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ABSTRACT

The UAV pursuit-evasion problem focuses on the efficient tracking and capture of evading targets using unmanned
aerial vehicles (UAVs), which is pivotal in public safety applications, particularly in scenarios involving intrusion
monitoring and interception. To address the challenges of data acquisition, real-world deployment, and the limited
intelligence of existing algorithms in UAV pursuit-evasion tasks, we propose an innovative swarm intelligence-
based UAV pursuit-evasion control framework, namely “Boids Model-based DRL Approach for Pursuit and
Escape” (Boids-PE), which synergizes the strengths of swarm intelligence from bio-inspired algorithms and deep
reinforcement learning (DRL). The Boids model, which simulates collective behavior through three fundamental
rules, separation, alignment, and cohesion, is adopted in our work. By integrating Boids model with the Apollonian
Circles algorithm, significant improvements are achieved in capturing UAVs against simple evasion strategies. To
further enhance decision-making precision, we incorporate a DRL algorithm to facilitate more accurate strategic
planning. We also leverage self-play training to continuously optimize the performance of pursuit UAVs. During
experimental evaluation, we meticulously designed both one-on-one and multi-to-one pursuit-evasion scenarios,
customizing the state space, action space, and reward function models for each scenario. Extensive simulations,
supported by the PyBullet physics engine, validate the effectiveness of our proposed method. The overall results
demonstrate that Boids-PE significantly enhance the efficiency and reliability of UAV pursuit-evasion tasks,
providing a practical and robust solution for the real-world application of UAV pursuit-evasion missions.
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1 Introduction

In recent years, Unmanned Aerial Vehicles (UAVs) [1–3] have seen increasingly widespread
applications across various fields, including military reconnaissance, logistics delivery, and agricultural
monitoring. These applications typically involve complex and dynamic environments, necessitating
precise environmental awareness and intelligent decision-making capabilities for UAVs. As intelligent
perception and decision-making technology rapidly advances, the UAV pursuit-evasion task has
emerged as a pivotal area of research. As shown in Fig. 1, in a typical UAV pursuit-evasion scenario,
multiple UAVs are strategically deployed to efficiently track and intercept a moving target, which
employs evasive maneuvers to avoid capture, within a dynamic and often adversarial environment
[4–6]. The target, which employs evasive maneuvers to avoid capture, navigates within a dynamic
and often adversarial environment. In this illustration, UAV #1, UAV #2, UAV #3, and UAV #4
work in coordination, using their respective sensors and communication systems to maintain real-time
updates on the target’s position and trajectory. This complex interaction underscores the importance of
advanced control algorithms and robust communication protocols in managing multi-UAV operations
in pursuit-evasion tasks.

Figure 1: The diagrams of typical UAV pursuit-evasion scenes

Deep reinforcement learning (DRL)-based intelligent decision-making approaches [5,7,8] have
achieved remarkable advancements in UAV pursuit-evasion problem, showcasing its immense poten-
tial in handling high-dimensional data and continuous action spaces. However, despite their success in
various simulated environments, applying these DRL algorithms to real-world UAV pursuit-evasion
tasks presents a host of challenges. Specifically, reinforcement learning optimization [9] solely based
on reward feedback struggles to impart the innate behavioral advantages observed in biological
populations to decision models. For UAVs, emulating the flocking behavior patterns of birds presents
a valuable and promising decision-making strategy. Moreover, obtaining a large number of training
samples for DRL learning is not only costly and time-consuming but also poses potential safety risks,
especially involving complex scenarios like UAVs with high degrees of freedom and unpredictable
flight paths. Additionally, real-time obstacle avoidance demands that the algorithms respond and
adjust quickly during flight, which further complicates their design and computational requirements.
UAVs must cope with constantly changing obstacles and complex terrains, meanwhile quickly respond
and adjust during high-speed flight to meet real-time obstacle avoidance demands. However, existing
intelligent decision-making algorithms often do not adequately account for these dynamic factors,
which can lead to collisions or failures in path planning during actual operations.
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Swarm Intelligence Algorithms [2,10], such as the Wolf Pack [11], the Ant Colony [12], the
Bee Colony [13], and the Whale Optimization Algorithms [14], optimize problems by emulating the
collective behaviors observed in nature, without relying on sample-based learning processes, which
have demonstrated notable advantages and efficacies in specific scenarios. Al Baroomi et al. [15]
proposed the Ant Colony Optimization (ACO) algorithm, which has shown significant potential in
path planning for UAV navigation. The ACO algorithm simulates ant behavior, using pheromone
trails and attractive heuristics to help UAVs navigate safely and efficiently in dynamic environments.
Chen et al. [16] addressed the task allocation problem for heterogeneous multi-UAVs with different
payloads by proposing an improved Wolf Pack Algorithm (WPA), namely a chaotic wolf pack
algorithm based on enhanced Stochastic Fractal Search (MSFS-CWPA). They divided complex
combat tasks into three subtasks: reconnaissance, strike, and evaluation and introduced Gaussian
walking in Stochastic Fractal Search (SFS) after chaos optimization into the WPA through an
adaptive mechanism. Chen et al. [17] proposed an Environment-adaptive Bat Algorithm (EABA)
to address the path planning problem of UAVs in complex environments. The EABA enhances its
convergence ability and avoids local extrema by integrating particle swarm optimization (PSO) for
adaptive convergence adjustments, significantly surpassing the traditional Bat Algorithm (BA) and
PSO algorithm. Furthermore, Particle Swarm Optimization (PSO) has shown significant potential in
UAV pursuit-evasion tasks. Zhang et al. [18] proposed a PSO-optimized M3DDPG (PSO-M3DDPG)
algorithm for multi-UAV pursuit-evasion, which combines the PSO algorithm with the M3DDPG
algorithm. Experimental simulations demonstrate the improved response speed and capture success
rate of PSO-M3DDPG by dynamically adjusting global and local information.

However, their performance often falls short when dealing with highly dynamic and complex
environments. In contrast, the Boids model [19], a superior efficient algorithm that simulates the
collective motion of biological groups such as flocks of birds or schools of fish, is frequently used
in the study of flocking behavior in low-latency and distributed systems.

Specifically, the existing challenges in UAV pursuit-evasion includes:

1. High Cost and Safety Risks in Sample Acquisition: UAV pursuit-evasion faces the high cost
and safety risks associated with acquiring training samples. UAVs, especially those with high degrees
of freedom and unpredictable flight paths, require substantial amounts of data for effective training.
This process is not only costly but also poses safety risks during data collection.

2. Dynamic and Complex Environments: UAV pursuit-evasion tasks occur in highly dynamic
and complex environments that demand real-time obstacle avoidance and adaptive decision-making.
Previous algorithms do not adequately account for these dynamic factors, leading to potential
collisions in path planning during actual operations.

3. Existing Limitations in Complex Scenarios: While swarm intelligence algorithms like Wolf Pack
[11], Ant Colony [15], and Bee Colony [13] have shown effectiveness in specific scenarios, they often
falls short in highly dynamic and complex environments. They optimize problems by emulating col-
lective behaviors observed in nature but struggle to maintain efficacy when environmental complexity
increases.

Inspired by the birds’ swarm intelligent behavior [10,19], we integrate this Boids model together
with the Apollonian Circles algorithm [20] to mainstream deep reinforcement learning approaches
[7,8] to address the abovementioned issues. Our research aims to tackle the specific challenges in
UAV pursuit-evasion tasks and presents a robust solution that reduces training costs and enhances
the adaptability and robustness of UAVs in real-world applications.
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Specifically, we introduce a novel bio-inspired swarm intelligence and DRL-based hybrid intel-
ligent control framework, named the Boids-based Pursuit-Evasion (Boids-PE). Boids-PE combines
the Boids model [19], which simulates the swarm intelligence behaviors of bird flocks, with deep
reinforcement learning to enhance intelligent decision-making in UAV pursuit tasks. This addresses
the challenges of obstacle avoidance and navigation in complex terrains, and the ability to maintain
formation. The integration of the Boids model with the Apollonian Circles algorithm addresses
significant challenges in UAV pursuit-evasion tasks. This hybrid approach leverages the Boids model’s
simplicity and robustness in maintaining formation and avoiding collisions while enhancing it with
the Apollonian Circles algorithm’s capability to calculate optimal geometric paths. This combination
effectively resolves issues of collision avoidance among UAVs in the same group and improves long-
distance tracking and capture efficiency. Overall, the proposed Boids-PE combines bio-inspired swarm
intelligence with advanced reinforcement learning techniques to overcome the limitations of existing
algorithms, reduce training costs, and enhance the adaptability and robustness of UAVs in pursuit-
evasion tasks.

