
Copyright © 2024 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

echT PressScience

DOI: 10.32604/cmc.2024.054794

ARTICLE

Heterogeneous Task Allocation Model and Algorithm for Intelligent
Connected Vehicles

Neng Wan1,2, Guangping Zeng1,* and Xianwei Zhou1

1School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing, 100083, China
2School of Mechanical and Transportation, Southwest Forestry University, Kunming, 650224, China

*Corresponding Author: Guangping Zeng. Email: zenggpustb@163.com

Received: 07 June 2024 Accepted: 07 August 2024 Published: 12 September 2024

ABSTRACT

With the development of vehicles towards intelligence and connectivity, vehicular data is diversifying and growing
dramatically. A task allocation model and algorithm for heterogeneous Intelligent Connected Vehicle (ICV)
applications are proposed for the dispersed computing network composed of heterogeneous task vehicles and
Network Computing Points (NCPs). Considering the amount of task data and the idle resources of NCPs, a
computing resource scheduling model for NCPs is established. Taking the heterogeneous task execution delay
threshold as a constraint, the optimization problem is described as the problem of maximizing the utilization of
computing resources by NCPs. The proposed problem is proven to be NP-hard by using the method of reduction
to a 0–1 knapsack problem. A many-to-many matching algorithm based on resource preferences is proposed. The
algorithm first establishes the mutual preference lists based on the adaptability of the task requirements and the
resources provided by NCPs. This enables the filtering out of un-schedulable NCPs in the initial stage of matching,
reducing the solution space dimension. To solve the matching problem between ICVs and NCPs, a new many-
to-many matching algorithm is proposed to obtain a unique and stable optimal matching result. The simulation
results demonstrate that the proposed scheme can improve the resource utilization of NCPs by an average of 9.6%
compared to the reference scheme, and the total performance can be improved by up to 15.9%.

KEYWORDS
Task allocation; intelligent connected vehicles; dispersed computing; matching algorithm

1 Introduction
1.1 Background

Intelligent Connected Vehicle (ICV) is the new generation vehicle that takes vehicles as the main
body and main nodes, combined with intelligent control and Internet of Vehicle communication
technology, to enable information sharing and cooperative control between vehicles and external
nodes, and achieve safe, orderly, efficient, and energy-saving driving of vehicles. The ultimate goal of
ICV is fully autonomous driving. ICVs provide some application services such as driving safety, traffic
information services, etc. These services will generate “big” data and computing tasks through their
own sensors and interaction with other external network devices during driving. These computing

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2024.054794
https://www.techscience.com/doi/10.32604/cmc.2024.054794
mailto:zenggpustb@163.com


4282 CMC, 2024, vol.80, no.3

tasks have unique computing and data processing requirements, while also being limited by the
computing capability of the vehicle itself. These tasks often require the assistance of network devices
with greater computing power to handle real-time information processing, especially in emergency
situations such as collision avoidance at intersections or in remote areas [1]. While edge computing
and cloud computing offer potential solutions, highly variable traffic environments can cause network
connections to change rapidly, requiring computing paradigms capable of handling dynamic tasks [2].

Compared with cloud and edge computing, dispersed computing paradigms exhibit higher task
allocation efficiency due to their ability to select optimal computing device locations based on task
requirements. Dispersed computing is the introduction of the concept of networked computation
points (NCPs) [3]. NCPs is a class of wireless heterogeneous devices with computing capability. The
cloud centers, base stations, mobile terminals with computing capability, etc., all of these devices are
at the same level. They play the role of NCPs in the dispersed computing network. This distributed
network system based on dispersed computing resources not only satisfies the computing tasks
offloading, but also shares resource information of various computing nodes in the network when
facing computing task requests. From the perspective of task users, NCPs need to meet the computing
resource requirements of computing tasks, ensure task completion, and enable task users to obtain as
many advantageous computing resources as possible. From the perspective of NCPs themselves or the
entire system, limited by the idle computing resources that NCPs can provide, NCPs not only need to
distribute task requests to other NCPs when they exceed their computing capability, but also need to
attract tasks from other overloaded nodes when they still have idle resources, in order to improve the
effective utilization of computing resources [4,5].

Dispersed computing uses the idle computing resources provided by NCPs to facilitate computing
resource cooperation in ad-hoc networks. This approach aligns with the concept of vehicle ad-hoc
networks [6]. Meanwhile, vehicular tasks that rely on dispersed computing require access to the com-
puting capabilities of NCPs. Assigning tasks in a dynamic and heterogeneous network environment
presents several challenges that must be considered. Considering the significant differences in data
size and computational complexity among different vehicle tasks in practice. Efficient scheduling and
allocation of heterogeneous tasks are crucial for dispersed computing. Likewise, NCPs vary greatly in
both computing resources and communication capabilities. Coordination of task offloading strategies
and NCP resource allocations is essential. Thus, it is imperative to design an efficient and joint task
allocation mechanism.

1.2 Motivation and Contributions

This paper will examine the way in which the matching problem between task ICVs and NCPs in
a dispersed computing environment. In response to the latency and data rate requirements of specific
ICV services, when vehicle tasks exceed their own computing capabilities or have other requirements, it
is necessary to utilize other NCPs with idle resources in the dispersed computing system to accomplish
task computing that the vehicle itself is unable to achieve. On this basis, computing task offloading and
resource allocation algorithms should be designed. To solve the problem of maximizing the utilization
of dispersed computing resources suitable for ICV services, it is necessary to establish a selection
strategy between task ICVs and NCPs based on the preference lists. Furthermore, a many-to-many
matching algorithm should be designed to achieve efficient matching between tasks and resources.

To address the aforementioned challenges, our paper makes several contributions to this field.
The following specific revisions could be made for each numbered contribution:



CMC, 2024, vol.80, no.3 4283

1) We establish a dispersed network consisting of multiple ICVs and NCPs. By leveraging idle
computing resources shared by NCPs based on task requirements, we establish the problem formula-
tions for maximizing the comprehensive resource utilization rate and task completion efficiency, and
we prove the problem is a Non-deterministic Polynomial-hard Problem (NP-hard).

2) We propose a preference mechanism to construct a preference list for both task ICVs and NCPs
based on their different requirements and optimize the scheduling of both ICVs and NCPs.

3) We design a many-to-many matching algorithm that transforms ICVs-NCPs matching into
task-resource matching. We also prove the stability of the solution and the upper bound of the
algorithm’s computational time complexity.

In the paper, the research contents are as follows. In Section 2, we review the related work of
resource allocations. In Section 3, we present the system model and problem formulation. In Section 4,
we present the preference mechanism and many-to-many matching algorithm for ICVs and NCPs. In
Section 5, we validate our model and algorithm by numerical simulations. Finally, in Section 6, we
propose the conclusions and prospects.

