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ABSTRACT

Asparagus stem blight, also known as “asparagus cancer”, is a serious plant disease with a regional distribution.
The widespread occurrence of the disease has had a negative impact on the yield and quality of asparagus and
has become one of the main problems threatening asparagus production. To improve the ability to accurately
identify and localize phenotypic lesions of stem blight in asparagus and to enhance the accuracy of the test, a
YOLOv8-CBAM detection algorithm for asparagus stem blight based on YOLOv8 was proposed. The algorithm
aims to achieve rapid detection of phenotypic images of asparagus stem blight and to provide effective assistance
in the control of asparagus stem blight. To enhance the model’s capacity to capture subtle lesion features, the
Convolutional Block Attention Module (CBAM) is added after C2f in the head. Simultaneously, the original CIoU
loss function in YOLOv8 was replaced with the Focal-EIoU loss function, ensuring that the updated loss function
emphasizes higher-quality bounding boxes. The YOLOv8-CBAM algorithm can effectively detect asparagus stem
blight phenotypic images with a mean average precision (mAP) of 95.51%, which is 0.22%, 14.99%, 1.77%, and
5.71% higher than the YOLOv5, YOLOv7, YOLOv8, and Mask R-CNN models, respectively. This greatly enhances
the efficiency of asparagus growers in identifying asparagus stem blight, aids in improving the prevention and
control of asparagus stem blight, and is crucial for the application of computer vision in agriculture.
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1 Introduction

Asparagus is ranked among the world’s top ten famous dishes, and enjoys the reputation of
“King of Vegetables” at home and abroad [1]. Asparagus is popular for its rich nutrients and many
health benefits such as moisturizing the lungs, relieving cough, aiding in expectoration, and inhibiting
tumor growth. Asparagus stem blight, also known as “asparagus cancer”, is a serious disease with
regional characteristics [2], which is very prone to occur in humid and hot climates. In contrast, the
main asparagus-growing regions in Europe and the United States generally enjoy a cool environment,
which largely avoids the appearance of stem blight. In comparison, asparagus cultivation in Asian
countries such as China, Thailand, Indonesia, and Japan is generally facing the challenge of stem
blight, especially in China. In China, the major asparagus-producing provinces are generally at risk
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of stem blight. In particular, in the south, the damage of stem blight is relatively more serious because
the climatic conditions are more humid and sultry than in the north. In fields that are less affected
by the disease, the growth of asparagus plants is impaired, resulting in reduced yield and quality; in
fields where the disease is severe, large numbers of number of infected plants will die prematurely,
causing the entire field to suffer a devastating blow. Currently, the detection of asparagus stem
blight still relies mainly on manual identification, a traditional method that is not only wasteful of
labour but also prone to misjudgment. Given this, it is urgent to find an accurate and rapid disease
identification method.

2 Literature Review

Before deep learning technology became popular, scholars at home and abroad mainly used
machine learning technology and traditional image processing technology to study crop disease
problems [3,4]. In the study by Song [5], they first converted the color of apple leaves from RGB to
LAB color space. Then, they take the K-Means Clustering Algorithm (K-Means) for preliminary
classification, and then used an optimized maximum inter-class variance method to further separate
the diseased areas on the leaves. Finally, by using the Support Vector Machine [6] (SVM) technology,
they achieved effective identification of leaf diseases. Liu et al. [7] successfully segmented the diseased
area on the leaves by applying the K-Means, extracted color, texture, and shape features from these
segmented parts, and optimized these features. They then used a SVM for classification and obtained
94.4% accuracy in the experiment. In their study, Chakraborty et al. [8] employed Otsu’s thresholding
and histogram equalization methods for preprocessing the image data, and integrated them with SVM
classification to accurately segment the diseased size of apple leaves. This approach enhanced the
detection rate of apple leaf diseases to 96%.