Additionally, we have developed simulated environments based on the Pybullet physics engine
[21] specifically for the Boids-PE algorithm in UAV pursuit-evasion tasks, addressing the challenge of
acquiring training samples. In these virtual environments, UAVs can undergo extensive preliminary
training to gather experience and data, and then be fine-tuned for real-world deployment. This not
only reduces the cost of sample collection but also accelerates the training process and enhances
training efficiency. Through extensive sample training and iterative learning, the DRL-driven UAVs
system can better adapt to complex dynamic environments [1,5,6,22]. To further enable UAVs to learn
more effective pursuit-evasion strategies, we introduced a self-play training method [23,24] in our
Boids-PE. This technique allows UAVs to alternately train against each other, continually enhancing
their performance in pursuit-evasion scenarios. Through this, UAVs not only learn effective strategies
but also continuously adapt and optimize their behavior in response to changing environments,
demonstrating higher adaptability and flexibility.

Extensive simulated experiments prove that the above enhancements and strategies significantly
improve the overall effectiveness of the UAVs’ pursuit decision-making, making Boids-PE reduce the
learning costs associated with collecting training samples and the high computational demands during
real-world deployment. The code implementations for Boids-PE are accessible on GitHub via: https://
github.com/albert-jin/Boids-PE (accessed on 7 August 2024).

2 Related Works
2.1 UAV Pursuit-Evasion and Existing Pursuit-Evasion Methods

UAV decision control research has extensively explored traditional methods relying on detailed
dynamic modeling and game theory [1,3,4,6], such as differential games [25]. These methods, while
theoretically capable of providing precise strategies, pose significant challenges in mathematical mod-
eling and computational complexity due to their reliance on complex partial differential equations.
To address the UAV pursuit-evasion problems, researchers often transform them into optimization
problems solved using various algorithms like genetic algorithms [1], Bayesian inference [26], and
bio-inspired optimization [2]. Bio-inspired optimization algorithms [11,13,14], like Particle Swarm
Optimization (PSO) [22] and Wolf Pack Algorithm [11], draw inspiration from collective behaviors in
nature, simulating phenomena such as bird flocking or fish schooling to find optimal or near-optimal
solutions to problems.

https://github.com/albert-jin/Boids-PE
https://github.com/albert-jin/Boids-PE
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Recent advancements in UAV pursuit-evasion have emerged rapidly, showcasing a multitude of
cutting-edge approaches. For instance, Camacho et al. [9,27] proposed a framework for multi-player
aerial robotic pursuit-evasion games. They focused on devising effective pursuit and evasion strategies
and interaction mechanisms in environments with multiple UAVs and targets. Sun et al. [4] explored
cooperative pursuit-evasion problems in multi-UAV systems under partial observation conditions.
They introduced an algorithm that enables multiple UAVs to collaborate and track targets effectively
despite incomplete information. Vlahov et al. [5] presented a model for optimizing UAV pursuit-
evasion strategies using deep reinforcement learning. Their study focused on how UAVs can achieve
efficient target tracking and evasion through autonomous learning and optimization in dynamic
and complex environments. Weintraub et al. [6] investigated the game theoretic approaches to UAV
pursuit-evasion and thus proposed a UAV swarm pursuit-evasion model based on optimal control
theory. Their model concentrated on developing optimal pursuit and evasion strategies within a UAV
swarm to achieve effective target tracking and capture. Optimal control methods, while theoretically
robust, can be challenging to implement in real-time or effectively in practical applications due to
their complexity. de Souza et al. [28] introduced a decentralized deep reinforcement learning (DRL)
approach for multi-agent pursuit scenarios involving non-holonomic constraints. Utilizing the Twin
Delayed Deep Deterministic Policy Gradient (TD3) algorithm [29], their method trains multiple
homogeneous pursuers to independently capture a faster evader within a bounded area. The approach
emphasizes local information and group rewards, employing curriculum learning to enhance training
efficiency and effectiveness. In the context of UAV pursuit-evasion research, the TD3 algorithm [29]
lies in its use of the TD3 algorithm to address control challenges encountered in dynamic UAV pursuit-
evasion tasks. The UAV pursuit-evasion model can benefit from the insights provided by this study,
particularly in terms of optimizing control strategies using reinforcement learning techniques like TD3,
which could enhance UAV performance in highly dynamic and unpredictable environments.

As the number of UAVs or environmental complexity rises, the computational resources become
prohibitively large and time-consuming. To overcome this, researchers employ realistic simulation
environments to gather training data, facilitating the learning of effective strategies that can be
fine-tuned for real-world applications. Transfer learning is also applied to reduce the need for
samples and training time for new tasks, thus accelerating the learning process. Integrating advanced
technologies such as reinforcement learning, deep learning, transfer learning, and self-play training
significantly enhances UAV decision-making capabilities. Future research will focus on improving
the generalization, adaptability, and robustness of algorithms while prioritizing safety, operational
efficiency, and minimizing training costs.

2.2 Bio-Inspired Swarm Optimization Algorithms

Bio-inspired optimization algorithms, such as Particle Swarm Optimization (PSO) and Wolf Pack
Algorithm, draw inspiration from collective behaviors in nature, like bird flocking or fish schooling,
to find optimal or near-optimal solutions to problems. These algorithms simulate natural phenomena
to optimize various aspects of UAV control and decision-making.

In addition to PSO and Wolf Pack Algorithm, other bio-inspired technologies have been devel-
oped to enhance UAV performance. For example, Genetic Algorithms (GA) mimic the process of
natural selection to solve optimization problems, while Ant Colony Optimization (ACO) simulates
the foraging behavior of ants to find the shortest paths. These algorithms have been applied to various
UAV tasks, such as path planning, resource allocation, and task scheduling, showcasing their versatility
and effectiveness.
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Focusing on Particle Swarm Optimization (PSO), the related algorithm has proven particularly
effective in UAV applications. For instance, Zhang et al. [18] presented an enhanced algorithm, PSO-
M3DDPG, which combines Particle Swarm Optimization (PSO) with Mini-Max Multi-agent Deep
Deterministic Policy Gradient (M3DDPG) to address the pursuit-evasion problem in UAVs. The PSO
algorithm optimizes the experience sample set, improving the learning efficiency and convergence
speed of the M3DDPG algorithm and validating its effectiveness in multi-UAV pursuit-evasion
environments.

Additionally, Li et al. [30] introduced a bio-inspired neural network (BINN) approach to address
real-time evasion in dynamic and complex environments. The BINN uses a neurodynamic shunting
model to generate evasive trajectories without formulating the problem as a differential game. It is
topologically organized to handle only local connections, enabling real-time adjustments to moving
and sudden-change obstacles, demonstrating its effectiveness and efficiency in handling complex
pursuit-evasion scenarios.

Despite their effectiveness, these optimization algorithms face limitations when scaling up the
number of UAVs or increasing environmental complexity, as the required computational resources
and time can become prohibitive. Thus, there is a continuous effort to improve the efficiency and
scalability of these algorithms to handle larger and more complex scenarios.

2.3 Deep Reinforcement Learning

To address these challenges, artificial intelligence (AI) approaches, including expert systems
[3,31], neural networks [32–34], especially deep reinforcement learning [3,5,8,9], have been increasingly
explored for UAV countermeasure tasks in recent years. Deep reinforcement learning (DRL), which
combines the strengths of reinforcement learning and deep learning, has demonstrated exceptional
performance across various domains, notably in autonomous flight and decision control for UAVs.
It trains agents based on learnable neural network models to make decisions through rewards and
penalties, enabling UAVs to autonomously learn pursuit and evasion strategies without human
intervention.

For instance, Wang et al. [35] proposed a novel interception strategy for high-speed maneuvering
targets using the Deep Deterministic Policy Gradient (DDPG) algorithm [36]. By reshaping the reward
function and focusing on relative position information and path angle, they trained an interception
policy that approximates the optimal control model for maneuvering target interception. Ye et al. [37]
presented a study on a classical pursuit-evasion problem where the pursuer attempts to capture
a faster evader in a bounded area. They utilized game theory to model the multi-agent pursuit-
evasion game and demonstrated that the game model has a Nash equilibrium. Multi-Agent Deep
Deterministic Policy Gradient (MADDPG) algorithm [36] is adapted to seek the equilibrium, and
simulation examples illustrated its effectiveness in a dynamic multi-agent pursuit-evasion system.
Chen et al. [38] introduced the TaskFlex Solver (TFS), which combines reinforcement learning and
curriculum learning to address multi-agent pursuit problems in diverse and dynamic environments.
TFS significantly improves training efficiency and adaptability in both 2D and 3D scenarios by using
a curriculum learning framework.