2 Related Work
2.1 Task Allocation

Since 2018, the Autonomous Networks Research Group at the University of Southern California
has been conducting research on dispersed computing. Yang et al. [7] proposed a maximum weight
strategy for the directed acyclic graph (DAG) scheduling problem in dispersed networks, and proved
the effectiveness of the proposed strategy. Nguyen et al. [8] proposed corresponding optimal scheduling
strategies for end-to-end transmission delays in dispersed computing systems using secure copy. The
delay is fitted as the optimal quadratic regression function for file size. Hu et al. [9] duplicated and split
computationally intensive tasks (videos) to improve the throughput of dispersed computing systems
under different task loads comprehensively. Ghosh et al. [10,11] proposed a dispersed computing
network architecture based on container orchestration. This system enables efficient task offloading
among NCPs. Kao et al. [12] proposed an online learning algorithm to achieve a better task offloading
policy than best offline by continuously learning the performance of unknown computing nodes.
Coleman et al. [13] synthesized a set of NCPs into a dispersed computing network framework for
distributed execution of complex tasks on a group basis. The scalability of the proposed framework
is also discussed so that it has general attributes. The Autonomous Networks Research Group is the
main participant in the dispersed computing project. The researches mentioned above are based on
DAG and provides a reference for follow-up researchers from the perspective of dispersed computing
architecture.

Researchers from other institutions have investigated the theory and applications of dispersed
computing. Rahimzadeh et al. [14] proposed a dispersed computing task scheduling system for image
stream processing. Compared with traditional algorithms, its processing efficiency on real images has
been greatly improved. Aiming at minimizing the total energy consumption of dispersed computing
systems, Wu et al. [15] proposed a bilateral matching algorithm to rationally allocate computing
resources and achieve the optimal selection of task offloading nodes. Zhou et al. [16] considered the
feasibility of task allocation and resource scheduling in dispersed computing systems. The proposed
system is proved through mathematical theory that is stable and feasible. A resilient resource allocation
method when the dispersed network has failed nodes is further proposed in [17]. Even if the network
degrades, task completion is still guaranteed.



4284 CMC, 2024, vol.80, no.3

2.2 Computing Resource Allocation

From the existing research results, energy consumption, latency, and resource utilization are still
the key and difficult fields of computing resource allocation research. According to the research
objectives of this paper, the focus is on reviewing existing research results from two aspects: delay-
driven resource allocation and resource utilization-driven resource allocation.

Zhou et al. [18] aimed at the problem of computing resource allocation between vehicles and user
devices, they proposed a stable matching algorithm based on the two-sided matching game with the
goal of minimizing network delay (including transmission and task processing delay) and adopted a
pricing mechanism to achieve stable matching between users and vehicles. Wang et al. [19] proposed
a delay minimization algorithm for task allocation, computing resources, and transmission resources
allocation between edge devices, multi-layer heterogeneous mobile edge servers, and cloud servers. The
proposed algorithm can minimize the total computation and transmission time of edge computing
networks. Fan et al. [20] aimed to reduce the response delay of all tasks. They designed an online
reinforcement learning algorithm to solve the resource coupling problem of dynamic tasks in the fog
computing environment. Guo et al. [21] established an edge node-oriented throughput model. With
the objective of minimizing the packet average delay, a delay-sensitive resource allocation algorithm
based on dominant role evaluation is proposed. Wan et al. [22] addressed research on vehicle task
offloading and computing resource allocation in mobile edge environments. In order to minimize the
total latency of task transmission and computation, they investigated the model and algorithm based
on a multi-layer matching strategy. Wu et al. [23] proposed an extended deep-Q-learning algorithm to
enable intelligent vehicular nodes to learn the dynamic environment and predict the optimal minimum
contention window.

Resource utilization is one of the important metrics for computing resource providers to assess
system costs. Since the dispersed resources of NCPs are all very limited, it is especially important
to allocate and optimize dispersed resources and utilize them rationally. Wang et al. [24] proposed a
detailed multi-layer computing model and optimization method. The purpose is to use a multi-layer
computing system to effectively combine fog computing and edge computing to achieve effective task
offloading and resource allocation. In order to provide low latency services to heterogeneous users in
the industrial internet of things. Kumar et al. [25] established a game theory-based resource utilization
maximization allocation model. The allocation of computing resources to multiple users is achieved
by minimizing the service cost through virtual pricing of invoking edge servers. Yi et al. [26] proposed a
branch-and-price greedy algorithm to realize the multi-dimensional computation resource allocation.
They jointly optimized latency and resource utilization in the paper. Dispersed computing serves as
a complement to other computing paradigms. Relevant studies of other computing paradigms can
provide inspiration when designing task offloading and resource allocation algorithms for dispersed
computing [27,28].

In summary, most of the existing research on dispersed computing has ignored the heterogeneity of
NCP and tasks. In addition, the dispersed computing scenario has its special characteristics compared
to other application scenarios. Tasks such as traffic safety and autonomous driving directly involve
human life safety, and the latency and reliability requirements for task processing are almost perfect,
and they must be based on the completion of the task. Finally, none of the above references considers
the waste of computing resources. This is particularly important for resource constrained scenarios.
The allocation of computing resources in ICVs scenarios has its particularity, and existing research has
provided various computing resource allocation schemes, with optimization goals focused on energy
consumption and latency. In addition, how to better utilize NCPs computing resources in a dispersed



CMC, 2024, vol.80, no.3 4285

computing network environment is also a worthwhile research question. The summary of the literature
work is shown in Table 1.

Table 1: The summary of the literature

Purpose Reference Objective Approach

Task allocation

[7] Throughput DAG
[8] Delay Real-world experiments
[9] Throughput DAG
[10,11] Delay Real-world experiments
[12] Energy, delay Learning
[13] Risk, makespan, cost DAG
[14] Processing rate DAG + Stream
[15] Energy Bilateral matching game
[16] Task and resource Stackelberg game
[17] Task and resource Heuristic algorithm

Resource allocation

[18] Delay Bilateral matching game
[19] Delay Latency minimization algorithm
[20] Delay Reinforce learning
[21] Delay, throughput Deep reinforcement learning
[22] Delay Heuristic algorithm
[23] Contention window Extended deep Q-learning
[24] Delay Multi-tier framework
[25] Resource utilization Game
[26] Delay, resource utilization Branch-and-price greedy algorithm

3 System Model and Problem Formulation
3.1 System Model

Referring to the dispersed computing network framework proposed in [3], we model a dispersed
computing network for heterogeneous ICVs applications, and the model is established on the dispersed
computing layer between the application layer and the physical layer, see Fig. 1 below. We assume that
there are n ICVs and m NCPs in the dispersed computing network, V and P are used to represent the
collection of task ICVs and NCPs, respectively:

V = {v1, . . . , vi, . . . , vn}
P = {

p1, . . . , pj, . . . , pm

} (1)

where n < m. Let N = {1, 2, . . . , n}, M = {1, 2, . . . , m}. The arrival of ICVs and NCPs obeying the
Poisson process. For a certain ICV, other ICVs with no tasks and available resources can also be NCPs.

