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ABSTRACT

This study investigates the application of deep learning, ensemble learning, metaheuristic optimization, and
image processing techniques for detecting lung and colon cancers, aiming to enhance treatment efficacy and
improve survival rates. We introduce a metaheuristic-driven two-stage ensemble deep learning model for efficient
lung/colon cancer classification. The diagnosis of lung and colon cancers is attempted using several unique
indicators by different versions of deep Convolutional Neural Networks (CNNs) in feature extraction and model
constructions, and utilizing the power of various Machine Learning (ML) algorithms for final classification.
Specifically, we consider different scenarios consisting of two-class colon cancer, three-class lung cancer, and five-
class combined lung/colon cancer to conduct feature extraction using four CNNs. These extracted features are
then integrated to create a comprehensive feature set. In the next step, the optimization of the feature selection
is conducted using a metaheuristic algorithm based on the Electric Eel Foraging Optimization (EEFO). This
optimized feature subset is subsequently employed in various ML algorithms to determine the most effective ones
through a rigorous evaluation process. The top-performing algorithms are refined using the High-Performance
Filter (HPF) and integrated into an ensemble learning framework employing weighted averaging. Our findings
indicate that the proposed ensemble learning model significantly surpasses existing methods in classification
accuracy across all datasets, achieving accuracies of 99.85% for the two-class, 98.70% for the three-class, and 98.96%
for the five-class datasets.
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1 Introduction

A broad category of disorders known as cancer includes conditions characterized by aberrant
cell proliferation that have the potential to spread to different body areas. About 40% of all cancer
cases identified annually are lung and colorectal cancers, making them two of the most well-known
malignancies [1]. It has been observed that lung and colon cancer, two of the deadliest diseases
in the world, may grow simultaneously. Although lung cancer is most commonly linked to upper
aerodigestive tract cancer, its link to gastrointestinal cancer should also not be disregarded. To help
with early diagnosis and treatment, it is crucial to research lung and colon cancer detection in
conjunction with medical imaging [2]. Since lung cancer cells can spread to other organs before a
doctor can diagnose them, early diagnosis can save a patient’s life. Furthermore, treatment becomes
considerably more difficult as cancer spreads [3]. Studies on lung cancer cases indicate that smoking
is the primary cause of this disease, which affects more women than males. In the past, women were
known to use fewer cigarettes than men, which resulted in a lower incidence rate of this kind of disease
[4,5]. Age, gender, race, social standing, exposure to environmental and occupational factors, air
pollution, heredity, obesity, dry cough, secondhand smoke exposure, chronic lung illness, and alcohol
intake are additional contributing factors. The disease is even disseminated by people’s habits [6].

With the aforementioned situations in mind, we can make significant progress in the early
detection of the disease. Numerous approaches exist for diagnosing cancer, and the majority of them
rely on imaging techniques such as nuclear imaging [7], Magnetic Resonance Imaging (MRI) [8],
histopathological imaging [9–11], and Computed Tomography (CT) scan [12]. Experts must do a
sensitive and challenging manual analysis of such medical photos. It takes a lot of time and intense
concentration as a result [13,14]. Early diagnosis makes case detection considerably more challenging
because symptoms are often ill-defined and challenging to diagnose in the early stages of the illness.
So, it is too late for early treatment when symptoms show up [15].

Today, to support physicians in early diagnosis, Artificial Intelligence (AI)-based medical image
analysis approaches have taken on the role of a decision support mechanism thanks to the achieve-
ments made in the field of AI [16]. Machine Learning (ML) and Deep Learning (DL) are branches of
AI that enable computers to learn like humans, utilizing structured models that mimic the human brain
[16,17]. These models allow prototype photographs to train computers to recognize patterns in labeled
images, thereby enabling them to predict the characteristics of future input images. Generally, DL
models are classified into two types: Convolutional Neural Networks (CNNs) and Recurrent Neural
Networks (RNNs). The efficiency of these models can be further enhanced by reducing the feature
dimension through a variety of feature selection methods [1].