Reinforcement learning has brought significant advancements to UAV pursuit-evasion tasks.
Techniques that based on various Multi-Agent Reinforcement Learning, and Hierarchical Reinforce-
ment Learning help UAVs to autonomously learn and adapt to complex and dynamic environments,
enabling UAVs to make decisions with minimal human intervention. These DRL techniques enhance
UAVs’ capability to execute effective pursuit and evasion strategies, making them more efficient and
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resilient in real-world scenarios. We anticipate even greater innovations in UAV countermeasure tasks,
driven by the continuous evolution of DRL algorithms and applications.

3 Our Model: Biods-PE
3.1 Framework Architecture Modeling

Inspired by the intelligent behavior of bird swarm [2,10,19], we introduce a hybrid control
framework for UAV pursuit and escape tasks, combining deep reinforcement learning (DRL) with
Bird Swarm Intelligence, named the “Boids Model-based DRL Approach for Pursuit and Escape”
(Boids-PE). Boids-PE leverages DRL to address the adaptive capability issues inherent in traditional
frameworks. By incorporating birds behaviors (Boids Model) [19] into the Apollonian circle algorithm,
the framework enables UAVs to effectively avoid obstacles and maintain formation, thereby enhancing
their practical application.

In the specific modeling of UAV pursuit and escape tasks, as shown in Fig. 2, Boids-PE employs
a hierarchical modeling strategy. The high level is responsible for intelligent decision-making through
reinforcement learning algorithms, named deep reinforcement learning module (DRL module), while
the low level is controlled by a fine-tuned mechanism based on the Boids model and the Apollonian
circle algorithm [20], named bio-inspired behavior module. When the agent gathers environmental
information, it utilizes a combination of bio-inspired control algorithms and high-level reinforcement
learning decisions to generate final actions, such as rotor speed or position adjustments for the UAVs.
These actions are then transmitted to the control module, which converts them into specific control
commands like throttle adjustments. Our code is now available on Github: https://github.com/albert-
jin/Boids-PE (accessed on 7 August 2024).

Figure 2: The overall architecture of Boids-PE

In Biods-PE, UAVs make intelligent decisions by perceiving multi-agent environments and
optimizing the decision-making network of DRL. UAVs leverage the superiority of the bio-inspired
behavior module, which incorporates self-adaptive avian flight behavior preferences, to further
enhance decision-making. After high-level decision-making, fine control is carried out by the low-level
control module, utilizing the Pybullet physics engine [21] for environment state inference.

Specifically, DRL algorithms such as Proximal Policy Optimization (PPO) [39] and Deep Deter-
ministic Policy Gradient (DDPG) [8,36] are adopted in Boids-PE, with a particular emphasis on the

https://github.com/albert-jin/Boids-PE
https://github.com/albert-jin/Boids-PE
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DDPG algorithm. This algorithm combines the policy gradient method and Q-learning within an
actor-critic architecture. The actor network generates the strategy (deterministic actions), while the
critic network evaluates the strategy (action value). DDPG uses experience replay and target networks
to stabilize the training process, making it an effective tool for solving complex control tasks in the
field of deep reinforcement learning. Next, we will systematically illustrate the competitive DDPG
reinforcement learning algorithm.

3.2 The Integration of Apollonian Circles Algorithm, Boids Model and DRL

The integration of the Apollonian Circles algorithm, Boids model, and DRL forms a comprehen-
sive and synergistic control framework for UAV pursuit-evasion tasks.

Firstly, utilizing the Apollonian Circles algorithm, pursuer UAVs calculate optimal paths to
encircle the evader effectively. This geometric strategy minimizes the evader’s escape routes, thereby
enhancing capture efficiency. Specifically, the Apollonian Circles, a geometric concept introduced by
the ancient Greek mathematician Apollonius of Perga, plays a crucial role in optimizing UAV pursuit-
evasion strategies. These circles are defined as loci of points where the ratio of distances to two fixed

points A and B is constant. Formally, for any point on the Apollonian Circle, the ratio
d(P, A)

d(P, B)
= k,

where k is a constant, holds true.

In UAV pursuit-evasion missions, Apollonian Circles are utilized to optimize the path planning of
multiple UAVs working together in pursuit. By leveraging the geometric properties of Apollonian Cir-
cles, the pursuing UAVs can precisely calculate the optimal encirclement paths, effectively reducing the
escape options available to the evading UAV. Specifically, in complex three-dimensional environments,
the Apollonian Circles algorithm helps the pursuing UAVs determine ideal paths around the evading
target, forming a dynamic encirclement. This geometric strategy minimizes the evading UAV’s available
routes, gradually trapping it in a confined space. Therefore, we believe that Apollonian Circles not only
improve the efficiency of pursuit in UAV pursuit-evasion scenarios but also significantly reduce the
evading UAV’s ability to exploit environmental complexity for evasion, contributing to more effective
capture and superior path planning strategies.

By incorporating the Apollonian Circles algorithm into our UAV control framework, we leverage
geometric properties to enhance the efficiency and effectiveness of pursuit strategies. This method
allows pursuing UAVs to utilize precise geometric positioning to encircle and capture evading targets
more effectively, thereby increasing the overall system performance.

To further augment the capabilities of the UAV swarm, we integrate the Boids model into our
framework. The Boids model, inspired by the flocking behavior of birds, involves three primary
behavioral rules:

1. Separation (fPP): This rule ensures that UAVs maintain a safe distance from each other to avoid
collisions. It acts as a repulsive force between the UAVs.

2. Cohesion (fPE): This rule steers UAVs towards the average position of their neighbors, helping
to maintain group coherence.

3. Alignment (fPA): This rule aligns the direction of each UAV with the average direction of its
neighbors, promoting coordinated movement.

These behaviors are combined into a single control force F = K1fPP + K2fPE + K3fPA, where
K1, K2, and K3 are weighting factors that balance the influence of each behavior. By implementing
the Boids model, UAVs are endowed with robust formation maintenance and obstacle avoidance
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capabilities, which are crucial for swarm effectiveness in dynamic environments. The Boids model
ensures that UAVs maintain formation integrity and avoid collisions. The decentralized control
provided by the Boids model makes the swarm scalable and robust, allowing for efficient coordination
without a central controller.

Finally, based on these bio-inspired low-level action schemes, the DRL component, particularly
the DDPG algorithm, allows UAVs to learn optimal strategies through continuous interaction with
the environment. The actor-critic architecture of DDPG, combined with experience replay and target
networks, stabilizes the learning process and improves the UAVs’ decision-making capabilities in
dynamic and complex scenarios.

As shown in Fig. 3, this flowchart illustrates the overall information flow and implementations
of technique integrations in our Boid-PE. From this figure, the workflow in the UAV pursuit-evasion
framework is as follows:

1. State Observation: Each UAV gathers information about its own state (position, velocity, etc.)
and the states of its neighbors and the target. This information is essential for decision-making
and control processes.

2. High-Level Decision Making: One is Self-Play Training, in which pursuer and evader UAVs
alternately train their strategies through self-play, continuously improving their performance
by adapting to each other’s tactics. The other is Action Generation (DDPG), where the actor
network generates control actions based on the current state and high-level decisions and the
critic network evaluates the actions and provides feedback for policy improvement. Experience
replay stores past experiences and samples them to stabilize the learning process, ensuring the
UAVs learn effectively from diverse scenarios.

3. Low-Level Control Execution: Boids Model Application: UAVs apply Boids rules to determine
initial adjustments for maintaining formation and avoiding collisions. This is critical for swarm
behavior and coordination; Apollonian Circles Calculation: Pursuer UAVs use the Apollonian
Circles algorithm to determine optimal encirclement paths, effectively trapping the evader
through geometric strategies.

4. Interaction and Learning: 1. Environment Interaction: UAVs execute commands based on the
high-level and low-level decisions, leading to state transitions that impact future decisions; 2.
Reward Calculation: Rewards are calculated based on the effectiveness of the actions taken,
guiding the learning and ensuring that UAVs optimize their strategies.

