to the target domain,
we propose the Minimal Transfer Cost Framework (MTCF). MTCF considers all scenarios of the intermediate
domain during the transfer process, ensuring smoother and more efficient domain alignment. Our framework
mainly includes three modules: Intermediate Domain Generator (IDG), Cross-domain Feature Constraint Module
(CFCM), and Residual Channel Space Module (RCSM). First, the IDG Module is introduced to generate all possible
intermediate domains, ensuring a smooth transition of knowledge from the source to the target domain. To reduce
the cross-domain feature distribution discrepancy, we propose the CFCM Module, which quantifies the difficulty
of knowledge transfer and ensures the diversity of intermediate domain features and their semantic relevance,
achieving alignment between the source and target domains by incorporating mutual information and maximum
mean discrepancy. We also design the RCSM, which utilizes attention mechanism to enhance the model’s focus on
personnel features in low-resolution images, improving the accuracy and efficiency of person re-ID. Our proposed
method outperforms existing technologies in all common UDA re-ID tasks and improves the Mean Average
Precision (mAP) by 2.3% in the Market to Duke task compared to the state-of-the-art (SOTA) methods.
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1 Introduction

Person re-identification (re-ID) [1–3] is a computer vision task at matching images of individuals
from different camera perspectives. It is widely used in surveillance and security, enabling identification
across different times and spaces, with potential value in social analysis and behavior understanding.
Traditional re-ID algorithms often rely on handcrafted features such as SIFT [4] and HOG [5],
followed by Support Vector Machine (SVM) classifiers [6]. However, these methods face challenges
like lighting changes and background occlusions. With advancements in deep learning (DL), DL-
based re-ID methods have emerged, categorized into supervised [1,7,8] and unsupervised [9–11]
methods. Supervised methods require extensive labeling and often face performance limitations due to
domain discrepancies between labeled source and unlabeled target datasets. To address cross-domain
differences, researchers focus on unsupervised cross-domain re-ID methods [12,13], which use both
source domain labels and target domain data to improve model generalization (see Fig. 1).

Figure 1: The concept of training and testing models for unsupervised cross-domain person re-ID

Recent studies in unsupervised cross-domain person re-ID have adopted Domain Adaptation
(DA) methods to directly align the distributions of the source and target domains. These methods
implicitly construct an intermediate domain [14,15], aiming to reduce cross-domain discrepancies by
mapping the source and target domains to this intermediate domain. However, due to the lack of
supervision for the intermediate state, these methods struggle to provide a stable and smooth transition
state, resulting in limited generalization capability. Additionally, guided by the labels of the source
domain, direct alignment methods sometimes overfit to the feature distribution of the source domain
rather than achieving a more generalized feature representation that encompasses both domains.

In this paper, we propose the Minimal Transfer Cost Framework (MTCF), which adaptively
considers all possible intermediate domains during alignment, ensuring feature diversity and smooth
knowledge transfer. It comprises three modules: the Intermediate Domain Generator (IDG), the
Cross-domain Feature Constraint Module (CFCM), and the Residual Channel Space Module
(RCSM). The IDG considers all intermediate domains for knowledge transfer, ensuring computational
simplicity. The CFCM uses Maximum Mean Discrepancy (MMD) to balance feature transfer costs,
ensuring key feature sharing between domains and utilizing Mutual Information (MI) to maintain
intra-domain diversity. The RCSM enhances feature extraction accuracy, improving the model’s focus
on key personnel features.
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Our contributions are summarized as follows:

• We introduce a novel approach that considers all potential intermediate domains to ensure a
smooth transition of knowledge from the source domain to the target domain. This strategy
effectively bridges the gap between different domains, facilitating more efficient and accurate
person re-identification.

• We design a key feature approach that shares between the source and target domains by
accurately quantifying the knowledge transfer cost. This approach maintains the integrity and
relevance of features, achieving precise alignment and improving the model’s generalization
capabilities.

• We focus on enhancing feature extraction accuracy, particularly in low-resolution images. This
improvement boosts the overall effectiveness and efficiency of the person re-identification
process, ensuring that key personnel features are accurately captured.

• Extensive experiments show our method achieves state-of-the-art (SOTA) results across various
datasets, with a 2.3% improvement in mean Average Precision (mAP) over advanced techniques,
enhancing transfer learning performance.

We compare our method with several state-of-the-art approaches to provide a clear context for
our contributions. For instance, SPGAN [14] uses GANs for image-to-image translation between
source and target domains but struggles with preserving identity information. ECN [15] employs
exemplar and camera-invariance constraints to enhance re-ID performance but faces challenges with
large domain gaps. Our method differs by explicitly generating intermediate feature representations,
avoiding identity mismatch issues. Moreover, methods like MMT [12] focus on mutual mean teaching
but lack mechanisms for handling intermediate domain diversity, which our CFCM addresses through
mutual information and maximum mean discrepancy.

By addressing these limitations and introducing a comprehensive framework that incorporates
intermediate domain generation, feature constraint, and enhanced feature extraction, our method
provides a robust solution for cross-domain person re-identification.