In this paper, the process of lung and colon cancer diagnosis includes pre-processing, feature
extraction, feature selection, learning operations with ML algorithms, identifying algorithms with
better performance, and weighted average ensemble learning. After preprocessing the original input
images in the dataset, four CNNs are used to extract features from the input images. Feature extraction
connects to a set of extracted features selected by the Electric Eel Foraging Optimization (EEFO)
algorithm. These features are then fed to various ML algorithms for training and learning. A High-
Performance Filter (HPF) is used to select the three algorithms with the highest performance, and
then, the weighted average method is employed to achieve the best performance of the ensemble model.
Specifically, the key contributions of this work are as follows:
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• Presenting a metaheuristic-driven optimized two-stage heterogeneous ensemble deep learning
model comprising different deep CNNs (as feature extractors) and different MLs (as classifiers)
for efficient lung and colon cancer diagnosis.

• Utilizing Visual Geometry Group 16-layer network (VGG16), Residual Network 18-layer
(ResNet18), Densely connected convolutional Network 121-layer (DenseNet121), and Efficient
Network model b4 (EfficientNet-b4), for feature extraction.

• Performing seven MLs including Logistic Regression (LR), Extra Trees (ET), Support Vector
Machine (SVM), Multi-Layer Perceptron (MLP), Decision Tree (DT), Random Forest (RF),
and K-Nearest Neighbor (KNN), for classification.

• Employing the EEFO algorithm to select the most relevant features, ensuring the learning
process is based on the most discriminative and informative features.

• Optimizing the ensemble learning model by selecting top ML algorithms using the HPF filter
and assigning weights using the weighted average method.

The paper unfolds as follows: In Section 2, we review the related literature. The proposed method
is presented in Section 3, followed by the implementation results in Section 4 and conclusion remarks
in Section 5.

2 Literature Review

In this section, the existing literature concerning lung and colon cancer research is reviewed by
categorizing them into machine learning, deep learning, and feature selection techniques.

2.1 Machine Learning Techniques

To identify and classify emphysema in 112 instances, Nishio et al. [18] used homology and
computed tomography images in addition to traditional ML techniques. Pearson’s correlation coef-
ficients were used to evaluate the relationship between the outcomes of lung function tests and the
measurement of emphysema. To diagnose lung and colon cancer, Talukder et al. [19] proposed a hybrid
model that combined pre-processing, k-fold cross-validation, feature extraction, and ML methods.
99.05% accuracy rate for lung cancer, 100% accuracy rate for colon cancer, and 99.30% accuracy rate
for both lung and colon cancer were attained by the model. However, feature extraction and picture
pre-processing still require improvement.

An SVM classifier-based transfer learning architecture for lung and colon categorization was
proposed by Fan et al. [20]. The output of the fully connected layer of the softmax classifier was
inputted into the SVM classifier to enhance the accuracy of classification. According to the findings,
the proposed model achieved a 99.4% accuracy for the LC25000 dataset. In the most current work on
this dataset, Hage Chehade et al. [21] investigated five models Extreme Gradient Boosting (XGBoost),
SVM, RF, Linear Discriminant Analysis (LDA), and Multi-Layer Perceptron (MLP) to identify the
histopathological images using ML techniques. They found that XGBoost had the best accuracy, with
99% in this regard.

Cancer Genome Atlas (TCGA) gene expression profiling data was utilized by Su et al. [22] to
diagnose and stage colon cancer. After identifying the gene modules demonstrating the strongest
association with cancer, they isolated distinctive genes and performed survival analysis. Colon cancer
diagnosis performed best with the RF model, which had an average accuracy of 99.81% and recall of
99.5%. They found eight genes linked to the prognosis of colon cancer. KNN for early lung cancer
diagnosis utilizing a genetic algorithm was presented by Maleki et al. [23]. Optimizing classifier speed,
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the algorithm decreased the size of the dataset. Utilizing a lung cancer database, the approach attained
100% accuracy, suggesting that clinical data and data mining methods might be efficiently correlated.