As deep learning techniques continue to evolve in the realm of image recognition, convolu-
tional neural network (CNN) in deep learning have been extensively utilized due to their excellent
performance in this area. Many domestic and foreign scholars have applied convolutional neural
networks to plant disease recognition and achieved remarkable recognition effects [9]. Based on
the number of detection steps, target detection models can be classified into two categories. The
initial approach is the two-stage detection method represented by Fast R-CNN [10] and Faster R-
CNN [11]. In this approach, a Region Proposal Network (RPN) is employed to suggest potential
target areas. Subsequently, in the second stage, classification and bounding box regression analysis
are conducted on these proposed regions to derive the final detection outcomes. Mao et al. [12]
improved the Faster-RCNN model to identify wheat stripe rust and yellow dwarf disease. The deep
residual network was optimized by decomposing the convolution kernel and adopting a downsampling
delay strategy, thereby simplifying the model parameters and improving the recognition accuracy.
Following this enhancement, the model achieved an average accuracy of 98.74%. Nonetheless, due
to its overly complex network structure and poor real-time performance, it limits its use in real-
time detection applications. Ozguven et al. [13] introduced an enhanced Faster R-CNN method to
identify beet leaves with leaf spot disease and achieved a high accuracy of 95.5%. Rehman et al. [14]
utilized enhanced images of apple leaf diseases to train the R-CNN model. After training, the model
attained an average recognition rate of 86.1% for three apple leaf diseases (black scab, black rot,
and rust). Another mainstream target detection method is a single-stage target detection algorithm,
exemplified by the YOLO [15] series algorithm and the SSD [16] algorithm. This type of method
simplifies the target detection process, directly generates multiple candidate boxes on the original
image, and simultaneously regresses and predicts the categories and positions of the objects in these
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boxes. Due to the reduction in processing steps, this type of method is usually faster than the two-
stage detection algorithm, but may be slightly less accurate. Chen et al. [17] used an improved
YOLOv5 object detection network to identify rubber tree diseases. The model achieved an accuracy of
86.5% in identifying powdery mildew and 86.8% in identifying anthracnose. Liu et al. [18] improved
the YOLOv3 network by introducing multi-scale feature detection of image pyramids, dimensional
clustering of object bounding boxes, and a multi-scale training strategy. These improvements enabled
the model to achieve an accuracy of 92.39% in detecting tomatoes. Sun et al. [19] developed a tea
disease detection model utilizing an enhanced version of YOLOv4, which can quickly and accurately
identify three common tea diseases in natural environments. Pang et al. [20] introduced a rice disease
detection approach based on the improved YOLOv8. By combining the BiFPN pyramid structure,
GAM (global attention mechanism) and WIOU loss function, the recognition accuracy of BGW-
YOLOv8n was improved to 91.6%. Wen et al. [21] enhanced the YOLOv8 algorithm by introducing
multiple attention mechanisms and WIOU-V3 loss function, achieving a peak accuracy of 90.5% in
crop disease monitoring, and increasing the average precision from 50% to 95% and from 68.7% to
73.6%, significantly outperforming the original algorithm and other cutting-edge detection models.
Yang et al. [22] proposed a new method for automatic tomato detection by introducing modules
such as depth separable convolution and feature enhancement in the YOLOv8 model, the model size
was reduced to 16 M and higher recognition speed was achieved, the improved algorithm meets the
rapid detection of tomato in real environment. Solimani et al. [23] proposed a novel data balancing
method, which significantly improved the performance of detecting individual parts of tomato
plants in complex environments by combining the YOLOv8 model and the squeeze-excitation block
attention module.

Although the above studies have achieved good results, there is no research on the recognition
of asparagus stem blight phenotypic images. YOLOv8 is currently a more advanced target detection
algorithm, so it is chosen as the research object. Addressing the issue of low detection accuracy in
the original model, improvements are made on it, and a YOLOv8-CBAM deep learning algorithm is
proposed. The improved model’s performance and effectiveness were evaluated by comparing it with
YOLOv5, YOLOv7, YOLOv8, and Mask R-CNN models.