2 Related Work

In this section, we discuss two key technologies: person re-identification (re-ID) and Domain
Adaptation (DA).

2.1 Person Re-Identification

Person re-identification (re-ID) aims to match images of individuals captured from different
camera perspectives. Traditional techniques relied on manually extracting features [16–18]. However,
these methods could only extract shallow features, such as color and texture, and failed to capture
high-level semantic information. The advent of deep learning methods has effectively addressed
this limitation.

Deep learning methods encompass both supervised and unsupervised approaches. Supervised
methods [19,20] are suitable for scenarios where all images are labeled and have similar styles.
These methods often employ global/local feature representation learning, attention mechanisms,
and semantic feature extraction. Nevertheless, they do not meet the diverse needs of real-world
scenarios. Consequently, unsupervised re-ID methods, which do not require identity labels, have gained
considerable attention.
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Unsupervised methods cluster target domain data to generate pseudo-labels for fine-tuning or
training. Fan et al. [9] introduced clustering algorithms within the progressive unsupervised learning
method PUL. Additionally, Fu et al. [21] exploited similarities between global and local features to
create multiple independent clustering pseudo-labels, thereby improving robustness. Zhao et al. [22]
combined pseudo-label clustering with the selection of reliable instances to mitigate label noise.
Further advancements were made by Zhai et al. [23], who implemented iterative density clustering,
adaptive sample augmentation, and discriminative learning.

Hybrid clustering and sample selection methods have also been investigated. For example,
Sun et al. [24] and Jin et al. [25] explored various techniques, while Li et al. [26] introduced a confidence-
adaptive method for sample separation. To address pose variations and occlusions, Zhang et al. [27]
and Raj et al. [11] developed end-to-end networks, which significantly improved accuracy in complex
scenarios.

2.2 Domain Adaptation

Domain Adaptation (DA) aims to mitigate the impact of domain shifts on cross-domain re-
identification (re-ID) performance by effectively transferring knowledge and constructing implicit or
explicit intermediate domains to bridge the gap between the source (labeled) and target (unlabeled)
domains. As shown in Fig. 2, (a) represents the typical method of using Generative Adversarial
Networks (GANs) to construct implicit intermediate domains (I-Inter), transforming the labeled
source domain into an intermediate domain styled after the target domain. In contrast, (b) illustrates
our method, which directly constructs explicit intermediate domains (E-Inter) using the source and
target domains, serving as a bridge connecting the two.

Figure 2: Comparing GAN-based implicit intermediate domains and our explicit intermediate
domains for bridging source and target domains

GAN-based methods generate mappings from the source to the target domain, creating implicit
intermediate domains. For example, Zheng et al. [28] used GANs to synthesize images with smooth
labels. Wei et al. [29] and Deng et al. [30] mapped source images to the target domain style, thereby
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narrowing the domain gap. Chen et al. [31] combined GANs with contrastive learning modules,
enhancing viewpoint invariance and performance. Additionally, Dai et al. [32] introduced a cyclic
GAN to select valuable source images for transferring discriminative information to the target domain.
Yang et al. [33] employed DPG-GAN [34] and StarGAN [35] to generate and convert images into
various camera styles. Zhong et al. [36] aimed to augment datasets by learning invariant features across
domains, thus mitigating image style changes caused by camera transformations.

Explicit intermediate domain construction effectively utilizes intermediate representations to
bridge domain gaps. For instance, Dai et al. [37] introduced an intermediate domain module to blend
hidden representations, reducing disparities. This approach was further advanced by Dai et al. [38],
who generated multiple intermediate domains to minimize feature differences while preserving identity
information. Moreover, Na et al. [39] addressed the issue of source domain label dominance by
segregating the intermediate space into contrastive and consensus areas, thereby enhancing adaptive
model performance. Finally, DFDSN-Net [40] diminished style discrepancies through feature fusion
and normalization, implicitly introducing intermediate domains within the feature space.

3 Method

In our section, we propose the Minimal Transfer Cost Framework (MTCF), see Fig. 3, designed
for unsupervised domain-adaptive person re-ID. The core of MTCF is identifying an appropriate
intermediate domain among all possible intermediate domains, serving as a bridge between the
source and target domains. This framework facilitates smooth knowledge transfer, aligning feature
distributions and enhancing re-ID performance in the target domain.

Figure 3: Overall pipeline of our MTCF method

3.1 Overview

Person re-identification involves two key types of data: source domain data with clear labels and
target domain data lacking labels. The backbone network in our study is built upon the IBN-ResNet50
[41], comprising five distinct stages. Initially, data from both the source and target domains pass
through stage 0, consisting of Conv+BN+MaxPooling layers, resulting in initial feature representa-
tions Gs and Gt for the source and target domains, respectively. These initial features are then processed
by our proposed Intermediate Domain Generator (IDG) module, which ensures smooth knowledge
transition while considering all intermediate domains, producing further feature representations Gs,
Ginter, and Gt for the source, intermediate, and target domains, respectively.