The identification of lung cancer using multivariate characteristics, including autoencoder,
Reconstruction Independent Component Analysis (RICA), and sparse filters, was studied by
Hussain et al. [24]. They used ML methods such as Jackknife 10-fold cross-validation, SVM, Gaussian,
Radial Base Function (RBF), polynomial kernels, DT, and Naïve Bayes. In a study of 396 patients
with colon cancer, Kayikcioglu et al. [25] found that recurrence could be predicted using laboratory,
clinical, and demographic features utilizing ML algorithms, particularly the CatBoost Classifier. This
exemplifies the potential for customized patient risk categorization utilizing data-driven insights.

2.2 Deep Learning Techniques

A Computer-Aided Diagnostic (CAD) system has been created by Kumar et al. [26] to help
radiologists with preliminary diagnoses. This technique classifies lung nodules as benign or malignant
based on deep information taken from an autoencoder. This technique demonstrated a 75.01%
accuracy rate in a 10-fold cross-validation, with a sensitivity of 83.35% and a false positive rate of
0.39 patients.

By employing a deep CNN, Teramoto et al. [27] proposed an automated classification strategy
for lung tumors in microscopic images. The method underwent training using a database and was
subsequently improved to prevent overfitting. The neural network architecture consisted of three
convolutional layers, two fully connected layers, and pooling layers. Consistent with the accuracy of
cytotechnologists and pathologists, the results indicated that roughly 71% of the images were properly
categorized.

Using low-dose chest CT scans, Trajanovski et al. [28] created a DL framework for assessing
the risk of lung cancer. The model requires patient-level annotation because it employs a multi-
instance weakly labeled method. Malignancy risk assessment and nodule identification are part of
the framework. The technique outperformed the PanCan Risk model by 7% Area Under the Curve
(AUC), according to experiments conducted using data from the National Lung Screening Trial
(NLST), the Kaggle competition, and Lahey Hospital and Medical Center.

A CNN-based approach was presented by Liu et al. [29] to classify lung nodules from CT scans,
taking into account Ground Glass Optical (GGO) types and non-nodules. Using an estimated radius
for each nodule and a spherical surface, the multi-view, multi-scale CNN is pre-trained. The ELCAP
and LIDC-IDRI datasets are used to evaluate the model, and the findings are encouraging even for
non-nodule and GGO types.

With a Multicrop CNN (MC-CNN) that lowers computational complexity, Shen et al. [30]
presented a multi-crop DL approach for lung nodule malignancy. Using the LIDC-IDRI dataset, the
method predicts nodule semantics and estimates diameter. Its robustness has been evaluated against
both segmentation-independent and dependent methods.

The work of Reis et al. [31] classified an offered 10-Class collection termed MedCLNet visual
dataset, which consists of the NCT-CRC-HE-100K dataset, LC25000 dataset, and GlaS dataset. The
authors build various fundamental CNNs using this method. The study uses a simple transfer learning
strategy. The initial basis for this categorization procedure is nucleus segmentation.
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Using a non-complex CNN model, Ibrahim et al. [32] were able to identify four different forms
of colon cancer out of a dataset of 2500 photos. After extracting features from textures with 150 × 50
pixels, the model’s accuracy was 83%. Smaller, less precise datasets were also employed in the study.
The sensitivity and selectivity of the classifiers were not disclosed.

DarkNet19, Equilibrium, and Manta Ray Foraging are used in the DL model that Togacar
[33] built to create image classifications. We combined and categorized the features using the SVM.
Using certain tactics in conjunction with the model, the dataset’s categorization ability was enhanced,
yielding a 99.69% classifier performance percentage.