3 Materials and Methods
3.1 Asparagus Stem Blight Image Collection

The dataset utilized in this study was acquired from the asparagus plantation in Xiazhang Town,
Daiyue District, Tai’an City, Shandong Province, China. The acquisition equipment is Cannon R100
camera and Redmi K60 mobile phone, and the shooting time is September. The shooting time was
September. The images with occlusion and blur were removed, leaving a total of 200 images.

3.2 Data Augmentation and Annotation

Since the original data set is too small, in order to prevent overfitting and improve generalization
ability, the original data set is enhanced. The data set is expanded by four methods: image translation,
rotation, contrast enhancement, and brightness enhancement. As shown in Fig. 1, the dataset is
expanded to 600 images. The dimensions of the images in the dataset are standardized to 640 ∗ 640
pixels to meet the needs of model training. Finally, the open source annotation tool labelme is used
for annotation.
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Figure 1: Enhanced processing of asparagus stem blight image

3.3 YOLOv8 Network Architecture

The YOLOv8 model builds on the achievements of earlier YOLO series models, further improving
performance by introducing innovative features. These innovations mainly include significant changes
to the backbone network, detection head structure, and loss function. The architecture of the YOLOv8
model is mainly composed of four components: the initial component serves as the input terminal,
which is responsible for receiving the raw image data; secondly, the backbone network, which plays
the role of extracting image features; Then there is the neck network, which further processes the
feature map; Finally, there is the head network, where the features are processed in the last stage to
produce the final output. The input of the YOLOv8 model uses a variety of techniques to enhance
detection performance, including mosaic data augmentation, which increases the diversity of scenes
by splicing images of different sizes; using adaptive anchor box calculations as a method to optimize
the size and scale of anchor points; and adaptive grayscale padding to increase the robustness of the
model to grayscale changes. The role of the backbone network is to extract comprehensive high-level
semantic features from the original image, which contain the shape, texture and context information of
the object. The neck network is responsible for merging feature maps at different sizes so that the model
can accurately recognize objects of various scales. Finally, the head network receives the fused feature
map, where accurate object detection is performed. The latest single-target detection algorithm adopts
the Anchor-Free method and no longer relies on Anchor Boxes. This change solves the problems of
inaccurate positioning and imbalanced distribution of positive and negative samples in the anchor
box method. The YOLOv8 series provides five different scale model versions according to different
practical application requirements: n, s, l, m, x. The network depth and detection accuracy of these
models increase with the increase of version numbers. Among these five models, YOLOv8n is designed
with the fewest parameters, providing the fastest detection speed. In view of this, in order to balance
the algorithm’s ability to process data quickly while controlling the number of parameters in the model,
this study selected the lightweight YOLOv8n version. The YOLOv8 network architecture is depicted
in Fig. 2.

3.4 Improved YOLOv8 Algorithm

This research aims to enhance the initial YOLOv8 algorithm in two specific aspects. Firstly, the
CBAM attention mechanism is added to each of the first two C2f modules of the head network to
enhance the extraction of important feature information for lesions. After that, the Focal-EIoU loss
function is used instead of the YOLOv8 default loss function. This loss function incorporates the
advantageous features of the CIoU loss function while prioritizing higher quality bounding boxes,
which enhances the model’s detection accuracy and accelerates its convergence. The research named
the improved model YOLOv8-CBAM and Fig. 3 illustrate the structure of the model.
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Figure 2: YOLOv8 network architecture