Subsequently, these features undergo deeper feature extraction through stage 1 to 4, which consist
of ConvBlock1 to ConvBlock4 layers, alongside our specially designed Residual Channel Space
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Module (RCSM) to enhance feature focus. The feature maps from the three domains then pass through
a Global Average Pooling (GAP) layer to generate feature vectors fsource, finter, and ftarget, which create
compact representations for easier comparison and alignment across domains. Finally, these feature
vectors are input into the Cross-domain Feature Constraint Module (CFCM) for the calculation of
the total loss, aligning the source and target domains while maintaining feature diversity and relevance
by incorporating mutual information and maximum mean discrepancy.

3.2 Minimal Transfer Cost Framework

The Minimal Transfer Cost Framework (MTCF) is designed to facilitate efficient and effective
cross-domain person re-identification by leveraging three synergistic modules: the Residual Channel
Space Module (RCSM), the Intermediate Domain Generator (IDG), and the Cross-domain Feature
Constraint Module (CFCM). The RCSM enhances feature extraction by integrating spatial and
channel attention mechanisms, ensuring key regions are accurately captured. The IDG generates
intermediate domain features that blend source and target domain characteristics, ensuring smooth
knowledge transfer and minimizing feature distribution discrepancies. The CFCM employs Maximum
Mean Discrepancy (MMD) and Mutual Information Neural Estimation (MINE) to align source and
target domains while maintaining feature diversity and relevance. Together, these modules optimize
the overall performance and generalization capability of the model by balancing classification, triplet,
transfer, and intra-domain diversity losses.

3.2.1 Residual Channel Space Module

To more accurately capture key regions within images and enhance the efficiency of capturing
essential information across different channels, we propose the Residual Channel Space Module
(RCSM), shown in Fig. 4. It integrates spatial attention [42], channel attention, and a residual
structure [43].

(1) Channel Attention

Given a feature map G (which can be Gs, Ginter, or Gt), maximum and average pooling operations
produce outputs Cmax_out and Cavg_out. These are input into a Multi-Layer Perceptron (MLP) with a ReLU
layer, and summed outputs are passed through a Sigmoid function to obtain channel attention weights:

CAweight = σ(MLP(Cmax_out) + MLP(Cavg_out)) (1)

The original feature map G is channel-weighted by element-wise multiplication with CAweight:Gca =
G × CAweight.

(2) Spatial Attention and Residual Structure

For spatial attention, the average Savg_out and maximum Smax_out of Gca along the channel dimension
are concatenated, transformed through a convolution layer and batch normalization, and passed
through a Sigmoid function to obtain spatial attention weights:

SAweight = σ(BN(Conv([Savg_out, Smax_out]))) (2)

The spatially adjusted feature map Gsa is obtained: Gsa = Gca × SAweight. The final output is Gout =
G + Gsa.

During the model training process, the attention mechanism dynamically adjusts the channel and
spatial responses of the feature map, while the residual structure ensures minimal loss of original
information.
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Figure 4: The internal structure of RCSM and IDG

3.2.2 Intermediate Domain Generator

For criterion (1), the Intermediate Domain Generator (IDG) facilitates smooth knowledge
transfer. In MTCF, as illustrated in Fig. 4, an intermediate domain feature representation Ginter is
constructed by blending feature maps Gs and Gt:

Ginter = λGs + (1 − λ)Gt (3)

In Eq. (3), the Intermediate Domain Generator (IDG) generates a gradient-based, learnable
parameter λ, initially set to 1, which is optimized through backpropagation and gradient descent
to minimize the feature distribution discrepancy between the source and target domains. λ starts at
1, indicating initial dominance by source domain features, and gradually decreases during training,
increasing the weight of the target domain features. This dynamic adjustment ensures a smooth
transition of feature representation, preventing abrupt changes in feature distribution.

By progressively adjusting λ, this linear blending mechanism creates a continuous spectrum of
intermediate domain features, ranging from purely source domain features to purely target domain
features. Consequently, the model adapts better to the feature distributions of different domains
during training, enhancing its generalization capability and robustness to unseen target domain data.
This approach effectively serves as both a computational unit and a facilitator of smooth knowledge
transfer, thereby improving the model’s predictive accuracy and robustness.

We randomly selected 100 pairs of source and target domain images (with each pair having the
same person ID) and generated intermediate domain images. The figure presents the PCA projection
of the source domain (blue), intermediate domain (green), and target domain (red). As illustrated in
Fig. 5, the intermediate domain data points are positioned between the source and target domains
in the feature space, indicating that the intermediate domain effectively integrates the characteristics
of both the source and target domains. This generation method of the intermediate domain can
effectively mitigate the feature distribution discrepancy between the source and target domains, thereby
enhancing the model’s generalization capability in cross-domain tasks.
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Figure 5: PCA of source, intermediate, and target domains, demonstrating that the intermediate
domain (green) effectively integrates characteristics from both the source (blue) and target (red)
domains. PCA Component 1 and PCA Component 2 represent the first and second principal
components extracted through PCA, capturing the most significant variance in the data

3.2.3 Cross-Domain Feature Constraint Module

The Cross-domain Feature Constraint Module (CFCM) ensures knowledge transfer simplicity
using Maximum Mean Discrepancy (MMD) distance loss [44] and maintains feature diversity with
Mutual Information (MI) [45].