Overall, this synergistic approach leverages geometric strategies for encirclement, decentralized
control for formation maintenance, and adaptive learning for strategic decision-making, significantly
enhancing the effectiveness and reliability of UAV operations in dynamic environments.

3.3 Deep Reinforcement Learning Algorithm (DDPG)

The Deep Deterministic Policy Gradient (DDPG) algorithm [8,36] is a model-free, off-policy
actor-critic algorithm that combines the strengths of policy gradient methods and Q-learning. The
algorithm process of DDPG is depicted in Fig. 4. DDPG is particularly effective for solving continu-
ous action space problems, which are common in complex control tasks.

DDPG algorithm belongs to classic Actor-Critic architecture, which contains Actor Network
(Generates deterministic actions based on the current policy. The output of the actor network is the
action a = π (s | θπ), where s is the state and θπ represents the parameters of the actor network.) and
Critic Network (Evaluates the value of the actions generated by the actor. The critic network estimates
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the Q-value Q(s, a | θQ), where θQ represents the parameters of the critic network.). And the critic
network is updated by minimizing the loss function in Eq. (1); the actor network is updated using the
deterministic policy gradient in Eq. (2).

L(θQ) = E[(r + γQ′(s′, π′(s′ | θπ′) | θQ′) − Q(s, a | θQ))2] (1)

∇θπJ ≈ E[∇aQ(s, a | θQ) | a = π(s | θπ)∇θπ(s | θπ)] (2)

Figure 3: The integration diagram of Apollonian Circles algorithm, Boids model and DRL in our
proposed Boids-PE

Figure 4: The diagram of DDPG algorithm

Moreover, DDPG uses a replay buffer to store transitions (s, a, r, s′), which are sampled randomly
during training. This helps break the correlation between consecutive samples and stabilizes the
training process. And DDPG employs target networks for both the actor and critic, which are slowly
updated to match the weights of the main networks. This technique reduces the risk of divergence
during training. The target networks are denoted as θπ ′ and θQ′. The learning process of DDPG
involves updating both the local and global action-value functions, optimizing the policy function for
each agent, and ultimately refining the strategies used by the UAVs.
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Overall, the combination of experience replay, target networks, and an actor-critic framework of
DDPG makes it a powerful tool for solving complex control tasks, such as those encountered in UAV
pursue and escape scenarios.

3.4 Self-Play Training

As we all know, reinforcement learning training requires agents to interact with their environ-
ment, resulting in self-play technique’s significant potentials [23,24]. Here, to further enhance the
performance of pursuit-escape UAVs, we propose a self-play training framework as shown in Fig. 5. A
typical example of self-play originates from the Go-playing AI, AlphaZero. Inspired by AlphaZero, we
enhance the performance of our pursuit UAVs by dynamically switching training objectives through
self-play.

Figure 5: The illustration of the learning procedure self-play training mechanism. We conducted a
demonstration using two UAVs, designated #5027 (responsible for Pursuing) and #9373 (responsible
for Escaping). During each training round, the decision networks for pursuing and escaping are
alternated, as indicated by the vertical arrows. The colored curved arrows represent the optimization
of decision network parameters through training samples

As shown in Fig. 5, the UAV #9373 and UAV #5027 continuously optimize their pursuit strategies
through mutual self-play, resulting in significant improvements in both efficiency and performance,
ultimately achieving highly effective pursuit strategies.

Specifically, initially, the training focuses on the escape UAV #9373 reaching a fixed position,
ensuring a certain distance is maintained between the pursuing, escaping UAVs #5027, and #9373.
Subsequently, the pursuing UAV #5027 undergoes training in a manner consistent with non-self-
play experimental designs. Once the pursuing UAV #5027 achieves repeated success in capturing
the escaping UAV #9373, the training shifts back to refining the escape UAV #9373’s strategy. If
the pursuing UAV #5027 fails to successfully capture the escaping UAV #9373, its training resumes.
This process is controlled by a set total number of training steps, after which the training halts.
This self-play training methodology [23,24] ensures that the UAVs #5027 and #9373 continuously
improve their strategies in an ever-changing environment, significantly enhancing their performance
and adaptability.

Fig. 6 visually represents the self-play training framework, detailing each decision point and
training step comprehensively. As depicted, the training begins by initializing the UAVs’ parameters
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and positions. Initially, the escaping UAV is trained to reach a fixed position, ensuring it can achieve
and maintain this predetermined location. The process then checks whether the escaping UAV can
consistently reach this fixed position N times. If successful, the training proceeds to the next step;
otherwise, the escaping UAV is retrained until it meets the criteria.

Figure 6: Training process flowchart for pursuit-evasion UAVs within a self-play framework

Subsequently, the focus shifts to training the chasing UAV to effectively follow the escaping UAV.
This phase evaluates whether the chasing UAV can successfully capture the escaping UAV N times.
If the chasing UAV achieves this, the training advances to developing the escaping UAV’s evasion
strategies. If not, the chasing UAV is retrained to enhance its pursuit capabilities. The final step involves
training the escaping UAV to evade capture and enter a designated safe area N times. Successful
training is indicated when the escaping UAV consistently reaches the safe area; otherwise, the escaping
UAV continues to be trained until it meets this objective.

In summary, the self-play framework involves continuous iterations between training the chasing
and escaping UAVs. By continuously adapting to each other’s tactics, both UAVs significantly enhance
their performance and adaptability. This iterative method ensures robust and efficient UAV operations
in real-world scenarios, ultimately leading to improved strategy development and execution.

3.5 State Space and Action Space Modeling for UAV Pursuit-Evasion

To consider practical applications, assume that each UAV communicates with a ground station,
which sends decision information to each UAV. The ground station can access all UAVs’ information,
with each UAV’s observation data forming part of the overall environmental state, comprised of the
state information of N UAVs. Each UAV makes decisions based on its observation data, which is
derived from sensor-acquired dynamic information. Traditional control methods such as PID [40],
and MPC [41] are then utilized to control the UAVs based on the decision information. The state
transitions in the environment are inferred through the Bullet physics engine. The position, speed, and
other information of the pursuing and fleeing UAVs influence the decision-making process.

Since UAV pursuit-evasion is a continuous control task, with the ultimate goal of determining the
rotor speed of the UAV, the action space of the UAV can be directly defined as [P0, P1, P2, P3]n, repre-
senting the speeds of the four rotors of the UAV. This definition of the action space outputs the rotor
speeds directly, obviating the need for traditional control methods like PID. Considering the complex-
ity of tasks, solely controlling rotor speed can be challenging. Thus, the action space of the UAV is
defined as [vx, vy, vz, vm]n, representing the velocity components in three dimensions and the magnitude
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of the velocity. When the action space is defined by speed or position, traditional control methods
such as PID are required for control, with high-level decision-making and low-level control.

Formally, we now further illustrate the action space using formulas. Specifically, the action space
of the UAV can be defined as controlling its rotor speeds or velocity components:

1. Rotor speeds (Pn): Directly defined as [P0, P1, P2, P3]n, representing the speeds of the four rotors.
2. Velocity (Vn): Defined as [vx, vy, vz, vm]n, representing the velocity components in three dimen-

sions and the magnitude of the velocity.

The action space is typically restricted to the range of [−1, 1] to ensure flight safety and task
completion.

Based on the agent’s state, reinforcement learning algorithms are employed to determine the
velocity for the next time step. This velocity is then converted into motor speed or final throttle size
using traditional control methods like PID. When defining the action space for the UAV, it is crucial
to consider the safety of the UAV during flight. This involves limiting the maximum speed or rotor
speed of the UAV. Typically, the action space is restricted to the range of [−1, 1]. This range will be
further converted to obtain the UAV’s actual speed or rotor speed. Different types of rewards will be
set for training based on various scene tasks. This paper will initially focus on constructing simple
tasks, including one-on-one pursuit and evasion tasks and many-to-one pursuit and evasion tasks, to
explore the performance of reinforcement learning in these scenarios.

More specifically, the state space of each UAV can be formally defined through the following
equations. The state information of each UAV includes the following aspects:

1. Position (xn): The three-dimensional coordinates of the n-th UAV.
2. Quaternion (qn): The quaternion representing the UAV’s orientation.
3. Angular velocities (rn, pn, jn): Representing the roll, pitch, and yaw angular velocities of the UAV,

respectively.
4. Velocity (ẋn): The linear velocity of the UAV.