Advanced deep CNN (AD-CNN) was introduced by Laxmikant et al. [34] to diagnose lung and
colon cancer, with testing and training accuracy of 96.59% and 92.54%, respectively. By providing
individualized and early detection, this ground-breaking instrument transformed cancer diagnostics
and addressed global health concerns.

Kumar et al. [35] reviewed recent advancements, trends, and challenges in DL for cancer detection.
They discuss various DL models, including CNNs and RNNs, and their applications in identifying
different types of cancer from medical images and other data. The review highlights trends such as
multi-modal data integration, transfer learning models, and explainable AI in cancer detection.

2.3 Feature Selection Techniques

To determine the minimal features needed for diagnosing lung cancer using CT images,
Toğaçar et al. [36] presented a minimum Redundancy Maximum Relevance (mRMR) algorithm. This
method selects the most relevant features while minimizing redundancy and improving classification
accuracy when applied to CNN-extracted features. Similarly, Shanthi et al. [37] used a Stochastic
Diffusion Search (SDS) algorithm, a nature-inspired optimization technique that iteratively searches
for optimal features. They applied the SDS algorithm to enhance the performance of machine learning
models for lung cancer prediction.

By using the retrieved Gabor wavelet, Harris corner, Discrete Wavelet Transform (DWT), and
Local Binary Patterns (LBP) coefficients, Khadilkar [38] introduced a method that combines hybrid
feature extraction and genetic algorithm. Features from colon cancer images are extracted and
optimized using a genetic algorithm to select the most relevant subset. A neural network classifier
is then trained with these features, which aims at enhancing accuracy and effectiveness in colon cancer
detection.

Rasheed et al. [39] applied an Iterative Neighborhood Component Analysis (INCA) feature
selection algorithm for lung cancer screening. By employing a cascaded feature generation and
selection strategy, INCA identifies the most relevant features to improve diagnostic accuracy. The
algorithm enhances the screening process by effectively reducing dimensionality and focusing on the
most predictive features for efficient lung disease detection.

Lanjewar et al. [40] presented a modified CNN-based feature selection algorithm to detect lung
cancer from CT scans. They performed two feature selection algorithms to refine the extracted features
by a CNN model, which were then fed into various ML classifiers to improve diagnostic accuracy.
Moreover, a two-step hybrid strategy was developed by Sucharita et al. [41] to use microarray gene
expression data for feature selection in cancer detection/classification. Utilizing several measurement
indicators for evaluation, the strategy proved to be more effective than alternative approaches.
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2.4 Our Contributions Compared to Reviewed Techniques

In this research, the diagnosis of lung and colon cancers is attempted using several unique
indicators by different versions of deep CNNs in feature extraction and model constructions, and
utilizing the power of various ML algorithms. Additionally, it leverages the power of metaheuristic
optimization based on the EEFO algorithm for feature selection while reducing computational and
time burden. This study brings together the advantages of metaheuristics in feature selection and the
weighted average method in adjusting the weights of the ensemble learning model to increase the
classification accuracy, together with heterogeneous CNN and ML techniques to identify the most
accurate recognition model.

3 Proposed Method

In the proposed method, at first, the histopathological images are analyzed, and the pre-processing
phase begins. In this phase, image contrast is enhanced, and noise is reduced. Then, features are
extracted from the images using four deep CNNs (VGG16, ResNet18, DenseNet121, and EfficientNet-
b4), and the extracted features are connected. Among them, the best features are selected using the
EEFO algorithm. In the next step, selected features are used to train heterogeneous ML algorithms.
Among the mentioned algorithms, the three most efficient algorithms are identified using the HPF
filter, and their weights are calculated based on prediction accuracy using the weighted average
method. Then, the results of each ML algorithm are combined with the corresponding weight to form
an ensemble learning model. As shown in Fig. 1, the proposed method proceeds through the following
steps:

1. Pre-processing (reducing noise and increasing contrast).
2. Feature extraction using four CNNs: VGG16, ResNet18, DenseNet121, and EfficientNet-b4.
3. Learning operations with seven ML algorithms: LR, ET, SVM, MLP, DT, RF, and KNN.
4. Feature selection utilizing EEFO.
5. Selecting the most accurate ML models using the HPF filter.
6. Ensemble learning of the best classification models using the weighted average method.