(1) Quantify Transfer Cost

Maximum Mean Discrepancy (MMD) reduces the distributional discrepancy between domains
by minimizing the distance between the mean feature mappings in the RKHS of the source and target
domains. Using MMD distance loss, we quantify and minimize knowledge transfer costs, aligning
source and target domains. The MMD loss function is formulated as Eq. (4):

MMD2(Xs, Xt) =‖ 1
ns

∑ns

i=1
φ(xs

i) − 1
nt

∑nt

j=1
φ(xt

j) ‖2
H (4)

where Xs and Xt are source and target domain data, φ is a nonlinear mapping to RKHS, and ‖ · ‖H is
the RKHS norm.

Minimizing this discrepancy allows the intermediate domain to transition easily to both extremes,
enhancing target domain performance. The objective function is formulated as Eq. (5):

minLmmd = min(MMD(fs, fm) + MMD(fm, ft)) (5)
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(2) Diversification of Intra-Domain Features

Addressing criterion (2), We employ Mutual Information Neural Estimation (MINE) to estimate
the mutual information (MI) between two random variables x and y. Initially, x and y are concatenated
as samples of the joint distribution, approximated as P (f s, f t), while randomly permutated x and y
are concatenated as samples of the marginal distribution, approximated as P (f s) P (f t). The MINE
module contains two fully connected layers FC1 and FC2, utilizing the ReLU activation function
to introduce non-linear transformations for approximating the logarithmic term within the integral.
Subsequently, the empirical mean of the samples is used to compute the approximate value of mutual
information, represented as Eqs. (6) and (7):

Outputjoint = FC2(ReLU(FC1(joint))) (6)

Outputmarginal = FC2(ReLU(FC1(marginal))) (7)

The estimation of mutual information is based on the following formula:

MI = E(Outputjoint) − log(E(Outputmarginal)) (8)

The objective function to strengthen similarity is Eq. (9):

minLmi = min − (MI(fs, fm) + MI(ft, fm)) (9)

Here, MI(·) represents the mutual information function, and f s, f m and f t denote the features of
the source, intermediate, and target domains, respectively. Minimizing this function aims to ensure
maximum similarity between the intermediate domain and both the source and target domains,
thereby promoting diversity and semantic relevance of features within the intermediate domain.

3.2.4 Optimization Objective

In the Minimal Transfer Cost Framework (MTCF), the total loss function Ltotal is derived from
a comprehensive consideration of various aspects of the person re-ID task. Specifically, the total loss
is a weighted sum of classification loss, triplet loss, transfer loss, and intra-domain diversity loss, as
shown in Eq. (10):

Ltotal = Lreid + Ltri + μ3(Lmmd + Lmi) (10)

The classification loss Lreid for the person re-identification task is the weighted sum of classification
losses Lst on the source and target domains and Lm on the intermediate domain:

Lreid = μ1Lst + (1 − μ1)LmLtri = μ2Ltri_ori + μ2Ltri_xbm (11)

The triplet loss Ltri integrates the traditional triplet loss Ltri_ori with the triplet loss incorporating
the XBM module Ltri_xbm:

Ltri = μ2Ltri_ori + μ2Ltri_xbm (12)

Lmmd and Lmi represent the knowledge transfer loss and intra-domain diversity loss, respectively.
Within this framework, our objective is to minimize the total loss value Ltotal.
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4 Experiment
4.1 Experimental Settings

4.1.1 Datasets and Evaluation Protocol

To evaluate the effectiveness of the MTCF, we conducted experiments on five datasets: Market-
1501 [46], DukeMTMC [47], MSMT17 [32], PersonX [48], and Unreal [49]. Detailed dataset informa-
tion is presented in Table 1.

Table 1: Detailed information about the five datasets

Dataset Train Test

Images IDs Query IDs Gallery IDs

Market-1501 12936 751 3368 750 15913 751
DukeMTMC 16522 702 2228 702 17661 1110
MSMT17 32621 1041 11659 3060 82161 3060
PersonX 9840 410 5136 856 30816 856
Unreal 120000 2998 – – – –

The “Train” subset is used for model training, while the “Query” and “Gallery” subsets are
used for model testing. In person re-ID tasks, the trained model matches each “Query” image with
the most similar images in the “Gallery” subset. The model’s performance is evaluated using mean
Average Precision (mAP) and Cumulative Matching Characteristics at Ranks 1/5/10 (R1/5/10). The
mAP measures average retrieval performance across all queries, while R1, R5, and R10 indicate the
probability of a correct match in the top 1, 5, and 10 results, respectively. These metrics reflect the
precision and recall range of the retrieval.