cvi ,ri represents that vehicle vi can divide the task size into ri units based on the different tasks,
with each unit having a data volume of cvi ,ri . Each NCP pj is considered as a resource pool, and bpj ,rj

represents that the computing resources in the resource pool of NCP pj can be divided into rj resource
units, with each unit having a computing resource of bpj ,rj . Corresponding to different task requests



4286 CMC, 2024, vol.80, no.3

of vehicle vi based on different resources. Each resource unit can only execute task requests from one
vehicle task unit at the same time, and each vehicle can use multiple resource units from the same
NCP or between different NCPs. Therefore, the matching problem between vehicle tasks and NCPs
is transformed into a many-to-many matching problem between task unit cvi ,ri and resource unit bpj ,rj .
The task matrix of all vehicles and the resource matrix of NCPs are represented as:

C = [C1, . . . , Cn]
T (2)

B = [B1, . . . , Bm]T (3)

where Ci = {
cvi ,1, . . . , cvi ,ri

}
, Bj = {

bpj ,1, . . . , bpj ,rj

}
.

Figure 1: Dispersed computing network for heterogeneous ICV tasks

Considering the total task volume of task vehicles in a batch and the total resources that NCPs
can provide, we can obtain:

n∑
i=1

Ci ≤
m∑

j=1

Bj (4)

Specifically, for a certain task vehicle, the relationship between its task volume and required
resource volume can be expressed as:

Ci ≤
q∑

j=1

Bj, 1 ≤ q < m (5)

Therefore, the resource utilization rate corresponding to the execution of ICV tasks can be
expressed as:

Q1 =
n∑

i=1

m∑
j=1

xij

Ci(
Bj

)
i

(6)

where xij is a binary variable that represents the matching relationship between task ICVs and NCPs.
xij = 1 represents that ICV vi has a task executing computation at NCP pj. Otherwise, xij = 0. (Bj)i is



CMC, 2024, vol.80, no.3 4287

the total resource unit corresponding to pj paired with vi. Furthermore, considering the particularity
of ICV tasks, their execution time should not exceed the strong time delay constraint required by the
task. Therefore, the execution time efficiency of ICV tasks can be expressed as:

Q2 = 1
n

n∑
i=1

ti

t(ci)

(7)

where ti and t(ci) represent the task execution time and task delay constraints of vi, respectively.

3.2 Problem Formulation

Referring to the characteristics that ICV task allocation should have, the goal of this study is to
maximize the quality of task completion. Based on the above proposed dispersed computing network
for heterogeneous ICV applications, considering latency and resource utilization, the optimization
problem of maximizing resource utilization is modeled as:

max
R

Q = Q1 + Q−1
2 (8)

s.t.
n∑

i=1

xij ≤ Bj, ∀j ∈ P (8a)

m∑
j=1

xij ≤ Ci, ∀i ∈ V (8b)

n∑
i=1

Ci ≤
m∑

j=1

Bj, ∀i ∈ V , j ∈ P (8c)

Ci ≤
q∑

j=1

Bj, ∀i ∈ V , j ∈ P, q < M (8d)

(
cvi ,ri

)
j
≤ bpj ,rj , ∀i ∈ V , j ∈ P (8e)

ri ∈ Z+, rj ∈ Z+, ∀i ∈ V , j ∈ P (8f)

xij ∈ {0, 1}, ∀i ∈ V , j ∈ P (8g)

ti < t(ci), ∀i ∈ V (8h)

where R is the set of all task scheduling strategies. Eqs. (8a) and (8b) ensure that the number of
matching pairs does not exceed the number of vehicle task units and NCP resource units. Eq. (8c)
indicates that the total number of vehicle tasks is less than the total number of resource units that the
NCP can provide. Eq. (8d) represents the resource units of the vehicle task count not exceeding q (≥ 1)

NCPs, which depends on the results of preference matching. The calculation of preference values will
be introduced in the next section. Eq. (8e) ensures that the data size unloaded from task vehicle v to
NCP p does not exceed the currently available resource size of p. Eq. (8f) ensures that the number
of task units for vehicle segmentation and the number of resource units for point segmentation are
positive integers. Eq. (8h) is a time constraint to ensure that the task execution time is less than the
allowed threshold. Obviously, the problem described by Eq. (8) and their constraints is NP-hard.

Theorem 1: Problem (8) is NP-hard.



4288 CMC, 2024, vol.80, no.3

Proof: Optimization problem (8) is a mixed integer nonlinear problem. By using the constraint
method, the constrained optimization problem (8) can be transformed into a 0–1 knapsack problem
to prove that (8) is NP-hard.

Regarding question (8), consider a special case where ti = t(ci), ∀i ∈ V . In this case, it means that
the time spent executing each task is exactly equal to the delay threshold of the task. At this point,
problem (8) can be transformed into the following special form:

max
xi∈{0,1}

1
m′∑
j=1

Bj

n∑
i=1

xi · Ci (9)

s.t.
n∑

i=1

xi · Ci ≤
m′∑
j=1

Bj (9a)

Given N items with their values {v1, . . . , vn} and weights {w1, . . . , wn}, we want to determine which
items to package to maximize the total value and satisfy the total weight constraint, that is:

max
xi∈{0,1}

n∑
i=1

xi · Ci (10)

s.t.
n∑

i=1

wi · μi ≤ B (10a)

Problem (10) is a common expression of the 0–1 knapsack problem, and Problem (9) can be
reduced to (10) by the following encoding:⎧⎨
⎩

Ci = μi

m′∑
j=1

Bj = B
(11)

where m′, m′ ≤ m is the number of all matched NCPs.

By providing input (8)–(10) can be accurately solved, resulting in:

(10) ≤P (9) ≤P (8) (12)

Since the 0–1 knapsack problem is an NP-hard problem, problem (8) is at least as difficult as the
0–1 knapsack problem, that is, problem (9) is NP-hard. By considering both Steps 1 and 2, it can be
proven that problem P4–1 is NP-hard. Theorem 4–1 has been proven.

3.3 Rationality Assumptions

1) Only the matching between the current round of vehicles and NCPs is considered, and only the
latest preference values of the current round are saved in the preference list for each vehicle and NCP.

2) The information sent between the vehicle and the NCP is genuine and there are no malicious
messages or attack threats.

3) Communication loss is not considered, and idle resources can be fully utilized.

4) The NCP must enable secure, mission-responsive resource sharing [3].