3.1 Description of LC25000 Dataset

The LC25000 dataset, collected by Andrew Burkovsky and his team at James Tampa Hospital
in Florida, USA [42], comprises 25,000 images, segregated into two categories of colon cancer and
three categories of lung cancer. The distribution of images across these five categories is uniform,
indicating that the dataset is balanced with each category containing 5000 images. The categories
include colon_aca, represented by images of adenocarcinoma; colon_n, represented by images of
benign colon tissues; lung_aca, represented by images of lung adenocarcinoma; lung_scc, represented
by images of squamous cell lung cancer; and lung_n, represented by images of benign lung tissue. The
lung-colon cancer dataset’s distribution is displayed in Table 1.
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Figure 1: Proposed model for lung and colon cancer detection
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Table 1: Distribution of lung-colon cancer dataset

Cancer category Number of samples

Lung benign tissue 5000
Lung adenocarcinoma 5000
Lung squamous cell carcinoma 5000
Colon adenocarcinoma 5000
Colon benign tissue 5000

3.2 Data Preprocessing

In this step, the original histopathological images of dimensions 768 × 768 are resized to a
resolution of 224 × 224. Subsequently, these images are randomly partitioned into training images
(60%), validation images (20%), and test images (20%). The training and validation images are utilized
to train the classifiers and fine-tune the controllable parameters of the proposed model. This process
encompasses training various ML algorithms, selecting optimal features, applying the HPF filter, and
adjusting the weights of the ensemble model. It is crucial to reserve the test images for evaluating the
model’s generalizability on independent new unseen data.

The enhancement of the input images, achieved through noise reduction and the optimization
of significant features, is crucial for the extraction of pertinent information. This process ensures the
images’ compatibility with deep CNN models and ML networks. In the spatial domain, averaging
filters are generally used to remove noise. There are different types of noise, and for removing each
type of noise, a suitable filter exists that should be selected. In the proposed method, noise removal
from images is achieved using the fastNlMeansDenoisingColored algorithm, which is based on the
Non-Local Means (NLM) method. Currently, a variety of image enhancement techniques are being
utilized. One such approach involves improving the image contrast. A prevalent method for enhancing
the contrast of low-quality images is the histogram equalization technique. This technique modifies the
gray levels of the image to span the entire possible range. The fundamental concept involves mapping
the intensity brightness values via a transfer distribution function.

Histogram equalization enhances the contrast of an image relative to its original state, thereby
improving image quality and augmenting the accuracy of subsequent processing. Despite its ability
to boost image contrast, the resultant image often exhibits an unnatural enhancement and intensity
saturation. While it is effective in delineating borders and edges between distinct objects, it may
diminish local details. The data category for colon and lung cancer is displayed in Table 2. Overfitting
mainly occurs when the training and test data are the same or when the data lacks diversity. To address
overfitting, we ensure complete separation of training, test, and validation data, as shown in Table 2.
Furthermore, our dataset is balanced across classes, further reducing the risk of overfitting. This
approach helps maintain the model’s generalizability and robustness.
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Table 2: Category of data for lung-colon cancer

Cancer category Train Validation Test

Lung benign tissue 3000 1000 1000
Lung adenocarcinoma 3000 1000 1000
Lung squamous cell carcinoma 3000 1000 1000
Colon adenocarcinoma 3000 1000 1000
Colon benign tissue 3000 1000 1000