4.1.2 Implementation Details

The proposed MTCF network is implemented using the PyTorch framework and runs on an
NVIDIA 4090 GPU. In our experiments, the batch size was set to 16, with image dimensions of 256
× 128 and a feature size of 2048. The Adam optimizer was employed with an initial learning rate
of 0.00025 and a weight decay of 0.0005. Training was conducted over 60 epochs, with evaluations
performed every 1600 iterations (eval_step = 1). The learning rate was adjusted at the end of each
epoch using a step size of 20 and a decay factor of 0.1. To perform unsupervised clustering in the
target domain, we utilized the DBSCAN algorithm with eps set to 0.6 and min_samples set to 4.
Additionally, we incorporated the XBM module to enhance feature learning, setting the memory size
to 8192 and the usage ratio to 1. The hyperparameters for the loss function were configured as follows:
mu1 = 0.7, mu2 = 1.0, and mu3 = 0.1. To optimize the selection of convolution algorithms, we enabled
cuDNN’s auto-tuner. The initial learning rate of 0.00025 was chosen to balance stability and efficiency,
with higher rates causing instability and lower rates slowing convergence. A batch size of 16 optimizes
computational resources and training effectiveness, avoiding memory issues from larger sizes while
ensuring frequent parameter updates for better generalization. These hyperparameters were tuned to
achieve optimal performance.
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4.2 Results

4.2.1 Comparison with State-of-the-Art Methods

In this section, we compare our MTCF method with recent state-of-the-art person re-ID methods.
Based on their training schemes, we categorize UDA person re-ID methods into four types: GAN
transferring methods, joint training methods, fine-tuning methods, and intermediate domain methods.

Most methods listed in Table 2 largely overlook the importance of intermediate domains, which
can serve as a bridge in domain adaptation between the source and target domains to better transfer
the source knowledge to the target domain. While some methods consider explicit intermediate
domains, they do not account for all possible intermediate domains. However, our MTCF is capable
of identifying the most suitable intermediate domain among all possible options to better improve the
performance of UDA re-ID. As shown in Table 2, our method significantly outperforms the best UDA
re-ID methods in the Duke to Market task in terms of mAP, as well as in the Market to Duke task in
terms of mAP, R1/5/10 accuracy, across all these benchmarks. Notably, in the Market to Duke task, our
method shows a 2.3% increase in mAP compared to the best performing methods, CCL+PDA+FA
and P2LR.

Table 2: Performance comparison of MTCF with state-of-the-art re-ID methods on
DukeMTMC→Market-1501 and Market-1501→DukeMTMC tasks

Methods Reference Duke→Market Market→Duke
mAP R1 R5 R10 mAP R1 R5 R10

SPGAN+LMP [30] CVPR 2018 26.7 57.7 75.8 82.4 26.2 46.4 62.3 68.0
ECN [50] CVPR 2018 43.0 75.1 87.6 91.6 40.4 63.3 75.8 80.4
CAIL [51] ECCV 2020 71.5 88.1 94.4 96.2 65.2 79.5 88.3 91.4
MMT [52] ICLR 2020 71.2 87.7 94.9 96.9 65.1 78 88.8 92.5
SpCL [53] NeurIPS 2020 76.7 90.3 96.2 97.7 68.8 82.9 90.1 92.5
LNL [54] Neurocomputing

2021
75.2 88.9 95.7 97.6 62.5 77.4 88.1 90.6

HC w LP [55] ICCV 2021 80.0 91.5 – – 70.1 82.2 – –
CCL+PDA+FA [56] ICCV 2021 83.4 94.2 – – 70.8 83.5 – –
UNRN [57] AAAI 2021 78.1 91.9 96.1 97.8 69.1 82.0 90.7 93.5
GLT [58] CVPR 2021 79.5 92.2 96.5 97.8 69.2 82.0 90.2 92.8
IDM [37] ICCV 2021 82.8 93.2 97.5 98.1 70.5 83.6 91.5 93.7
ICMiF [59] Information

sciences 2022
80.2 92.3 – – 69.4 83.7 – –

HDS [60] Pattern recog-
nition 2022

81.3 92.5 97.4 98.1 69.1 82.0 90.7 93.5

P2LR [61] AAAI 2022 81.0 92.6 97.4 98.3 70.8 82.6 90.8 93.7
SECRET-Joint (MT) [62] AAAI 2022 83.0 93.3 – – 69.2 82.0 – –
CDCL [63] Knowledge-

based systems
2023

81.5 92.8 97.6 98.7 70.2 82.7 91.3 93.9

(Continued)
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Table 2 (continued)

Methods Reference Duke→Market Market→Duke
mAP R1 R5 R10 mAP R1 R5 R10

DFDSN-Net [40] Digital signal
rocessing 2023

81.4 92.9 97.0 98.0 68.9 81.9 91.3 93.4

M BDA [64] JVCI 2024 81.2 92.2 97.0 98.0 66.0 78.8 88.2 91.5
S2ADAP [65] Knowledge-

based systems
2024

82.0 93.5 98.0 98.8 71.8 83.7 91.3 94.1

MTCF (ours) CMC 2024 83.5 92.7 97.4 98.4 73.1 85.1 92.5 94.7

In Table 3, MTCF achieves comparable performance in R5/10 accuracy to leading methods in the
Market to MSMT task, ranking third in mAP. In the Duke to MSMT task, it demonstrates superior
performance, surpassing the most advanced techniques in mAP and R1/5 accuracy.