CMC, 2024, vol.80, no.3 4289

4 Algorithm Design and Characteristic Analysis

According to the original optimization problem is NP-hard, problem (8) can be divided into
two sub problems, namely the NCP scheduling of task vehicles in each batch and the problem of
minimizing the execution delay of ICV tasks. Consider a two-layer iterative optimization process, in
which the task execution time obtained from the previous iteration is used to solve the scheduling
problem and obtain the NCP scheduling result. Then, the obtained point scheduling is used to solve
the delay minimization problem. The two sub-problems affect each other and ultimately obtain the
optimal overall performance result.

4.1 User Scheduling Based on Preferences

When determining a pairing relationship between ICVs and NCPs, they can possess specific
preferences based on their own conditions and be sorted by the degree of satisfaction. And the most
suitable matching object is selected according to the preference list. Next, we will discuss the ICV-to-
NCPs-based vehicle preference management architecture.

Preference principles: plays a task publisher role in dispersed computing. The preferences of ICV
can be divided into two points: Firstly, to ensure task completion, i.e., the computing resources of
the requested pairing NCPs are not less than the computing resources required for task completion.
The second is task completion time. The closer of the communication distance, the shorter the
signal transmission time. The stronger the computing capacity, the shorter the time to complete the
computing task. Therefore, ICV prefers NCP with close range and high computing capacity.

We propose a preference model that considers different preference principles. The preference
evaluation value of ICVs for NCPs can be calculated as:

RV
ij = I + W · Ej · φ

(
vi, pj

)
ψ

(
vi, pj

) + 1
, if

(
li − lj

) ≤ Li (13)

φ
(
vi, pj

) = 1 − Ci − Bj

Bj

, Bj >
Ci

2
(13a)

ψ
(
vi, pj

) =
(

li − lj

Li

)2

(13b)

where Ei is the preference initial value of NCPs. W is the weight factor that reflects the reliability of
network preference transmission. Once preferred matching devices are more reliable than new ones.
Eq. (13a) is called resource function, which indicates the adaptability of task required resources Ci

and NCP resources Bj, and always positive. Eq. (13b) is the normalized distanced function. li − lj =√(
xi − xj

)2 + (
yi − yj

)2
is the Euclidean distance from vi to pj, Li is the maximum transmission range

of vi. Eq. (13) indicates vi preference pj depends on resource adaptation and distance between them.
The farther the distance, the lower the preference. RV

ij = 0 when li − lj > Li. When the amount of
resources owned by pj is closer to the number of resources required by vi, vi prefers pj more, which
means simpler matching choices. Eq. (13) can be calculated by executing Algorithm 1.

NCP plays a task performer role in the network. The preference of NCP is also divided into two
points: one is auxiliary task completion; NCP will prefer tasks more that can be completed. The second
is resource conservation. As a provider of computing resources, NCP applies the fewest resources to
complete the most tasks, minimizing the waste of computing resources as much as possible.



4290 CMC, 2024, vol.80, no.3

Algorithm 1: Calculation of preference value RV
ij

Input: li, lj, Ci, Bj, Li, I , Ej, Di

Output: preference sequence R(vi)
1 Initialization: RV

ij

2 for vi ∈ V and pj ∈ P do
3 Determine the mutual position based on Eq. (13a)
4 if li − lj > Li then
5 pj /∈ R(vi)

6 else
7 Calculate RV

ij base on Eq. (13)
8 end if
9 if RV

ij < Rth then
10 pj /∈ R(vi)

11 else
12 Record RV

ij

13 end if
14 end for
15 while Compare all calculated RV

ij do
16 Sort R(vi) by RV

ij sequence
17 end while
18 return preference sequence R(vi) for task vehicle

Similarly, the preference of NCP is usually determined by the preference evaluation value. The
preference evaluation value of NCPs for vehicles can be calculated as:

RP
ij = W

ψ
(
pj, vi

) + 1 − W

φ
(
pj, vi

) , if
(
li − lj

) ≤ Li (14)

φ
(
pj, vi

) = 1 −
∣∣Ci − Bj

∣∣
Bj

(14a)

ψ
(
pj, vi

) =
(

lj − li

Li

)2

(14b)

Eq. (14) is different from (13). The function ϕ(∗) in (13a) indicates that task vehicles prefer NCPs
with strong computing capability. The function ϕ(∗) in (14a) indicates that NCPs prefer task vehicles
with similar capability requirements. According to (14), we can obtain the preference sequence of all
NCPs regarding vehicles.

According to Algorithm 1, the preference sequence vector of vi about pj can be expressed as:

R (vi) =
(

Rv
i1, Rv

i2, . . . , Rv
imi

)
, mi < m (15)

where Rv
ij indicates that pj is ranked by vi in the Rv

ij-th position. mi < m is the number of NCPs that
finally fulfill the preference requirements of vi. The algorithm of preference sequence calculation of
R(pj) is similar to R(vi), and we will not be introduced in detail. The preference sequence vector of pj



CMC, 2024, vol.80, no.3 4291

about vi can be expressed as:

R
(
pj

) =
(

Rp
1j, Rp

2j, . . . , Rp
nj j

)T

, nj < n (16)

The preference list is established as:

R (V) = [
Rv

ij

]
n×m

(17)

R (P) = [
Rp

ij

]T

m×n
(18)

where the preference value that does not form a preference relationship in the matrix is represented
by 0. Note that the preference matrices R (V) and R (P) are incomplete, and the original optimization
problem (8) can be transformed into:

max
R

Q = Q1 + Q−1
2

s.t. (8a) ∼ (8h)

∀i ∈ R (V) , j ∈ R (P) (19)

The constraints in (19), the selection of task ICVs and NCPs have changed from the original set
to selecting from a preference list.

4.2 Many-to-Many Matching Algorithm

The problem (19) is the NP-hard problem can be solved by methods such as heuristic algorithms, it
has limitations in reducing latency and complexity. The heterogeneity of dispersed computing networks
makes the problem more difficult to solve. Thus, there is an urgent need for a method that can satisfy
the characteristics of reliability, low latency, and low complexity. Therefore, we propose Algorithm 2
based on preference matching to solve the optimization problem described in (19).