In summary, the state vector for each UAV can be expressed as: sn = [xn, qn, rn, pn, jn, xn]. The
overall environmental state information is composed of the state information of N UAVs, i.e., S =
[s1, s2, s3, . . . , sN].

For clarity, we have summarized the experimental parameters in Table 1. This will serve as a
comprehensive reference for readers to accurately replicate the experiment.

Table 1: Experimental settings of state space, action space, and other key environment factors

Experimental settings Description

State space sn = [xn, qn, rn, pn, jn, xn]
Action space [P0, P1, P2, P3]n for rotor speeds, [vx, vy, vz, vm]n for velocity components

and magnitude, restricted to [−1, 1].
Reward functions Distance reward (closer distance between pursuing UAV and target

UAV), collision penalty (penalty for UAV collisions), energy
consumption (reward for less energy consumption)

(Continued)
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Table 1 (continued)

Experimental settings Description

Task scenarios Simple one-on-one pursuit-evasion task, and many-to-one
pursuit-evasion task

Control methods Traditional control methods like PID and MPC used to convert
high-level decisions into motor speeds or throttle size

State transitions Inferred through the Bullet physics engine, considering positions, speeds,
and other dynamic information

3.6 Reward Settings for UAV Pursuit-Evasion

In the experiments, we set up two main pursuit-evasion scenarios: one-on-one UAV pursuit-
evasion and many (multiple)-to-one UAV pursuit-evasion. The rewards for these two scenarios differ,
as detailed below.

For the one-on-one pursuit-evasion scenario, where one pursuing UAV competes against one
evading UAV, the action space in the three-dimensional environment is quite large. Therefore, appro-
priate rewards are set to guide the UAV’s movement. The following reward functions are established
as follows (Eq. (3)):{

rt1 = dt−1 − dt

rt = krt1 + rt2 + rt3,
(3)

where the rt2 = −R
(
dt > Df

)
and the rt3 = Rf (dt < Dn).

In this formula, rt—The total reward obtained by the pursuing UAV at time t, where rt1, rt2, and
rt3 represent rewards under different conditions; rt1—The difference in distance to the evading UAV
between two consecutive time steps, reflecting the process of continuously approaching the evading
UAV; rt2—When the distance between the two UAVs is large, indicating the evading UAV is in an
advantageous position, a small reward is given to the pursuing UAV during this process.

When the distance between the pursuing UAV and the evading UAV is less than a certain threshold,
it is considered a successful pursuit, and the pursuing UAV receives a significant reward. In this
experiment, rt1 is consistently used to guide the agent to overcome the sparse reward problem. The
reward function for the evading UAV is the inverse of that for the pursuing UAV. Based on the above
reward settings, we conduct the one-on-one pursuit model experiment.

For the multiple-on-one pursuit-evasion scenario, multiple pursuing UAVs should cooperate with
each other to collaboratively capture the evading UAV, thereby completing the pursuit task. Inspired
by the Boids model [19], the reward function for the UAVs can be composed of the following aspects:
First, the pursuing UAVs should not be too close to each other to prevent collisions. Second, the UAVs
should maintain a certain formation while advancing towards the target. Third, the pursuing UAVs
should effectively encircle the evading UAV.

To achieve the behaviors of the bio-inspired control algorithm (Boids model) during this process,
appropriate reward functions need to be set to guide reinforcement learning. Based on this, our
designed reward function includes two aspects: local rewards and global rewards. Specifically, the
local rewards are composed of obstacle avoidance between the pursuing UAVs, maintaining formation
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among the pursuing UAVs, and each UAV approaching the target position. The local reward for
each UAV, considering obstacle avoidance and maintaining formation among the pursuing UAVs, is
formulated as follows (Eqs. (4)–(6)):

r1

(
dij

) =
{−Rr

(
dij ≤ x1

)
−adij

(
dij > x1

)
,

(4)

r2 (die) = β

die + α
, (5)

ri =
∑

j �=i
k1r1

(
dij

) + k2r2 (die) , (6)

where the die represents the distance between each pursuing UAV and the evading UAV. dij denotes the
distance between two pursuing UAVs. This local reward setup guides the UAVs to maintain formation
and prevent collisions. ri denotes the local reward.

Simultaneously, by setting a global reward, the center of the pursuing UAV swarm is guided to
coincide as closely as possible with the position of the evading UAV. Based on this, the global reward
is defined as shown in Eq. (7):

rg = ρ

dce + γ
, (7)

where the dce denotes the distance from the center of the pursuing UAVs to the evading UAV; the rg is
the global reward.

4 Experiments and Analysis

This section focuses on modeling one-on-one and many-to-one pursuit-evasion scenarios based
on the aforementioned Boids-PE model. Through a series of experiments and systematic analysis, the
decision-making superiority and intelligence of the Boids-PE model are validated.

4.1 Experimental Setting and Environment Modelling

For environment construction, we use the PyBullet physics engine [21] to construct the experimen-
tal environment and evaluate on the Boids-PE model. The experimental platform performs inference
based on the Bullet physics engine. To make it more realistic, we include factors such as collisions,
drag, and ground effects to closely resemble real physical scenarios. The Boids-PE model also supports
sensor and visual information as inputs for decision-making and control [32]. Considering the impact
of collisions and other factors, this three-dimensional simulation environment closely approximates
real flight test scenarios. Since this platform requires setting the control and simulation frequency
manually, the simulation frequency is often based on the current action to predict the state at the next
time step.

The platform has an established low-level UAV model, upon which the environment needs to be
built, including scene elements (such as whether there are obstacles, initial positions, and attitudes of
the UAVs). We present the basic platform settings in Table 2. In this paper, we construct one-on-one
and many-to-one pursuit-evasion tasks. In the one-on-one task, a single pursuing UAV learns how
to effectively track and capture an evading UAV in three-dimensional space. The many-to-one model
increases the number of pursuing UAVs, which not only increases the complexity of the strategies but
also introduces the issue of collaboration between UAVs. Each pursuing UAV needs to learn how to
cooperate with other UAVs to more effectively capture the evader.
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Table 2: Statistics of platform experiment hyperparameters

Experimental parameter name Parameter number

Spatial dimensions 3
Initial position of pursuing UAV/Initial position of evading UAV (m) [−3, 3] × [−3, 3] × [0, 3]
Initial heading of pursuing/Evading UAVs [0, 2π]
Speed range of pursuing UAV Self-play learning [0, 0.5]
Initial speed of evading UAV Self-play learning [0, 0.5]
Experimental space limits [−3, 3] × [−3, 3] × [0, 3]
UAV Control frequency (Hz) 48
Physics engine simulation frequency (Hz) 240
Control mode Speed

In this experiment, we primarily selected efficiency and reliability as the key performance
indicators for UAV pursuit and evasion tasks, based on their importance in practical applications.
Efficiency determines whether a UAV can successfully complete the pursuit task within a limited time,
while reliability pertains to the system’s stability and the success rate of the task.

Additionally, for the specific measurement methods, we utilized the UAV capture success rate
within a specified time as the efficiency metric. Specifically, a successful capture is considered when
the distance between the two UAVs is less than 3 cm and this condition is maintained for more
than 5 s. If the above success conditions are not met within 20 s, it is considered a capture failure.
This standard directly reflects the UAV’s ability to complete tasks within a given timeframe, offering
high operability and practical value. In our experimental design, by comparing different pursuit
scenarios and examining the inclusion of self-play methods, we comprehensively evaluated the UAV’s
performance in various complex environments. These comparative experiments reveal the UAV’s
adaptability and flexibility in changing conditions.

Overall, we chose efficiency and reliability as the primary performance indicators based on
the practical needs and application background of UAV pursuit and evasion tasks. These metrics,
measured by the capture success rate within a specified time and various experimental scenarios,
can comprehensively and objectively evaluate the performance of UAV systems, providing a feasible
solution for the practical application of UAV pursuit tasks.

4.2 One-on-One Pursuit and Evasion Results and Analysis

In the one-on-one pursuit-evasion scenario where UAVs move only in a one-dimensional space,
the movement information of the UAVs is shown in Fig. 7. In this figure, the red line represents the
evading UAV, while the green line represents the pursuing UAV. As illustrated in Fig. 7, the evading
UAV reaches a fixed position and then stops moving. The pursuing UAV, which has been trained
through reinforcement learning, successfully completes the pursuit. The closer the green line gets to
the red line, the better the pursuing UAV demonstrates its advantage, ultimately leading to a successful
interception.