Table 3: Performance comparison of MTCF with state-of-the-art re-ID methods on the Market-
1501→MSMT17 and DukeMTMC→MSMT17 tasks

Methods Reference Market→MSMT Duke→MSMT

mAPR1 R5 R10 mAP R1 R5 R10

ECN [50] CVPR 2018 8.5 25.3 36.3 42.1 10.2 30.2 41.5 46.8
CAIL [51] CVPR 2018 20.4 43.7 56.1 61.9 24.3 51.7 64.0 68.9
MMT [52] ICLR 2020 22.9 49.2 63.1 68.8 23.3 50.1 63.9 69.8
SpCL [53] NeurIPS 2020 26.8 53.7 65.0 69.8 26.5 53.1 65.8 70.5
UNRN [57] AAAI 2021 25.3 52.4 64.7 69.7 26.2 54.9 67.3 70.6
GLT [58] CVPR 2021 26.5 56.6 67.5 72.0 27.7 59.5 70.1 74.2
IDM [37] ICCV 2021 33.5 61.3 73.9 78.4 35.4 63.6 75.5 80.2
ICMiF [59] Information sciences 2022 25.8 52.4 – – 25.7 52.5 – –
HC w LP [55] ICCV 2021 28.4 54.9 – – 29.3 56.1 – –
HDS [60] Pattern recognition 2022 27.1 52.8 65.2 70.6 29.4 56.8 69.7 74.7
P2LR [61] AAAI 2022 29.0 58.8 71.2 76.0 29.9 60.9 73.1 77.9
SECRET-Joint(MT) [62] AAAI 2022 31.7 60.0 – – – – – –
CDCL [63] Knowledge-based systems 2023 29.5 59.7 71.4 75.9 30.3 61.4 74.8 77.1
DFDSN-Net [40] Digital signal processing 2023 33.9 61.3 73.9 78.3 33.0 60.7 73.2 78.0
M BDA [64] JVCI 2024 26.7 51.4 64.3 68.7 23.4 47.3 59.5 64.5
S2ADAP [65] Knowledge-based systems 2024 27.0 53.8 64.5 70.2 29.7 58.5 70.6 75.8

MTCF (ours) CMC 2024 33.0 61.2 73.9 78.8 35.5 63.7 75.6 80.0



CMC, 2024, vol.80, no.3 4209

Results from Tables 2 and 3 highlight the exceptional capabilities of our approach in real-to-real
re-ID tasks. When compared to recent methods like MBDA and S2ADAP, MTCF excels in multiple
metrics, indicating its breakthrough performance in UDA person re-ID tasks.

As shown in Table 4, for the PersonX to Market and PersonX to Duke tasks, our method produced
the best results to date in terms of mAP and R1/10 accuracy. In the PersonX to MSMT task, it achieved
a mAP of 30.2%, outperforming DFDSN-Net by 1.2%.

Table 4: Performance comparison of MTCF with state-of-the-art re-ID methods on the
PersonX→Market-1501, PersonX→DukeMTMC, and PersonX→MSMT17 tasks

Methods Reference PersonX→Market PersonX→Duke PersonX→MSMT

mAP R1 R5 R10 mAP R1 R5 R10 mAP R1 R5 R10

MMT [52] ICLR 2020 71.0 86.5 94.8 97.0 60.1 74.3 86.5 90.5 17.7 39.1 52.6 58.5
SpCL [53] NeurIPS 2020 73.8 88.0 95.3 96.9 67.2 81.8 90.2 92.6 22.7 47.7 60.0 65.5
IDM [37] ICCV 2021 81.3 92.0 97.4 98.2 68.5 82.6 91.2 93.4 30.3 58.4 70.7 75.5
CCL+PDA+FA [56] ICCV 2021 79.6 92.5 – – – – 28.9 53.2 – – – –
CDCL [63] Knowledge-based systems 2023 77.9 92.4 97.2 98.0 69.5 83.1 91.6 93.3 – – – –
DFDSN-Net [40] DSP 2023 79.0 91.1 96.7 97.7 67.1 80.8 90.3 93.3 29.0 55.3 68.2 73.3
MTCF (ours) CMC 2024 82.7 92.7 97.3 98.4 70.7 83.2 91.6 94.3 30.2 56.9 69.9 74.7

Table 5 reveals that in Unreal to Market and Unreal to Duke tasks, MTCF method reached the
highest current results in mAP and R1/5/10 accuracy. In the Unreal to MSMT task, MTCF achieved
results nearly equal to the top-performing IDM method in various metrics.

Table 5: Performance comparison of MTCF with state-of-the-art re-ID methods on the
Unreal→Market-1501, Unreal→DukeMTMC, and Unreal→MSMT17 tasks

Methods Reference Unreal→Market Unreal→Duke Unreal→MSMT
mAP R1 R5 R10 mAP R1 R5 R10 mAP R1 R5 R10

JVTC [66] ECCV 2020 78.3 90.8 – – 66.1 81.2 – – 25.0 53.7 – –
IDM [37] ICCV 2021 83.2 92.8 97.3 98.2 72.4 84.6 92.0 94.0 38.3 67.3 78.4 82.6
MTCF (ours) CMC 2024 85.2 93.8 97.7 98.5 74.6 85.5 92.9 95.0 38.4 67.3 78.3 82.4

Overall, MTCF stands out in synthetic-to-real UDA re-ID tasks. Across benchmarks on both
PersonX and Unreal datasets, our approach surpasses front-runners like IDM and DFDSN-Net,
particularly in mAP and R1 accuracy. These comparisons emphasize the effectiveness and forefront
status of MTCF.