3.4.1 CBAM Attention Mechanism

The attention mechanism is an efficient information processing strategy that draws on the
characteristics of how humans focus their attention when processing information. Through this
mechanism, deep learning networks can prioritize the key parts of the input data, which significantly
enhances the efficiency of neural networks. Currently, it is widely used in computer vision. In the
detection of asparagus stem blight, the important feature of the stem blight phenotype image is the
presence of dense black spots, but the stems around the black spots also show yellow features. In
order to prevent other diseases from having yellow features and being misdetected as stem blight, the
attention mechanism is added to enhance the ability of the network to refine stem features and reduce
interference from irrelevant features, thereby improving the ability to recognize stem blight phenotype
image features. CBAM is a typical representative of the attention mechanism, which aims to enhance
the recognition of features by CNN. Fig. 4 shows its network structure. In the CBAM module, the input
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feature map F is first processed to generate a channel attention feature map Mc(F). Specifically, after
the feature maps undergo global average pooling (AvgPool) and global maximum pooling (MaxPool)
operations, their respective outputs are fed into a Multi-Layer Perceptron (MLP). Next, the output of
the MLP is summed element-wise, and the sigmoid activation function is applied to obtain the final
channel attention feature map Mc(F), which is calculated as follows:

Mc (F) = σ (MLP(AvgPool (F)) + MLP (MaxPool (F)) = σ
(
W1

(
W0

(
Fc

avg

)) + W1

(
W0

(
Fc

max

)))
(1)

where σ (•) represents the sigmoid activation function, W 0 and W 1 are the weights of the MLP.

Figure 3: YOLOv8-CBAM network architecture
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Figure 4: CBAM attention mechanism framework diagram

After obtaining Mc(F), it is multiplied with the original input feature map one by one to obtain
a new feature map F′. In order to further pinpoint the spatial details of the attention region in the
image, the channel attention feature map Mc(F) undergoes a series of operations, such as channel
concatenation, to generate the spatial attention feature map MS(F). Then, MS(F) is multiplied with F′

in elemental order to finally generate the attention weighted feature map F′′. The calculation formulas
for F′, MS(F) and F′′ are shown in Eqs. (2) to (4), respectively:

F ′ = Mc (F) × F (2)

Ms (F) = σ
(
f 7×7 ([AvgPool(F); MaxPool (F)])

) = σ
(
f 7×7

([
Fs

avg; Fs
max

]))
(3)

F ′′ = Ms (F ′) × F ′ (4)

3.4.2 Focal-EIoU Loss Function

The original YOLOv8 uses the CIoU to optimize bounding box predictions. This loss function
calculates the loss value by incorporating the intersection area, the distance between centroid points,
and the aspect ratio of the predicted and actual bounding boxes. However, when two bounding boxes
do not intersect, CIoU cannot effectively measure the distance between them; in addition, the CIoU
is also limited in the precision of expressing the overlap between the two boxes. The CIoU formula is
as follows:

LCIoU = 1 − IoU + ρ2 (b, bgt)

c2
+ αν (5)

Here, ρ2 (b, bgt) denotes the Euclidean distance between the coordinates of the centre of the
predicted frame and the centre of the real frame. c denotes the diagonal length of the smallest closed
region that can contain both the prediction frame and the real frame.

CIoU employs the variable v to represent the aspect ratio difference instead of separately capturing
the specific variations between width and height and their ground truth values. Therefore, this may
sometimes limit the effectiveness of the model in optimizing similarity. CIoU is replaced by Focal-
EIoU. Focal-EIoU is proposed based on EIoU combined with Focal Loss. Focal Loss is proposed
to mitigate the problem of unequal sample data in bounding box regression, thereby ensuring the
regression process prioritizes higher quality anchor frames, The following shows the formula for Focal-
EIoU:

LFocal−EIoU = IoU γ LEIoU (6)

Here, IoU = |A ∩ B|/|A ∪ B|, γ is a parameter that controls the degree of outlier suppression, and
its value is typically set to 0.5. The Focal in this loss function is different from the traditional Focal
Loss. The traditional Focal Loss mainly assigns larger loss values difficult to classify samples, which
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can promote the model to learn difficult samples better. The loss function here is adjusted to: when the
IoU value is higher, the loss is also correspondingly larger, which is equivalent to applying a greater
weight to a more precise regression target, which helps to improve the precision of the regression task.