Algorithm 2: Many-to-many matching algorithm based on mutual preferences
Input: V, P, R(V ), R(P), Ci, Bj, N, M
Output: The stable match f 1

1. Initialization: R(V ), R(P)
2. for vi ∈ V do
3. Update preference sequence R(vi)
4. if vi /∈ R

(
pj

)
, where pj ∈ R (vi) then

5. Remove pj from R(vi)
6. else if vi ∈ R

(
pj

)
, where pj ∈ R (vi), RV

ij < Rth

7. Remove pj from R(vi)
8. else
9. Keep pj in R(vi)

(Continued)



4292 CMC, 2024, vol.80, no.3

Algorithm 2 (continued)
10. end if
11. Sort vi according to the order of task request, and obtain new preference sequences

R (vi)
(1) =

(
Rv

i1(1) , . . . , Rv

im(1)
i

)
and R

(
pj

)(1) =
(

Rp

1(1) j
, . . . , Rp

n(1)
j j

)T

12. end for
13. while for all vi ∈ V do
14. Send matching requests based on R(V )
15. if Bj = Ci then
16. pj accept matching requests and forms an exact matching pair
17. else
18. According to R(V ), pj selects the most preferred vi to accept matching requests
19. end if
20. end while
21. Create unmatched ICVs sets V (1) and inexactly matched NCPs P(1), remove matched ICVs and

NCPs, update preference sequences toR (vi)
(2) =

(
Rv

i1(2) , . . . , Rv

im(2)
i

)
, vi ∈ V (1) and

R
(
pj

)(2) =
(

Rp

1(2) j
, . . . , Rp

n(2)
j j

)T

, pj ∈ P(1)

22. while for all vi ∈ V do
23. Send matching requests based on R(V (1))
24. if Bj > Ci, where �vs ∈ V (1)|Bj − Ci > Cs then
25. pj forms a matching pair with vi, but not with vs

26. else if Bj > Ci, where ∃vs ∈ V (1)|Bj − Ci > Cs then
27. pj forms a matching pair with vi, while also matching with vs

28. end if
29. Create unmatched ICVs sets V (2) and unmatched NCPs P(2), remove matched ICVs and

NCPs, update preference sequences to R (vi)
(3) =

(
Rv

i1(3) , . . . , Rv

im(3)
i

)
, vi ∈ V (2) and

R
(
pj

)(3) =
(

Rp

1(3) j
, . . . , Rp

n(3)
j j

)T

, pj ∈ P(2)

30. if Bj < Ci then
31.

{
pp, . . . , pq

} ∈ P(2) form matching pair with vi, where
∑q−1

j=p Bj < Ci and
∑q

j=p Bj > Ci

32. end if
33. end while
34. while V (2) 
= ∅ do
35. repeat
36. Step 22–33 in Algorithm 2
37. until All ICVs have been matched.
38. end while
39. return The optimal matching solution f 1 for task ICVs



CMC, 2024, vol.80, no.3 4293

4.3 Performance Analysis of Algorithm

According to Theorem 1, the optimization problem (8) is an NP-hard. However, the solving
process and complexity of the problem (15) have been simplified by defining Algorithm 1 and
Algorithm 2.

Theorem 2: If the preference sequence matrix of R(V) and R(P) are strict, then the matching
solution f 1 of the optimal problem (8) obtained by Algorithm 2 is stable.

Proof: Suppose the matching solution is not stable, then matching pairs ps ∈ f1 (vi) , pj ∈ f1 (vr) are
existing, where vi, vr ∈ V , pj, ps ∈ P. And since the preference sequence matrix of R(V) and R(P) are
strict, there is tv

ij � tv
is in the matrix R (V), which means that pj forms a matching pair pj ∈ f1 (vi) with vi

earlier than ps. This contradicts the hypothesis that pj ∈ f1 (vr). Therefore, there is no unstable matching
pair in the matching solution calculated by Algorithm 2, i.e., the matching solution f 1 is stable.

Theorem 3: If the preference sequence matrix of R(V) and R(P) are strict, then the matching
solution f 1 of the problem (8) obtained by Algorithm 2 is optimal for the task vehicle.

Proof: Suppose that there is a non-optimal matching pair (vi, pj) in the match f 1. It means that (vi,
ps) is an optimal matching pair. But ps is matching with vr. That is tv

is � tv
ij, tv

rs � tv
r∗ and tp

rs � tp
is.

In the stable matching f ′
1 , there must be a matching pair (vi, ps). Suppose vr is matching with pq

at this time, where pq 
= ps. And tv
rs � tv

r∗ indicates that (vr, ps) must exist in the matching f ′
1 . This

contradicts with (vi, ps) in f ′
1 . According to the above results, the assumptions are not tenable. The

matching solution is optimal for task vehicle. Proof done.

Theorem 4: The time complexity of preference algorithm is O(nm).

Proof: During the preference computation, memory consumption is negligible and only compu-
tation cost is considered. Each NCPs receives the information (length m) from each ICV. The time
consumption of is plausibility check is less than the length of the information table, as the maximum
time of plausibility check is O(m). n ICVs send task and preference match, that is, each NCP performs
n check at most. Thus, the total time complexity of the preference algorithm is O(nm). Proof done.

5 Numerical Evaluations

In this section, datasets were constructed based on different ICV task types, and an experimental
platform was built based on Python and MATLAB/Simulink using a laptop with Intel i5-6200U
CPU@2.4 GHz. The correctness and effectiveness of the proposed algorithm were verified through
numerical simulation experiments.

5.1 Simulation Experiment Setup

Within an area of 2000 m × 2000 m, ICVs and NCPs are randomly dispersed as shown in Fig. 2.
There are fixed numbers of 150, 300 and 50 ICVs for each of the three task types. The initial number
of three types of NCP is 150, 300, and 20, respectively. Fig. 2 shows the distribution of ICVs with
heterogeneous task types and NCPs with heterogeneous computing capabilities at a certain moment,
where all task ICVs are randomly dispersed on the roads of the block, N-1 and N-2 NCPs are randomly
dispersed within the region, and N-3 NCPs are randomly dispersed in the center of 20 out of 25 blocks.

Each vehicle randomly sends tasks to NCPs based on their types and requirements, so ICVs and
NCPs are categorized into three types. Type-1 vehicles (V-1): tasks of autonomous driving; Type-2
vehicles (V-2): tasks of traffic safety; Type-3 vehicles (V-3): tasks of vehicular entertainment. Type-1
NCPs (N-1): Large quantity, small computing resources, near the task vehicle, such as smartphones.



4294 CMC, 2024, vol.80, no.3

Type-2 NCPs (N-2): The quantity, computing resources, and distance all are medium. Such as personal
computers. Type-3 NCPs (N-3): Small quantity, large computing resources, far away from the vehicle.
Such as terminal servers. The important characteristics of ICVs and NCPs are specified in Table 2,
Some parameters in Table 2 refer to [29].

Figure 2: Task completion rate under different numbers of NCPs

Table 2: Information related to different types of ICVs and NCPs

Participant Quantity Computation capacity (GHz) Tasks (bits) Range (m)

V-1 150 0.5 [1.5 × 103, 1 × 104] 80
V-2 300 [2.4 × 104, 1 × 105] 150
V-3 50 [3 × 105, 1 × 106] 360
N-1 [150,450] [0.4,1] / 100
N-2 [300,600] [1,2] / 200
N-3 20 [2,4] / 500

To evaluate the performance of the matching algorithm proposed in this paper, several types of
algorithms were selected for comparison:

Traditional matching game algorithm: only considering the preferences between the task ICV and
NCP, the task vehicle initiates a request, and the NCP responds and chooses to accept or reject, with
the aim of obtaining a stable match.

Greedy algorithm: Select NCPs nearby for task vehicles until the task requirements are met.