After transforming the scaled image into the RGB space, the fastNlMeansDenoisingColored
algorithm, which is grounded in the NLM technique, is employed to eliminate noise present in the color
images. The fastNlMeansDenoisingColored algorithm identifies analogous patterns in the vicinity of
each pixel by utilizing the information contained within the image and subsequently eliminates noise
based on these patterns. When a color image is subjected to noise, the color data of each pixel is
influenced by this noise, leading to alterations in both the color and intensity of the respective pixel.
The fastNlMeansDenoisingColored algorithm, by computing the weighted average of the color values
of adjacent pixels, endeavors to mitigate these alterations and restore the image to its original, noise-
free state. The fastNlMeansDenoisingColored algorithm proves particularly effective in eliminating
noise in low-quality images, images afflicted with speckle noise and images captured under low-light
conditions.

The image undergoes a transformation from the RGB (Red, Green, Blue) color space to the LAB
color space, and the L channel is subsequently isolated from the LAB image. Following this, color
balancing procedures are executed on the L channel utilizing the equalizeHist function, and the L
channel is then amalgamated with the A and B channels of the LAB image procured from the preceding
step. The image is then reverted to the RGB color space and normalized. In the next step, the intensity
and clarity of the image are adjusted randomly, and automatic contrast adjustment operations are
conducted on the image. Afterward, the image is converted into the Tensor format. Preprocessing
images not only augments the power of distinction in human visual perception but also bolsters this
capability in DL algorithms. Fig. 2 describes the pre-processing steps.

Resize
(224,224)

Histogram
equalization

ContrastSharpness() Tensor
Non-local Means 

Denoising

Figure 2: Preprocessing steps

3.3 Features Extraction Using CNNs

The crux of learning lies in the accurate detection of features from the data. Learning models
operate on these features to yield the outcome. One method of feature extraction involves the use of
DL models, specifically CNNs. In the proposed method, four pre-trained CNNs (VGG16, ResNet18,
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DenseNet121, and EfficientNet-b4) are employed for 2-Class, 3-Class, and 5-Class tasks. These CNN
models extract 4096, 512, 1024, and 1792 features from each image, respectively.

In this study, transfer learning [43] is used to extract features from the input images. Initially,
the primary layers of each CNN model are frozen, and the training images are processed through
these layers. It allows the model to leverage learned features from extensive pre-training to enhance
its ability to extract meaningful features from new images. Thus, the features extracted by these
deep layers encapsulate valuable information about the images. These features are subsequently
utilized as input for ML algorithms. Applying this transfer learning methodology is anticipated to
facilitate the extraction of high-quality features, thereby enhancing the performance of ML algorithms.
This approach leverages the power of pre-trained models to extract meaningful features, which can
significantly improve the effectiveness of subsequent ML tasks.

3.4 Feature Selection

The purpose of a feature selection algorithm is to reduce the dimension of the dataset in terms
of the extracted features. This process can be conceptualized as an optimization problem that aims
to maximize the predictive power of the model with the minimum number of features. Considering
the NP (Non-deterministic Polynomial)-hardness of this problem, it is beneficial to use metaheuristic
algorithms that prove an effective solution approach for the NP-hard problems.

This paper presents a metaheuristic-driven method for reducing dimensionality in the original
feature set using EEFO [44], a bio-inspired algorithm inspired by electric eels’ intelligent group search
behaviors. The algorithm balances exploration and exploitation, with an energy factor managing
global to local search transitions. A feasible solution within the EEFO algorithm (i.e., an electric eel)
to solve the feature selection problem in this paper is encoded as a binary string of length N, where
N is the total number of original features. Fig. 3 represents a feasible solution, wherein “1” means the
selection and “0” means the absence of the corresponding feature within the solution.

Figure 3: Represent of a feasible solution in the EEFO algorithm

At every iteration of the EEFO algorithm, each generated solution is evaluated using a fitness
function. The proposed fitness function, as defined in Eq. (1), combines the accuracy of the model with
the effect of the EEFO approach on feature selection and strikes a balance between model accuracy
and reducing the complexity of feature selection for more efficient and effective performance.