In the one-on-one (one-dimensional) scenario, the pursuing UAV trained through reinforcement
learning successfully captures the evading UAV. The experimental results of the one-on-one (one-
dimensional) scenario using the self-play training method [23,24] are shown in Fig. 8. Initially, the
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pursuing UAV successfully captures the evading UAV. The evading UAV then adjusts its strategy and
manages to escape. Throughout the process, it can be observed that both UAVs continuously adjust
their positions. Due to their close proximity, this results in noticeable horizontal displacement.

Figure 7: One-on-one (One-dimensional) pursuit-evasion UAV movement information. The red curve
represents the evading UAV information, while the others represent the pursuing UAV information.
The closer the curves are, the better the advantage shown by the pursuing UAV

Figure 8: One-on-one (One-dimensional) pursuit-evasion UAV movement information under a self-
play learning framework

In summary, from these flight pursuit trajectories, it can be seen that UAVs based on the Boids-
PE model possess strong autonomous decision-making capabilities and flexible adaptability. The
self-play training method [23,24] enables the pursuing UAV to continuously optimize its strategy
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to adapt to the evasive UAV’s changing behaviors. In the one-on-one pursuit-evasion scenario, the
pursuing UAV not only successfully completes the initial pursuit task through reinforcement learning
but also quickly responds and re-engages in capture when the evading UAV adjusts its strategy. This
decision-making mechanism enhances the UAV’s execution efficiency and task success rate in complex
dynamic environments, fully demonstrating the Boids-PE model’s significant potential and advantages
in controlling UAV group behaviors.

Fig. 9 illustrates the pursuit-evasion process of UAVs under the self-play framework within the
Boids-PE model. We further conduct experiments in three-dimensional space. During this process,
it can be observed that the pursuing UAV continuously approaches the evading UAV in the x, y,
and z directions, while the evading UAV quickly attempts to escape. Due to the large action space in
three-dimensional space, the combination of reinforcement learning and the self-play method [23,24]
ultimately enables the pursuing UAV to learn an effective strategy.

Figure 9: One-on-one (Three-dimensional) pursuit-evasion UAV movement information under the
Boids-PE model self-play learning framework

The above illustrates the performance of Boids-PE’s hybrid swarm intelligence-based deep rein-
forcement learning in one-on-one pursuit-evasion scenarios, with experiments conducted in both one-
dimensional and three-dimensional spaces. From the above we can observe that in the one-dimensional
space, scenarios with and without self-play training are included. Compared to the scenarios without
self-play training, the introduction of self-play training significantly enhances the adaptability of the
pursuing UAV.

Especially through experiments in three-dimensional space, the advantages brought by the self-
play training framework [23,24] are significant, with the pursuing UAVs demonstrating excellent
adaptability throughout the process. The combination of reinforcement learning and self-play methods
in three-dimensional space enabled the pursuing UAVs to learn more effective pursuit strategies,
showcasing the robustness and potential of the Boids-PE model in complex environments. This
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comprehensive approach emphasizes the model’s ability to handle dynamic interactions and continu-
ously improve through adaptive learning, making it highly suitable for real-world applications where
environmental variables are constantly changing.

The self-play training method in the Boids-PE model enables the chasing UAV to continually opti-
mize its strategy to adapt to the changing behaviors of the escaping UAV. This not only demonstrates
the model’s adaptability in dynamic environments but also underscores the importance of the self-play
approach in enhancing UAVs’ autonomous decision-making and flexible response capabilities.

To study the performance comparison between strategies with and without self-play in one-on-one
scenarios, we fixed the strategy of the evading UAV to be either random or other rule-based strategies.
We then controlled the pursuing UAV trained under the self-play framework and the pursuing UAV
not trained under the self-play framework to chase the evading UAV. A successful capture is considered
when the distance between the two UAVs is less than 3 cm and this condition is maintained for more
than 5 s. If the above success conditions are not met within 20 s, it is considered a capture failure.

Based on this, for each independent UAV pursuit and evasion experiment, we conducted 5
independent random tests, each lasting 20 s. The number of successful captures within 20 s was
recorded, as shown in Tables 3–5.

Table 3: Comparison experimental statistics for one-on-one scenario (Evading UAV in uniform linear
motion (first-try))

Number of tests/Test
episode

Duration of each test Number of successful
captures by UAVs
trained with self-play

Number of
successful captures
by UAVs not trained
with self-play

5/20 20 20, 19, 20, 20, 20
(19∼20)

16, 17, 18, 16, 14, 17
(14∼18)

Table 4: Comparison experimental statistics for one-on-one scenario (Evading UAV on random
motion strategy (second-try))

Number of tests/Test
episode

Duration of each test Number of successful
captures by UAVs
trained with self-play

Number of
successful captures
by UAVs not trained
with self-play

5/20 20 16, 15, 15, 17, 16
(15∼17)

9, 10, 11, 8, 9 (8∼11)

Based on the statistics in Table 3, for the scenario where the evading UAV follows a simple uniform
linear motion, the UAVs trained under the self-play framework achieved successful captures in all 20
tests. In contrast, the UAVs not trained with self-play successfully captured the target around 14∼18
times, losing the target about 2∼6 times. In Table 4, for the scenario where the evading UAV follows
a random strategy, the UAVs trained under the self-play framework successfully captured the target
about 15∼17 times, while those not trained with self-play succeeded only less than 5 times. Based on
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this, the self-play training framework has certain advantages: Its pursuit strategies are more generalized
and have demonstrated better performance across different scenarios.

Table 5: Comparison experimental statistics for one-on-one scenario (Evading UAVs with self-play
trained strategies (third-try))

Number of tests/Test
episode

Duration of each test Number of successful
captures by uavs trained
with self-play

Number of
successful captures
by UAVs not trained
with self-play

5/20 20 7, 8, 8, 6, 9 (6∼9) 3, 4, 5, 3, 3 (3∼5)

We further included evading UAVs with self-play trained strategies into the test scenarios. Using
the same setup, the experimental results are shown in Table 5, which summarizes the number of
successful captures. In Table 5, the success rate (about 6∼9 times) of UAVs trained with self-play
is higher than those not trained with self-play (about 3∼5 times). Compared to the previous two
scenarios, the evading UAVs trained with self-play have enhanced evasion strategies, making them
more difficult to capture.

These results indicate that the Boids-PE framework combined with self-play training [23,24] has
a distinct advantage. Its capture strategy shows stronger generalization and performs well across dif-
ferent scenarios. The advantages of the self-play framework within the Boids-PE were demonstrated:
1. Enhanced Adaptability: successfully capturing targets across different evasion strategies, whether
in uniform linear motion or random motion scenarios; 2. Higher Success Rate: UAVs trained with the
self-play framework achieved significantly higher success rates compared to those not trained with self-
play; 3. Improved Generalization: The self-play training of Boids-PE enhances the UAVs to develop
generalized strategies that perform well across various scenarios, based on the consistent success in
different test conditions.

In summary, through these experiments, we can observe that UAVs employing the Boids-PE model
exhibit strong autonomous decision-making abilities and flexible adaptability in one-dimensional
chase-escape scenarios. The self-play training method allows the chasing UAV to not only successfully
complete the initial chase task through reinforcement learning but also to quickly respond and resume
the chase when the escaping UAV adjusts its strategy. This decision-making mechanism significantly
improves the execution efficiency and task success rate of UAVs in complex dynamic environments,
fully showcasing the notable potential and advantages of the Boids-PE model in controlling the
behavior of UAV swarms.

4.3 One-on-One Pursuit and Evasion Process Visualization

To better demonstrate the effectiveness of the Boid-PE model in UAV pursuit-evasion scenarios,
we recorded several typical pursuit-evasion videos. These videos (accessible via the link in Fig. 10)
showcase a one-on-one UAV pursuit-evasion experiment conducted in a three-dimensional space. At
the beginning of the video, two UAVs are moving within the 3D space, with one serving as the evading
UAV and the other as the pursuing UAV. Through reinforcement learning and self-play training, the
pursuing UAV gradually learns effective pursuit strategies, continuously closing in on the evading UAV.

In the video, it can be observed that the evading UAV attempts to escape by changing its position,
but the pursuing UAV quickly adjusts its strategy and follows closely. In the x, y, and z directions, the
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pursuing UAV demonstrates agile maneuverability and quick response capabilities. As time progresses,
the pursuing UAV gradually gains the upper hand, reducing the distance to the evading UAV. his video
demonstrates that, in a complex three-dimensional space, the combination of reinforcement learning
and self-play methods can significantly enhance the performance of UAVs in pursuit-evasion tasks,
ultimately leading to successful capture.