CMC, 2024, vol.80, no.3 4295

Alternating Direction Method of Multipliers (ADMM) algorithm [30]: A distributed algorithm
that alternately updates variables.

5.2 Simulation Results and Analysis

By and large, our proposed matching algorithm has demonstrated good performance and can
effectively complete the computational tasks of a dispersed computing network.

1) Task completion ratio: In terms of task completion ratio, we fixed the number of N-3 in our
simulation. As we increased of N-1 and N-2, the task completion ratio approached 100%. By observing
Fig. 3, it can be seen that when the number of NCPs and corresponding types of ICVs is 2:1, the task
completion rate can reach 100%. In real life, N-1 (such as smartphones) is much more common than
N-2. Therefore, increasing the number of N-1 is more realistic than increasing N-2. Obviously, it is
superior to the matching algorithm proposed by [31].

Figure 3: Task completion rate under different numbers of NCPs

2) Resource utilization rate of NCPs: As shown in Fig. 4, we demonstrate the resource utilization
rate under different numbers of NCPs. In general, the resource utilization rate corresponding to V-
2 is lower compared to the other two types of ICVs. When the number of NCPs is 300/300/20, the
utilization rate of V-2 is higher than that of V-3. The reason is that the increase in N-1 provides more
options for V-1 and V-2, and the quantity of V-1 is relatively less, so the resource utilization rate of V-2
will increase more. When the total number of NCPs is 770. Compared to the scenario with 150/600/20,
the number of NCPs is 450/300/20 has the highest overall resource utilization rate. This is because N-1
has a lower computational capacity, and as per Algorithm 2, it allows for a wider range of matches.
N-1 can also choose a more suitable vehicle for pairing.



4296 CMC, 2024, vol.80, no.3

Figure 4: The utilization rate of computing resources to complete various tasks

3) Delay of vehicle tasks: In Fig. 5 and Fig. 6, the simulation results of delay of vehicle tasks show
that increasing the number of N-2 outperforms increasing N-1 in terms of total delay. The average delay
of V-1 decreases regardless of whether N-1 or N-2 is increased (Fig. 5). Comparing two scenarios with
the same number of NCPs (150/600/20 and 450/300/20), The delay for V-1 decreased by 6.50% and
for V-2 decreased by 5.40%, while the delay for V-3 increased by 3.00%. When the number of NCPs
is 150/600/20, the increase of N-2 will be prioritized to be allocated resources by V-3. As a result, the
average delay of V-2 increases, and the average delay of V-3 decreases. However, it can be observed
from Fig. 7 that the normalized delay performance gradually reduces. The total delay for all vehicles
decreased by 1.86% (Fig. 6). When comparing the two scenarios 150/600/20 and 450/300/20, V-2, V-3
and total delay all increase except for V-1.

Figure 5: The average delay corresponding to completing different vehicle tasks



CMC, 2024, vol.80, no.3 4297

Figure 6: The total delay corresponding to completing different vehicle tasks

4) Total performance: Fig. 7 shows the performance indicators after normalizing resources and
latency according to Eq. (8). It can be seen that as the number of NCPs increases, the impact on latency
performance is not significant. The reason is that although the optimization of latency performance
is considered in the goal, latency also appears as a constraint condition, with time thresholds for each
type of task. The resource performance target increases with the increase of NCPs, which is obvious
because the increase of NCPs means that there are more matching objects available for selection.

Figure 7: Performance indicators under different numbers of NCPs

At the same time, the increase in resource NCPs near the task ICVs also indirectly affects the
time consumption and transmission delay in the matching process. When the number of NCPs is the
same, the latency index in the 450/300/20 scenario is better than that in the 150/600/20 scenario. After



4298 CMC, 2024, vol.80, no.3

adding computational resource indicators, 450/300/20 has better performance. This is due to the fact
that N-1 NCPs have fewer idle resources, making it easier to find matching objects in the matching
process based on effective resource utilization. When matching tasks with the same amount of data,
even if it causes resource waste, its effective utilization rate is higher.

5) Performance comparison with other algorithms

We will conduct numerical experiments to compare the algorithm proposed in this paper with
traditional matching games, greedy algorithms, and ADMM algorithms, and explore the effectiveness
of the proposed algorithm, as shown in Figs. 8 to 9. Based on the previous experiments, the initial
number of NCPs is set to 450/300/20, and the number of ICVs is the same as before.

Figure 8: Comparison of resource and delay performance with other algorithm

Figure 9: Comparison of total performance with other algorithm



CMC, 2024, vol.80, no.3 4299

Figs. 8 to 9 show the numerical experimental comparison results between the proposed algorithm
and existing algorithms in this paper. As shown in the figure, traditional matching games perform
worse than greedy algorithms in various performance indicators when there are fewer NCPs. As
the number of NCPs increases, the performance indicators of traditional matching games perform
better than greedy algorithms. This is because greedy algorithms prioritize selecting NCPs closer
in distance, which can match task ICVs to NCPs faster and reduce queuing waiting time. As the
number of NCPs increases, the number of NCPs with lower adaptability around the task ICV also
increases, so their performance indicators will fluctuate with the changes in NCPs. Overall, whether it
is traditional matching games or greedy algorithms, the many-to-many matching algorithm based on
mutual preferences proposed in this paper is more effective in various performance indicators.

The overall performance index of the ADMM algorithm gradually approaches the many-to-many
matching algorithm based on mutual preferences as the number of NCPs increases. The reason is that
the ADMM algorithm decomposes the original optimization problem into several sub problems and
solves them in parallel, resulting in a small error between the final result and the optimal result. The
many-to-many matching algorithm based on the preferences of both parties can maintain performance
indicators close to ADMM in the case of a large number of computing NCPs. As shown in the above
chart, the proposed method can better improve the performance of the system when the number of
NCPs is small, and the algorithm with fewer NCPs is better than the ADMM algorithm. This is fully in
line with the characteristics of dispersed computing networks, which fully utilize the available dispersed
resources in the surrounding area when resources are limited, and maximize the Quality of Services
(QoS) requirements of tasks. The characteristics of the ADMM algorithm are strong computing
power and fast convergence speed. However, the computational time complexity of each iteration
of the proposed algorithm is O(N2M), while the computational time complexity of the ADMM
algorithm is O(N4). Compared to ADMM, the proposed algorithm significantly reduces complexity.
The proposed algorithm requires the most 15 iterations to obtain the optimal solution, and although
ADMM also has the characteristic of fast convergence speed, it converges to the optimal state after 18
iterations (Fig. 10). Therefore, from the perspective of computational complexity and iteration speed,
the proposed algorithm also has advantages.