Fitness Function(i) = w × Acci + (1 − w) ×
(

1 −
∑

Fi

N

)
(1)

where w represents the importance of accuracy in the fitness function, Acci is the calculated accuracy
of the i-th solution, and Fi is the number of selected features by the i-th solution.

In the proposed feature selection algorithm, as shown in Fig. 4, EEFO starts with an initial
population of candidate feature sets and refines and updates feature subsets using an evolutionary
optimization technique. The energy coefficient plays a key role in EEFO and governs the selection of
search behaviors. If the energy coefficient exceeds 1, the algorithm performs an exploratory behavior,
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and conversely, when the energy coefficient is less than or equal to 1, a behavior (either resting, hunting
or migration) is randomly selected with equal probability and carried out for exploitation.

Figure 4: Overall flowchart of the EEFO algorithm

3.4.1 Interaction

Interaction in EEFO is based on the behavior of electric eels, which form a large electrified circle
by coordinating swimming and waving movements. Each electric eel in EEFO serves as a candidate
solution, with each step selecting the optimal solution. Eels communicate using their peers’ position
data and interact with regional information in the search space. One can formulate this operational
method as follows:

A = n1 × B (2)

n1 ∼ N(0, 1) (3)

B = [b1, b2, . . . bk, . . . , bd] (4)

b(k) =
{

1 if k == g{l}
0 else

(5)

g = randperm(Dim) (6)

l = 1, . . . ,
[(

MaxIt − It
MaxIt

× rand1 × (Dim − 2) + 2
)]

(7)
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where MaxIt is the maximum number of iterations in the EEFO algorithm, A is a random vector
that determines the direction and magnitude of the eel’s random movement in the search space, B is a
binary vector that specifies which dimension of the search space should be considered for this random
movement, and g generates a random number equal to the number of original features. Furthermore,
the interactive behavior can be defined as follows:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

{
wi (It + 1) = xj (It) + A × (x (It) − xi (It)) P1 > 0.5
wi (It + 1) = xj (It) + A × (xr (It) − xi (It)) P1 ≤ 0.5

fit
(
xj (It)

)
< fit (xi (It))

{
wi (It + 1) = xi (It) + A × (

x (It) − xj (It)
)

P2 > 0.5
wi (It + 1) = xi (It) + A × (

xr (It) − xj (It)
)

P2 ≤ 0.5
fit

(
xj (It)

) ≥ fit (xi (It))

(8)

x (It) = 1
n

∑n

i=1
xi(It) (9)

xr = Low + r × (Up − Low) (10)

where P1 and P2 are random numbers within (0,1), n stands for the population size, rand1 is a random
number in the range (0, 1), and r is a random vector within the same range. Furthermore, the function
fit (xi (It)) calculates the fitness of the i-th electric eel candidate’s position, while xj is the position of
an eel that is randomly selected from the current population, with the condition that j �= i. Moreover,
Low and Up denote the lower and upper boundaries, respectively. According to Eq. (8), the interactive
behavior enables electric eels to navigate toward various positions in the search space, significantly
aiding EEFO in thoroughly exploring the entire search space.

3.4.2 Resting

In the EEFO algorithm, a rest zone is defined before the electric fish’s rest phase. This region in
the search space normalizes each dimension of the fish position vector to a random value between 0
and 1. The search space randomly selects and predicts one dimension. This value is considered to be
the center of the rest zone. Each dimension of the eel’s position vector receives a normal random value
in this rest region. The purpose of this resting area is to help the eels search better and increase the
algorithm’s efficiency. Based on these descriptions, we can characterize the resting place as follows:{

X |X − Z (It) ≤ α0 × ∣∣Z (It) − xprey(It)
∣∣} (11)

α0 = 2 ·
(

e − e
It

MaxIt

)
(12)

Z (It) = Low + z (It) × (Up − Low) (13)

Z (It) = xrand(Dim)

rand(n)