4 Training Parameters and Evaluation Indicators
4.1 Training Parameters

The environment used in this study is CUDA11.6.2 built on a 64-bit Windows operating system,
the programming platform is Pycharm, the deep learning framework is pytorch1.13.1 and python3.8,
and the GPU is Tesla T4. The training rounds are 200, the batch-size is 16, the image size is the default
640 ∗ 640, the initial learning rate of the model is set to 0.01 and the IoU threshold is set to 0.6,
which indicates that the intersection and concurrency ratio between the true and predicted frames is
considered correct when it is greater than 0.6. The labeled dataset is transformed into a txt file and
split into training, validation, and test sets at an 8:1:1 ratio.

4.2 Evaluation Metrics

This research employs Precision (P), Recall (R), mean average precision (mAP), and F1 score
as evaluation metrics for assessing the model performance. In the mean average precision indicator,
m represents the mean. mAP@0.5 denotes the average of the AP@0.5 values for all categories, which
indicates the general trend of model accuracy with recall. The higher the value of mAP@0.5, the better
the ability of the model to maintain high precision despite high recall. mAP@0.5–0.95 denotes the
average value of mAP calculated at different IoU thresholds (from 0.5 to 0.95 in steps of 0.05). The
formulas for these evaluation metrics are shown below:

P = TP
TP + FP

(7)

R = TP
TP + FN

(8)

mAP = 1
k

k∑

i=1

APi (9)

F1 = 2 × P × R
P + R

(10)

In the above equation, TP are those samples which are actually positive classes and which the
model also correctly identifies as such, FP are those samples that are actually in the negative category
but are incorrectly identified as positive by the model, FN are samples that are actually positive classes
but are incorrectly identified as negative classes by the model, APi denotes the average accuracy of
detecting type i targets, AP is the area under the PR curve, and mAP indicates the average value of
each AP.

5 Results and Analysis

To assess the impact of the proposed enhancements on model performance, two experimental
setups were devised for comparative analysis. The first set of experiments aims to explore the
specific contribution of each component to the performance through ablation tests. The second set of
experiments uses other versions of the YOLO family of models and currently popular target detection
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models to compare with the improved model in this paper to validate the effectiveness of the model in
this paper.

5.1 Ablation Experiment

This paper designs an ablation test based on the original YOLOv8 to verify the impact of adding
CBAM module and Focal-EIoU loss function, taking precision, recall, average precision and F1 as
indicators. The original YOLOv8n model is recorded as Experiment 1, the model with CBAM added
but the loss function not changed is recorded as Experiment 2, the model without CBAM added but
the loss function replaced by Focal-EIoU is recorded as Experiment 3, and Experiment 4 is the method
proposed in this study. Table 1 shows the results of the ablation experiments.

Table 1: Results of ablation experiments

Experiment CBAM Focal-EIoU P R mAP0.5 mAP0.5–0.95 F1

1 – – 80.3% 85.4% 93.7% 72.68% 82.78%
2 √ – 87.5% 90.3% 96.2% 73.65% 88.89%
3 √ 83.3% 88.7% 94.5% 72.80% 85.93%
4 √ √ 91.8% 90.3% 95.5% 75.18% 90.06%

After integrating the CBAM attention mechanism in Experiment 2, the model exhibited notable
improvements: precision of the model rose by 7.19%, the recall rose by 4.92%, and the mAP rose by
2.46%, the mAP0.5–0.95 rose by 0.97%, and the F1 score rose by 6.11%, this suggests that with the
addition of the CBAM module, the model focuses more on the main characteristics of asparagus stem
blight. In Experiment 3, after replacing the original CIoU with the Focal-EIoU, the model’s accuracy
rose by 3.02%, the recall rose by 3.3%, and the mAP rose by 0.76%, the mAP0.5–0.95 rose by 0.12%,
and F1 score rose by 3.15%, which suggests that the model focuses more on higher quality anchor
frames after using Focal-EIoU. Experiment 4 adds the CBAM module and adopts the Focal-EIoU to
the model YOLOv8-CBAM. The evaluation results of the improved model are improved compared
with Experiments 1 and 3. Compared with Experiment 2, the precision is rose by 4.3%, the recall is
the same, and the mAP is reduced by 0.69%, the mAP0.5–0.95 rose by 1.53%, and the F1 score rose
by 1.17%.