4.2.2 Ablation Study

Analyzing Table 6, we integrated the IDG module at different stages of IBN-ResNet50. For Duke
to Market, the highest mAP (83.8%) was observed when IDG was inserted after the 1st stage, followed
by 83.5% after the 0th stage and 83.4% after the 4th stage. Inserting IDG in the middle stages (2nd
and 3rd stages) led to a slight decrease in performance, indicating that integration in the early or late
stages is more beneficial. For Market to Duke, early integration of IDG showed better performance, as
the mAP value decreased with deeper integration. Our default configuration is to insert IDG after the
0th stage of IBN-ResNet50, which generally produces superior results. We also integrated the RCSM
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module at different stages. For Duke to Market, inserting RCSM in the early or late stages achieved
better results. For Market to Duke, mid-stage integration of RCSM showed better performance. Our
default configuration is to insert RCSM after the 2nd stage of IBN-ResNet50.

Table 6: Performance comparison of IDG and RCSM inserted at different stages of IBN-ResNet50 in
the Duke→Market and Market→Duke tasks

IDG Duke→Market Market→
Duke

RCSM Duke→Market Market→
Duke

mAP R1 mAP R1 mAP R1 mAP R1

Stage0 83.5 92.7 73.1 85.1 stage0 84.08 93.0 72.5 83.9
Stage1 83.8 93.1 73.0 84.6 stage1 83.3 92.8 73.1 85.1
Stage2 83.1 93.0 71.3 83.3 stage2 83.5 92.7 73.1 85.1
Stage3 82.3 91.7 71.2 83.8 stage3 84.2 93.3 72.9 84.5
Stage4 83.4 93.0 71.7 83.1 stage4 84.1 93.2 72.4 84.3

Table 7 compares our method using ResNet50 and IBN-ResNet50 architectures. The performance
is generally better on the Duke to Market task than on Market to Duke. This may be attributed to Duke
dataset features being more adaptable to Market conditions. IBN-ResNet50 consistently outperforms
ResNet50, underscoring its enhanced domain adaptation capabilities.

Table 7: Performance comparison between IBN-ResNet50 and ResNet50 in our method

Method Target ResNet50 IBN-ResNet50

mAP R1 mAP R1

Duke Market 81.9 92.2 83.5 92.7
Market Duke 68.7 81.5 73.1 85.1

Our ablation study in Table 8 evaluates the performance of our model on the Market to Duke
re-ID task. The Baseline method, IBN-ResNet50+XBM with only Lreid, achieves an mAP of 68.5%
and R1 of 82.4%. Incorporating IDG (denoted as ‘a’) improves mAP to 70.3%, demonstrating
IDG’s efficacy in intermediate domain and training. This result demonstrates that the generation of
intermediate domains effectively mitigates the feature distribution discrepancy between the source
and target domains. By gradually adjusting feature representations, IDG achieves a smooth transition
from source domain features to target domain features, avoiding abrupt changes in feature distribution.
This enhances the model’s generalization capability on the target domain, validating the importance
of intermediate domain generation in cross-domain person re-identification tasks. Adding the RCSM
(denoted as ‘b’) further enhances performance, with mAP reaching 70.5% and R1 83.2%, confirming
the RCS module’s positive impact. The subsequent addition of the CFCM (denoted as ‘c’) brought a
significant improvement to the model’s performance, with the mAP rising from 70.5% to 73.1% (an
increase of 2.6%), and R1 accuracy soaring to 85.1%. This underscores the importance of considering
the cost of knowledge transfer and the diversity of features within the intermediate domain, thereby
validating the effectiveness of the two criteria we proposed.
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Table 8: Ablation studies on different components of our method

Methods IDG RCSM CFCM mAP R1

Baseline 68.5 82.4
a √ 70.3 83.0
b √ √ 70.3 83.2
c √ √ √ 73.1 85.1

4.2.3 Hyperparameter Sensitivity Analysis

In our person re-ID framework MTCF, the three hyperparameters μ1, μ2, and μ3 respectively
control the classification loss, triplet loss, and the MMD and MI losses. In Table 9, comparing E1, E5,
and E6, it is evident that when the hyperparameters are simultaneously reduced, the performance of
the model significantly declines, indicating that lower parameter values negatively impact the model.
When we decrease the value of μ1 (E1, E2), the performance of the model decreases, suggesting that
the classification loss has a certain positive effect on model performance. When μ2 and μ3 are reduced
separately, the performance of the model improves. This result indicates that high weights of triplet loss
and MMD and MI losses might impose excessive constraints on the model. Therefore, appropriately
reducing the weights of these losses can liberate the model’s learning capability, thereby enhancing
model performance.