Figure 10: Number of iterations



4300 CMC, 2024, vol.80, no.3

Compared with previous studies [30,31], the innovation of the model and algorithm proposed
in this chapter lies in: 1) Considering the heterogeneity of tasks and NCPs in dispersed computing
scenarios, which conforms to the characteristics of task offloading and allocation based on dispersed
computing; 2) Unlike literature [30], the optimization objective of this chapter is to maximize task
completion rate with optimal resource utilization as the constraint. Compared with research that only
focuses on network throughput, this approach focuses more on the utilization of limited resources in
dispersed computing environments; 3) For the three common application scenarios in the dispersed
computing network scenario, considering the coexistence of the three types of applications, it has a
more complex topology compared to the single task QoS requirement in Reference [30], but it can
also achieve good task completion rate.

6 Conclusion and Future Work

This paper investigates how to ensure the minimum latency of ICV tasks and the maximum
resource utilization of NCPs in dispersed computing networks. Firstly, we establish an optimization
model for the correlation between the two parties through NCPs serving task ICVs. Secondly, in the
optimization model, factors such as resource constraints of NCPs are considered. By introducing two
factors: resource adaptability and communication range, a preference sequence between ICVs and
NCPs is established. The task allocation problem can be transformed into a many-to-many matching
problem. A resource preference based many-to-many matching algorithm is proposed, which ensures
the application requirements of task ICVs through the matching and resource allocation of both.
Finally, by comparing with different optimization schemes, the proposed algorithm has advantages
in performance such as task completion rate, convergence, and resource utilization, which proves its
superiority and effectiveness. The results show that the average task completion rate of the proposed
scheme is greater than 95.8%, and the average resource utilization rate is greater than 83.6%. In terms
of resource utilization performance and total performance, the proposed scheme is at least 9.6% and
4.0% better than the reference scheme, respectively.

In the future, this research can be further improved in the following ways: i) The proposed
algorithm can be verified with real data; ii) We can expand the preference list by introducing time
variables and historical preference values to update the preference list over time.

Acknowledgement: The authors would like to thank the editors and reviewers for their valuable work,
as well as the supervisor and family for their valuable support during the research process.

Funding Statement: This work was supported by the National Natural Science Foundation of China
(Grant No. 62072031), the Applied Basic Research Foundation of Yunnan Province (Grant No.
2019FD071), and the Yunnan Scientific Research Foundation Project (Grant 2019J0187).

Author Contributions: The authors confirm contribution to the paper as follows: write the main
manuscript text, design the methodology, conduct a research and investigation process, specifically
perform the experiments and data collection/analysis, polish the language of the manuscript, search
for relevant reference, and summarize the related work: Neng Wan; provide guidance on experimental
ideas, supervise and lead the planning and execution of research activities: Guangping Zeng, Xianwei
Zhou. All authors reviewed the results and approved the final version of the manuscript.

Availability of Data and Materials: All data generated or analyzed during this study are included in
this article and are available from the corresponding author upon reasonable request.



CMC, 2024, vol.80, no.3 4301

Ethics Approval: Not applicable.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] M. García-Valls, A. Dubey, and V. Botti, “Introducing the new paradigm of social dispersed computing:

Applications, technologies and challenges,” J. Syst. Archit., vol. 91, no. 7, pp. 83–102, Nov. 2018. doi:
10.1016/j.sysarc.2018.05.007.

[2] S. Yuan, G. Xia, J. Chen, and C. Yu, “Toward dispersed computing: cases and state-of-the-art,” in Proc.
17th Int. Conf. Mobility Sens Netw, Exeter, UK, Dec. 2021, pp. 710–717.

[3] M. R. Schurgot, M. Wang, A. E. Conway, L. G. Greenwald, and P. D. Lebling, “A dispersed computing
architecture for resource-centric computation and communication,” IEEE Commun. Mag., vol. 57, no. 7,
pp. 13–19, 2019. doi: 10.1109/MCOM.2019.1800776.

[4] A. Paulos et al., “Priority-enabled load balancing for dispersed computing,” in Proc. IEEE 5th Int. Conf.
Fog. Edge Comput., Melbourne, Australia, May 2021, pp. 1–8.

[5] N. Hu, Z. Tian, X. Du, N. Guizani, and Z. Zhu, “Deep-Green: A dispersed energy-efficiency computing
paradigm for green industrial IoT,” IEEE Trans. Green Commun. Netw., vol. 5, no. 2, pp. 750–764, Jun.
2021. doi: 10.1109/TGCN.2021.3064683.

[6] Z. Niu, H. Liu, X. Lin, and J. Du, “Task scheduling with UAV-assisted dispersed computing for disaster
scenario,” IEEE Syst. J., vol. 16, no. 4, pp. 6429–6440, Dec. 2022. doi: 10.1109/JSYST.2021.3139993.

[7] C. S. Yang, R. Pedarsani, and A. S. Avestimehr, “Communication-aware scheduling of serial tasks
for dispersed computing,” IEEE ACM Trans. Netw., vol. 27, no. 4, pp. 1330–1343, Aug. 2019. doi:
10.1109/TNET.2019.2919553.

[8] Q. Nguyen, P. Ghosh, and B. Krishnamachari, “End-to-end network performance monitoring for dispersed
computing,” in Proc. Int. Conf. Comput., Netw. Commun., Maui, HI, USA, Mar. 2018, pp. 707–711.

[9] D. Hu and B. Krishnamachari, “Throughput optimized scheduler for dispersed computing systems,” in
Proc. 7th IEEE Int. Conf. Mob. Cloud Comput. Services Eng., Newark, CA, USA, Apr. 2019, pp. 76–84.

[10] P. Ghosh, Q. Nguyen, and B. Krishnamachari, “Container orchestration for dispersed computing,” in Proc.
5th Int. Workshop Container Technol. Container Clouds, New York, NY, USA, Dec. 2019, pp. 19–24.

[11] P. Ghosh et al., “Jupiter: A networked computing architecture,” in Proc. IEEE/ACM 14th Int. Conf. Utility
Cloud Comput., Leicester, UK, Dec. 2021, pp. 1–8.

[12] Y. H. Kao, K. Wright, P. H. Huang, B. Krishnamachari, and F. Bai, “MABSTA: Collaborative computing
over heterogeneous devices in dynamic environments,” in Proc. IEEE INFOCOM, Toronto, ON, Canada,
Jul. 2020, pp. 169–178.

[13] J. Coleman, E. Grippo, B. Krishnamachari, and G. Verma, “Multi-objective network synthesis for dispersed
computing in tactical environments,” in Proc. SPIE Conf. Signal Process. Sensor/Inf. Fusion Target Recog.
XXXI , Orlando, FL, USA, Apr. 2022, pp. 132–137.

[14] P. Rahimzadeh et al., “SPARCLE: Stream processing applications over dispersed computing networks,” in
Proc. 2020 IEEE 40th Int. Conf. Distrib. Comput.Syst., Singapore, Nov. 2020, pp. 1067–1078.