By comparing the results of YOLOv8n with those of the method in this study, it is demonstrated
that the method presented in this study can effectively improve the detection results. The mAP0.5
curves of the models pre- and post-improvement, along with the detection effect diagram of the
validation set model, are depicted in Figs. 5 and 6. The study demonstrates that the YOLOv8-CBAM
model presented in this study has a good recognition ability for asparagus stem blight.

5.2 Comparison with Current Advanced Algorithms

To showcase the performance of the model in the target detection task, we chose a variety of
models for performance comparison, including Mask R-CNN, YOLOv5, YOLOv7, YOLOv8. Table 2
lists the precision, recall and average precision of different models.



4026 CMC, 2024, vol.80, no.3

Figure 5: mAP0.5 curve of the model before and after improvement

Figure 6: Model detection effect diagram (a) Manual labeling; (b) YOLOv8n; (c) This method

Table 2: Experimental comparisons

Models P R mAP0.5 mAP50–95 F1

YOLOv5 89.6% 83.9% 95.3% 66.78% 86.67%
YOLOv7 78% 74.2% 80.5% 62.67% 76.03%
YOLOv8n 80.3% 85.4% 93.7% 72.68% 82.78%
Mask R-CNN 90.9% 84.7% 89.8% 75.90% 87.72%
YOLOv8-CBAM 91.8% 90.3% 95.5% 75.18% 90.06%

From Table 2, we can see the P, R, mAP, and F1 score of YOLOv8-CBAM are higher than those
of other target detection algorithms. The P value is 2.14%, 13.83%, 11.49% and 0.89% higher than
YOLOv5, YOLOv7, YOLOv8 and Mask R-CNN, respectively, and the R value is 6.45%, 16.13%,
4.92% and 5.57% higher than YOLOv5, YOLOv7, YOLOv8 and Mask R-CNN, respectively. The
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mAP is 0.22%, 14.99%, 1.77% and 5.71% higher than YOLOv5, YOLOv7, YOLOv8 and Mask R-
CNN, respectively. The mAP0.5–0.95 is 8.4%, 12.51% and 2.5% higher than YOLOv5, YOLOv7 and
YOLOv8, respectively, and 0.72% lower than Mask R-CNN. The F1 score is 3.39%, 14.03%, 7.28%,
and 2.24% higher than that of YOLOv5, YOLOv7, YOLOv8, and Mask R-CNN, respectively.

6 Conclusion

This study proposes a YOLOv8-CBAM target detection model. Add the CBAM module after
the C2f module in the head, which enhanced the model’s ability to capture small features of lesions.
The introduction of Focal-EIoU instead of the initial CIoU helps the model to converge quickly
and improves the detection accuracy Experimental results indicate that the YOLOv8-CBAM model
can precisely recognize and detect asparagus stem blight. The improved object detection model has
a precision of 91.8%, a recall of 90.3%, an mAP0.5 of 95.5%, an mAP0.5–0.95 of 75.18%, and an
F1 score of 90.06%, which are 11.49%, 4.92%, 1.77%, 2.5%, and 7.28% higher than the unimproved
model, respectively. The method proposed in this study can quickly and accurately identify asparagus
stem blight lesions. By analyzing the shape, size, color and distribution of the lesions, this method can
preliminarily diagnose whether asparagus stem blight has occurred and recommend prevention and
control strategies in a timely manner. This has extremely important practical value for managing and
controlling diseases in asparagus plantations.

At present, the algorithm has not been deployed in embedded devices to achieve real-time
detection of asparagus stem blight. The next step will be to promote research in this area and conduct
effective detection in the early stages of asparagus disease so that prevention and control measures can
be taken to avoid losses caused by large-scale outbreaks.
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