Table 9: Hyperparameter sensitivity experiment results

Experiment μ1 μ2 μ3 mAP R1

E1 0.1 0.1 0.1 58.1% 74.8%
E2 0.01 0.1 0.1 8.4% 15.6%
E3 0.1 0.01 0.1 58.4% 74.6%
E4 0.1 0.1 0.01 64% 79.0%
E5 0.01 0.01 0.01 6.7% 13.4%
E6 0.001 0.001 0.01 4.0% 8.3%

4.2.4 Visualization of Model Performance

In the Market to Duke task, our method notably surpasses other models. Fig. 6 illustrates our
method’s clear advantage in both mAP and R1 accuracy compared to competing technologies. In the
left panel, our method achieves the highest mAP of 73.1%, while the closest competitor (CCL + PDA +
FA) reaches 70.8%. In the right panel, our method achieves a Rank-1 accuracy of 85.1%, compared to
83.5% by the same competitor. This significant performance improvement highlights the effectiveness
of our approach in cross-domain person re-identification tasks.

Furthermore, as shown in Fig. 7, our method consistently outperforms the Baseline in each
training iteration in terms of mAP and Rank-1 accuracy, further validating our criteria for interme-
diate domains. Our model consists of several modules, including the Intermediate Domain Generator
(IDG, approximately 0.1 K parameters), the Residual Channel Space Module (RCSM, approximately
0.6 K parameters), and the Cross-domain Feature Constraint Module (CFCM, approximately 13.0 K
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parameters), with a total parameter count of around 13.7 K. The synergistic operation and parameter
optimization of these modules contribute to the superior performance of our method in feature
extraction and cross-domain recognition tasks.

Figure 6: In the Market→Duke task, comparison of our model’s mAP and Rank-1 with baseline
models

Figure 7: In the Market→Duke task, comparison of each round’s mAP and Rank-1 with baseline
method

4.2.5 Visualization of Retrieval Results

For the MTCF trained on adapting from Market to Duke, we tested it using three randomly
selected images and compared the retrieval results with the Baseline method, see Fig. 8. In each
group, the first image is the Query image, with backbone results on the left and MTCF results on the
right. Green marks indicate successful retrieval, while red marks indicate failure. Our method shows
significant improvement over the Baseline in Rank-10 accuracy, with increases of 60%, 90%, and 100%
in each group, respectively. Particularly, observing the third image, when encountering situations with



CMC, 2024, vol.80, no.3 4213

partial occlusions and low-resolution images, our MTCF method achieves flawless person re-ID, in
contrast to the Baseline method.

Figure 8: Examples of randomly selected queries in the Market-1501→DukeMTMC task and their
top ten retrieval results (Green and red respectively indicate successful and failed retrieval)

4.2.6 Discussion

Our method, the Minimal Transfer Cost Framework (MTCF), demonstrates significant advan-
tages over baseline methods, particularly in terms of accuracy and generalization capability. The
primary strengths of MTCF include its ability to generate a continuous spectrum of intermediate
domains, facilitating smoother knowledge transfer between source and target domains. This is
achieved through our Intermediate Domain Generator (IDG), which ensures a stable transition and
minimizes feature distribution discrepancies. Additionally, the Residual Channel Spatial Module
(RCSM) enhances feature extraction, especially in low-resolution images, while the Cross-domain
Feature Constraint Module (CFCM) maintains feature diversity and relevance across domains.

However, MTCF is not without its limitations. One notable challenge is the training stability of
GAN-based models, which can affect the overall robustness of the framework. Additionally, while
our method integrates existing technologies effectively, this integration might be perceived as lacking
novelty.

Our innovation lies in the strategic design of the MTCF architecture, which builds upon existing
methods to surpass state-of-the-art (SOTA) results. By designing the MTCF framework, we effec-
tively combine simple methods to achieve superior results. This strategic combination ensures that
our method not only enhances performance but also provides a robust and efficient solution for
unsupervised domain adaptation in person re-identification.

5 Conclusion

In our study, we define two key criteria for an appropriate intermediate domain: (1) The ability to
smoothly transition to the source or target domain with minimal cost criterion. (2) Diversity within
the intermediate domain’s features. We introduce the Minimal Transfer Cost Framework (MTCF)
to generate all intermediate domains, ensuring smooth knowledge transfer from the source to the
target domain. Within this framework, we firstly propose the Intermediate Domain Generator (IDG),
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which considers the full spectrum of intermediate domains, serving as both a computational unit and
a facilitator of smooth knowledge transfer between the source and target domains. We also introduce
the Residual Channel Spatial Module (RCSM), aimed at enhancing the model’s feature extraction
capabilities and improving attention to person features in low-resolution images. Subsequently, to
reduce the disparity in feature distribution across domains, we propose the Cross-domain Feature
Constraint Module (CFCM), which aligns the source and target domains while maintaining feature
diversity and semantic relevance. Overall, our method not only aligns with traditional transfer
learning theories but also demonstrates its superior performance through extensive experiments on
five datasets.
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