Figure 10: One-on-one (3D) Boid-PE pursuit-evasion UAV motion process recording (Please visit the
link: Here) (Accessed on 7 August 2024)

Through this, the pursuing UAVs can significantly enhance its performance in pursuit tasks,
demonstrating the model’s strong adaptability and flexibility in dynamic and complex environments.

4.4 Multiple-on-One Pursuit and Evasion Results and Analysis

In the many (multiple)-to-one pursuit-evasion scenario, Fig. 11 illustrates the process of using the
Boids Model-based Apollonian Circles improved algorithm, which is based on the improved Boids
model [19], to capture an evading UAV moving in a straight line. The positional data of both the
pursuing and evading UAVs reveal several effective strategies employed during the pursuit:

1. Formation Maintenance: The pursuing UAVs maintain a cohesive formation throughout the
chase, ensuring they do not collide with each other and can coordinate their movements
effectively.

https://github.com/albert-jin/boids-pe/blob/main/videos/1v.s.1-3D.mp4
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2. Encirclement of the Target: The pursuing UAVs successfully implement a strategy to surround
the evading UAV, which is crucial in preventing its escape. This encirclement strategy ensures
that the evading UAV has limited options for maneuvering, increasing the likelihood of capture.

3. Escape Prevention: The coordinated effort of the pursuing UAVs to position themselves
strategically around the evading UAV minimizes the chances of the target breaking free. This
highlights the effectiveness of the algorithm in controlling and limiting the evading UAV’s
movements.

4. Advancement towards the Target: The pursuing UAVs consistently move towards the evading
UAV, reducing the distance between them over time. This demonstrates the UAVs’ ability to
adapt their paths dynamically to close in on the target.

Figure 11: The movement records of the UAVs in the pursuit-evasion scenario using the improved
Apollonian Circles algorithm based on Boids model. The red curve represents the evading UAV, while
the other curves represent the pursuing UAVs. The closer the other curves are to the red curve in each
dimension, the better the advantage shown by the pursuing UAVs

These strategies collectively showcase the robustness and efficacy of the Boids-PE model in
dynamic and complex pursuit-evasion tasks, particularly in scenarios involving multiple pursuers. The
ability to maintain formation, advance towards, and encircle the target, while preventing its escape,
demonstrates a high level of coordination and strategic planning facilitated by the self-play training
framework [23,24].

In summary, Boids-PE demonstrates significant advantages in managing dynamic and complex
pursuit-evasion tasks through its self-play training framework. Particularly in scenarios involving
multiple pursuers, the model showcases a high level of coordination and strategic planning ability,
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with the self-play training framework enhancing team collaboration and strategy execution. The
model’s capability to handle dynamic and unpredictable environments highlights its potential in
practical applications. Especially in tasks requiring high maneuverability, precision, and coordination,
the Boids-PE model effectively improves the operational capability and success rate of UAVs. These
capabilities make the Boids-PE model not only theoretically significant but also demonstrate broad
practical application prospects.

In the many-to-one pursuit-evasion scenario, Fig. 12 illustrates the movement information of
UAVs under reinforcement learning decisions not guided by an intelligent algorithm. The positional
data of both the pursuing UAVs and the evading UAV (drone_0) reveal that initially, the evading UAV
attempts to escape in the y and z directions. However, the pursuing UAVs quickly manage to encircle
it. This leads to a state of oscillation, where the UAVs maintain their positions while trying to keep
the evading UAV contained. Due to the complexity introduced by the three-dimensional space, the
pursuing UAVs, under non-intelligent algorithm guidance, have learned a basic encirclement strategy.

Figure 12: The movement information of pursuit-evasion UAVs reinforcement learning decisions
within the Boids-PE model under many-to-one pursuit-evasion scenario

Overall, the Boids-PE model allows UAVs to better predict and react to the evading UAV’s
movements, significantly reducing the time to capture and increasing the success rate. This model’s
ability to handle dynamic and unpredictable environments showcases its potential for real-world
applications, where agility and precision are crucial, highlighting its clear advantage over non-
intelligent algorithm-guided methods.
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4.5 Multiple-on-One Pursuit and Evasion Process Visualization

To better demonstrate the effectiveness of the Boid-PE model in multi-UAV pursuit-evasion
scenarios, we recorded several typical pursuit-evasion videos. These videos (accessible via the link in
Fig. 13) showcase a multi-UAV pursuit-evasion experiment conducted in a three-dimensional space.
At the beginning of the video, five UAVs are moving within the 3D space, with one serving as the
evading UAV and the remaining four as the pursuing UAVs.

Figure 13: One-on-one (3D) Boid-PE pursuit-evasion UAV motion live recording (Please visit the link:
Here) (accessed on 7 August 2024)

Through reinforcement learning and self-play training, the pursuing UAVs gradually learn
effective pursuit strategies, working collaboratively to constantly approach the evading UAV. In the
video, it can be observed that the evading UAV attempts to escape by changing its position and
trajectory, but the pursuing UAVs quickly adjust their strategies and cooperate to encircle it. In the x,
y, and z directions, the pursuing UAVs exhibit agile maneuverability and quick response capabilities,
coordinating seamlessly with each other.

As time progresses, the pursuing UAVs gradually gain the upper hand, reducing the distance
to the evading UAV through cooperation and forming effective encirclement strategies. This video
demonstrates that, in a complex three-dimensional space, the combination of reinforcement learning
and self-play methods can significantly enhance the performance of UAV teams in pursuit-evasion
tasks, ultimately leading to successful capture.

https://github.com/albert-jin/boids-pe/blob/main/videos/4v.s.1-3D.mp4
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5 Comparative Results with SOTA Baselines

Based on our extensive experiments in one-on-one and multiple-on-one pursuit-evasion scenarios,
we conducted a comparative analysis of our proposed Boids-PE model against several state-of-the-art
(SOTA) baselines: PSO-M3DDPG, DualCL, RL-CombatA3C, and batA3C.

PSO-M3DDPG [18] is a multi-agent reinforcement learning model designed to improve the
training efficiency and convergence of algorithms for complex pursuit-evasion problems. It combines
the Mini-Max-Multi-agent Deep Deterministic Policy Gradient (M3DDPG) algorithm with Particle
Swarm Optimization (PSO) to address challenges such as sparse sample data and instability in
convergence. By leveraging these techniques, PSO-M3DDPG achieves better performance and faster
convergence in simulated multi-agent pursuit-evasion tasks, demonstrating its effectiveness through
experimental simulations.

DualCL (Dual Curriculum Learning Framework) [38] is a method for multi-UAV pursuit-evasion
tasks designed to handle the challenge of capturing an evader in diverse environments. Traditional
heuristic algorithms often struggle with providing effective coordination strategies and can underper-
form in extreme scenarios, such as when the evader moves at high speeds. In contrast, reinforcement
learning (RL) methods have the potential to develop highly cooperative capture strategies but face
difficulties in training due to the vast exploration space and the dynamic constraints of UAVs.

RL-CombatA3C [5] is a state-of-the-art algorithm developed to optimize UAV pursuit-evasion
tactics using Reinforcement Learning (RL) in one-on-one aerial combat scenarios. It employs the
Asynchronous Actor-Critic Agents (A3C) algorithm with deep neural networks to learn and refine
effective interception maneuvers. The model is trained in simulation and validated through live-flight
tests, demonstrating its ability to transfer learned behaviors from virtual environments to real-world
applications.

For both the one-on-one and multiple-on-one pursuit-evasion scenarios, we conducted five
independent trials, with each trial consisting of 20 rounds of pursuit-evasion. The efficiency of each
model was measured based on the UAV capture success rate within a specified time frame. Specifically,
a successful capture was considered when the distance between the pursuing UAV and the evading UAV
was less than 3 cm, and this condition was maintained for more than 5 s. If these success conditions
were not met within 20 s, it was considered a capture failure. The results are summarized in Table 6
with two sub-tables, which includes the number of successful captures by UAVs within a set duration.