[15] H. Wu et al., “Resolving multitask competition for constrained resources in dispersed computing: A
bilateral matching game,” IEEE Internet Things J., vol. 8, no. 23, pp. 16972–16983, Dec. 1, 2021. doi:
10.1109/JIOT.2021.3075673.

[16] C. Zhou, C. Gong, H. Hui, F. Lin, and G. Zeng, “A task-resource joint management model with intelligent
control for mission-aware dispersed computing,” Chin. Commun., vol. 18, no. 10, pp. 214–232, Oct. 2021.
doi: 10.23919/JCC.2021.10.016.

[17] C. Zhou, L. Zhang, G. Zeng, and F. Lin, “Resilience mechanism based dynamic resource allocation in
dispersed computing network,” IEEE Internet Things J., vol. 10, no. 8, pp. 6973–6987, Apr. 2023. doi:
10.1109/JIOT.2022.3228256.

https://doi.org/10.1016/j.sysarc.2018.05.007
https://doi.org/10.1109/MCOM.2019.1800776
https://doi.org/10.1109/TGCN.2021.3064683
https://doi.org/10.1109/JSYST.2021.3139993
https://doi.org/10.1109/TNET.2019.2919553
https://doi.org/10.1109/JIOT.2021.3075673
https://doi.org/10.23919/JCC.2021.10.016
https://doi.org/10.1109/JIOT.2022.3228256


4302 CMC, 2024, vol.80, no.3

[18] Z. Zhou, P. Liu, J. Feng, Y. Zhang, S. Mumtaz and J. Rodriguez, “Computation resource allocation and
task assignment optimization in vehicular fog computing: A contract-matching approach,” IEEE Trans.
Veh. Technol., vol. 68, no. 4, pp. 3113–3125, Apr. 2019. doi: 10.1109/TVT.2019.2894851.

[19] P. Wang, Z. Zheng, B. Di, and L. Song, “HetMEC: Latency-optimal task assignment and resource
allocation for heterogeneous multi-layer mobile edge computing,” IEEE Trans. Wireless Commun.,
vol. 18, no. 10, pp. 4942–4956, Oct. 2019. doi: 10.1109/TWC.2019.2931315.

[20] Q. Fan, J. Bai, H. Zhang, Y. Yi, and L. Liu, “Delay-aware resource allocation in fog-assisted IoT networks
through reinforcement learning,” IEEE Internet Things J., vol. 9, no. 7, pp. 5189–5199, Apr. 2022. doi:
10.1109/JIOT.2021.3111079.

[21] S. Guo, K. Zhang, B. Gong, W. He, and X. Qiu, “A delay-sensitive resource allocation algorithm for
container cluster in edge computing environment,” Comput. Commun., vol. 170, no. 4, pp. 144–150, Mar.
2021. doi: 10.1016/j.comcom.2021.01.020.

[22] N. Wan, T. Luo, G. Zeng, and X. Zhou, “Minimization of VANET execution time based on joint task
offloading and resource allocation,” Peer-to-Peer Netw. Appl., vol. 16, no. 1, pp. 71–86, Jan. 2023. doi:
10.1007/s12083-022-01385-6.

[23] Q. Wu, S. Shi, Z. Wan, Q. Fan, P. Fan and C. Zhang, “Towards V2I age-aware fairness access: A DQN
based intelligent vehicular node training and test method,” Chin. J. Electron., vol. 32, no. 6, pp. 1230–1244,
Nov. 2023. doi: 10.23919/cje.2022.00.093.

[24] K. Wang et al., “Task offloading with multi-tier computing resources in next generation wireless networks,”
IEEE J. Sel. Areas Commun., vol. 41, no. 2, pp. 306–319, Feb. 2023. doi: 10.1109/JSAC.2022.3227102.

[25] S. Kumar, R. Gupta, K. Lakshmanan, and V. Maurya, “A game-theoretic approach for increasing resource
utilization in edge computing enabled internet of things,” IEEE Access, vol. 10, pp. 57974–57989, 2022. doi:
10.1109/ACCESS.2022.3175850.

[26] C. Yi, S. Huang, and J. Cai, “Joint resource allocation for device-to-device communication assisted
fog computing,” IEEE Trans. Mobile Comput., vol. 20, no. 3, pp. 1076–1091, Mar. 2021. doi:
10.1109/TMC.2019.2952354.

[27] M. S. Alzboon, M. Mahmuddin, and S. Arif, “Resource discovery mechanisms in shared computing
infrastructure: A survey,” in Proc. Int. Conf. Rel. Inf. Commun. Technol., Johor, Malaysia, Sep. 2019,
pp. 545–556.

[28] A. D. S. Veith , M. Dias de Assunção , and L. Lefèvre, “Latency-aware strategies for deploying data stream
processing applications on large cloud-edge infrastructure,” IEEE Trans. Cloud Comput., vol. 11, no. 1,
pp. 445–456, Jan. 2023. doi: 10.1109/TCC.2021.3097879.

[29] Y. Li, B. Yang, H. Wu, Q. Han, C. Chen and X. Guan, “Joint offloading decision and resource allocation
for vehicular fog-edge computing networks: A contract-stackelberg approach,” IEEE Internet Things J.,
vol. 9, no. 17, pp. 15969–15982, Sep. 2022. doi: 10.1109/JIOT.2022.3150955.

[30] Y. Wang, X. Tao, X. Zhang, P. Zhang, and Y. T. Hou, “Cooperative task offloading in three-tier mobile
computing networks: An ADMM framework,” IEEE Trans. Veh. Technol., vol. 68, no. 3, pp. 2763–2776,
Mar. 2019. doi: 10.1109/TVT.2019.2892176.

[31] H. Hui, F. Lin, L. Meng, L. Yang, and X. Zhou, “Many-to-many matching based task allocation for dis-
persed computing,” Computing, vol. 105, no. 7, pp. 1497–1522, Jan. 2023. doi: 10.1007/s00607-023-01160-2.

https://doi.org/10.1109/TVT.2019.2894851
https://doi.org/10.1109/TWC.2019.2931315
https://doi.org/10.1109/JIOT.2021.3111079
https://doi.org/10.1016/j.comcom.2021.01.020
https://doi.org/10.1007/s12083-022-01385-6
https://doi.org/10.23919/cje.2022.00.093
https://doi.org/10.1109/JSAC.2022.3227102
https://doi.org/10.1109/ACCESS.2022.3175850
https://doi.org/10.1109/TMC.2019.2952354
https://doi.org/10.1109/TCC.2021.3097879
https://doi.org/10.1109/JIOT.2022.3150955
https://doi.org/10.1109/TVT.2019.2892176
https://doi.org/10.1007/s00607-023-01160-2

	Heterogeneous Task Allocation Model and Algorithm for Intelligent Connected Vehicles
	1 Introduction
	2 Related Work
	3 System Model and Problem Formulation
	4 Algorithm Design and Characteristic Analysis
	5 Numerical Evaluations
	6 Conclusion and Future Work
	References