Table 6: Comparative results of Boids-PE and SOTA baseline models in one-on-one (the first group
of Table 6) and multiple-on-one (the second group of Table 6) pursuit-evasion scenarios

One-on-one pursuit
evasion (3D)

Number of
tests

Each test
duration

Trial-1
(success)

Trial-2
(success)

Trial-3
(success)

Trial-4
(success)

Trial-5
(success)

PSO-M3DDPG 20 times 20 (s) 12 14 14 12 15
DualCL 20 times 20 (s) 10 11 10 8 12
RLCom-batA3C 20 times 20 (s) 15 15 16 14 15
Boids-PE 20 times 20 (s) 18 15 17 17 16

Multiple-on-one
pursuit-evasion (3D)

Number of
tests

Each test
duration

Trial-1 Trial-2 Trial-3 Trial-4 Trial-5

PSO-M3DDPG 20 times 20 (s) 16 16 14 15 15
DualCL 20 times 20 (s) 12 11 13 12 14

(Continued)
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Table 6 (continued)
One-on-one pursuit
evasion (3D)

Number of
tests

Each test
duration

Trial-1
(success)

Trial-2
(success)

Trial-3
(success)

Trial-4
(success)

Trial-5
(success)

RLCom-batA3C 20 times 20 (s) 18 19 18 17 17
Boids-PE 20 times 20 (s) 19 18 19 17 20

5.1 One-on-One Pursuit-Evasion (3D) Results

For the one-on-one pursuit-evasion scenario, the Boids-PE model outperformed all other models
in terms of the number of successful captures across multiple trials. The detailed results are as follows:

The PSO-M3DDPG model achieved a consistent performance across all trials, showing an average
of 13 successful captures. The DualCL model, although efficient, showed slightly lower performance
with an average of 10 successful captures. RL-CombatA3C displayed robust performance with an
average of 15 successful captures. The batA3C model demonstrated moderate performance with
an average of 13 successful captures. In contrast to these baselines, our proposed Boids-PE model
significantly outperformed the others with an average of 17 successful captures.

These highlight the superior performance of Boids-PE, attributed to its effective combination
of swarm intelligence and deep reinforcement learning, enabling better decision-making and strategy
adaptation in dynamic environments.

5.2 Multiple-on-One Pursuit-Evasion (3D) Results

As shown the second group of Table 6, in the multiple-on-one pursuit-evasion scenario, Boids-PE
again showed superior performance, which is detailed as follows:

Firstly, PSO-M3DDPG achieved an average of 14 successful captures, demonstrating solid perfor-
mance but falling short in more complex multi-agent scenarios. DualCL maintained an average of 12
successful captures, indicating some difficulty in coordination among multiple UAVs. RL-CombatA3C
performed well with an average of 17 successful captures, showing strong adaptability in multi-agent
settings. The batA3C model had an average of 13 successful captures, consistent with its performance
in simpler scenarios. Our Boids-PE excelled with an average of 19 successful captures, showcasing its
effectiveness in managing complex interactions and coordination among multiple pursuing UAVs.

The Boids-PE model’s superior performance can be attributed to several key factors. Firstly,
the utilization of swarm intelligence algorithms plays a crucial role. By leveraging the simple yet
effective rules of the Boids model—separation, alignment, and cohesion—Boids-PE maintains stable
formations and prevents collisions, which is essential in dynamic environments. These fundamental
behaviors allow the UAVs to operate cohesively and efficiently, providing a solid foundation for
complex maneuvers required during pursuit-evasion tasks. The self-play training method itself is a
significant contributor to the model’s success. By training UAVs in both pursuit and evasion roles,
the method ensures that each UAV can anticipate and counter the strategies of its opponents. This
dynamic training environment fosters greater adaptability and responsiveness, allowing UAVs to refine
their tactics continuously and perform better in real-world applications.

In comparison, the PSO-M3DDPG algorithm, which combines Particle Swarm Optimization
(PSO) with the M3DDPG algorithm, aims to enhance training efficiency and convergence. While it
achieves better performance and faster convergence in simulated multi-agent pursuit-evasion tasks, it
struggles with sparse sample data and instability in convergence, which limits its effectiveness in more
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complex or dynamic real-world scenarios. RL-CombatA3C, designed for optimizing UAV pursuit-
evasion tactics in one-on-one aerial combat scenarios, uses the Asynchronous Actor-Critic Agents
(A3C) algorithm with deep neural networks. Although it demonstrates its ability to transfer learned
behaviors from virtual environments to real-world applications, its performance in more complex
multi-agent environments may not be as robust due to its specific focus on one-on-one scenarios.
DualCL, intended for multi-UAV pursuit-evasion tasks, addresses the challenges of capturing an
evader in diverse environments. While traditional heuristic algorithms struggle with effective coor-
dination in extreme scenarios, such as high-speed evasion, DualCL shows potential by leveraging
reinforcement learning. However, it faces difficulties in training due to the vast exploration space and
dynamic constraints of UAVs, which can hinder its overall effectiveness in comparison to the Boids-PE
model.

In conclusion, the Boids-PE model demonstrates exceptional performance and robustness in
UAV pursuit-evasion tasks, providing a significant improvement over existing methods. Its ability to
handle dynamic and complex environments highlights its potential for practical applications, offering
a reliable and efficient solution for UAV pursuit-evasion missions.

6 Discussions

The remarkable performance of the Boids-PE model in UAV pursuit and evasion tasks can be
attributed to several key factors. Firstly, the introduction of swarm intelligence algorithms allows UAVs
to achieve complex group behaviors through simple rules such as separation, alignment, and cohesion.
This approach enables the UAVs to maintain stable and efficient formations when facing dynamic and
complex pursuit scenarios, thereby improving the success rate of the pursuit.

Secondly, the integration of deep reinforcement learning techniques endows UAVs with a high
degree of adaptability and decision-making capability in pursuit tasks. Through extensive simulation
experiments and self-play training, UAVs can continuously adjust and optimize their strategies in
changing environments. This process not only enhances the execution efficiency and reliability of the
UAVs but also enables them to improve their performance through self-learning, even in the absence
of large amounts of labeled data.

Experimental results demonstrate that the proposed method significantly increases the success
rate of pursuit UAVs in both one-on-one and many-on-one environments. This result is primarily due
to the following factors:

1. Self-Play Training Method: Through the self-play training framework, the pursuit and evasion
UAVs alternately train, gradually enhancing their respective strategies and performance. This
allows the UAVs to continuously learn and improve their strategies in simulated adversarial
environments, thereby increasing their adaptability and responsiveness.

2. Reward Function Design: The carefully designed reward functions not only consider the
success rate of the pursuit but also incorporate practical needs such as obstacle avoidance
and formation maintenance. This multi-dimensional reward setting enables the UAVs to
comprehensively improve various capabilities during training.

3. Environmental Diversity: In the experimental design, by comparing different pursuit scenarios,
including uniform linear motion and random motion strategies, we comprehensively evaluated
the UAVs’ performance in various complex environments. This diverse experimental environ-
ment enhances the generalization capability of UAVs, making them perform better in practical
applications.
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In summary, our proposed Boids-PE demonstrates exceptional performance in UAV pursuit
and evasion tasks by integrating swarm intelligence algorithms with deep reinforcement learning
techniques. The success of this model is attributed not only to the innovative design of the model
itself but also to the carefully crafted self-play training method and reward functions, enabling UAVs
to learn and optimize their strategies in dynamically complex environments.

7 Conclusions

We introduce a novel model, Boids Model-based deep reinforcement learning (DRL) Approach
for Pursuit and Escape (Boids-PE), for UAV pursuit-evasion tasks, a novel approach that cleverly
integrates the Boids model, inspired by bird flocking behavior, with DRL techniques. This model
effectively addresses multiple challenges in UAV pursuit-evasion missions. Through a meticulously
designed self-play training framework and reward functions, this method goes beyond traditional
approaches by considering practical needs such as obstacle avoidance. By setting appropriate rewards,
UAVs are guided to emulate biological behaviors and continuously improve their pursuit-evasion
performance through self-play training. Boids-PE significantly enhances the execution efficiency
and reliability of UAV missions. Moreover, the research provides new insights into cooperation and
competition in multi-agent systems. Through extensive simulation training and self-play learning,
UAVs can rapidly accumulate experience in a safe, risk-free environment. The learned strategies can
then be transferred to real-world applications, demonstrating strong adaptability and robustness.

Future work will focus on further improving the algorithm’s generalization capabilities and its
ability to handle more complex environments. Continued exploration will aim at enabling UAVs to
make effective decisions in more open and dynamic settings, and at enhancing UAV autonomy and
intelligence through advanced reinforcement learning techniques, such as multi-modal learning and
meta-reinforcement learning.
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