(
It − Lowrand(Dim)

)
Uprand(Dim) − Lowrand(Dim)

(14)

where xprey denotes the position vector of the best solution found so far, while α0 is the initial scale of
the resting area. The expression α0 × ∣∣Z (It) − xprey(It)

∣∣ defines the range of the resting area. The term
xrand(Dim)

rand(n) refers to the random position of an individual, randomly selected from the current population.
Lastly, Z is a normalized number. Consequently, the resting state of an electric eel, prior to executing
resting behavior within its resting area, can be determined as follows:

Ri (It + 1) = Z (It) + α × ∣∣Z (It) − xprey(It)
∣∣ (15)

α = α0 × sin (2π × rand2) (16)
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where α denotes the scale of the resting area, and rand2 is a random number selected from the interval
(0, 1). The scale α is designed such that as the iterations continue, the range of the resting area
diminishes. This results in an increased focus on exploitation.

Once the resting area is determined, the electric eels navigate toward it for rest. In other words,
an electric eel updates its position to align with its resting state within the defined resting area. The
resting behavior can be modeled as follows:

wi (It + 1) = Ri (It + 1) + n2 × (Ri (It + 1) round (rand) × xi (It)) (17)

n2 ∼ N(0, 1) (18)

3.4.3 Hunting

The electric eels swim collectively until they finally form a large circle around their prey. Through
their electric organ discharge, the eels communicate and work cooperatively. A rise in interaction
reduces the size of the circle into some sort of hunting zone. The prey moves about erratically threat-
driven to escape from the hunting zone.

The hunting zone is a dynamic area where electric eels collectively besiege and move the prey
from deeper to shallower waters. In the hunting zone, the prey experiences sudden and successive
disturbances, causing it to move erratically and unpredictably in different positions in the hunting
space. The hunting zone can be defined as follows:{

X
∣∣X − xprey(It)

∣∣ ≤ β0 × ∣∣x (It) − xprey(It)
∣∣} (19)

β0 = 2 ×
(

e − e
It

MaxIt

)
(20)

where β0 is the initial scale of the hunting area. From Eq. (19), an electric eel focuses on the prey whose
hunting range is determined by the expression β0 × ∣∣x (It) − xprey(It)

∣∣. Therefore, a new gray position,
relative to its previous position in the hunting area, can be calculated as follows:

Hprey (It + 1) = xprey (It) + β × ∣∣x (It) − xprey(It)
∣∣ (21)

β = β0 × sin (2π × rand3) (22)

where β is the scale of the hunting area and rand3 is a random number within (0, 1). The scale parameter
β is defined such that the range of the hunting area decreases over time. This enhances the algorithm’s
ability to exploit the search space.

An electric eel initiates a hunting zone by quickly locating the prey’s new position, coiling around
it, and generating a high-voltage electric field in the surrounding area. This behavior, characterized by
EEFO, updates the eel’s position to align with the prey’s new location. The electric eel uses a coiling
motion to initiate physical contact with its prey, allowing it to maintain close proximity and generate a
high-voltage electric field, immobilizing the prey for effective hunting. The coiling behavior of electric
eels during hunting can be described as follows:

wi (It + 1) = Hprey (It + 1) + η × (
Hprey (It + 1) − round (rand) × xi (It)

)
(23)

where η is the coiling coefficient, which can be defined as follows:

η = e
rand4(1−It)

MaxIt × cos (2π × rand4) (24)

where rand4 is a random number within (0, 1).
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3.4.4 Migration

When the electric eels find prey, they tend to migrate from the resting area to the hunting area.
The following equation is used to mathematically model the migration behavior of the electric eels:

wi (It + 1) = −rand5 × Ri (It + 1) + rand6 × Hr (It + 1) − L × (Hr (It + 1) − xi (It)) (25)

Hr (It + 1) = xprey (It) + β × ∣∣x (It) − xprey(It)
∣∣ (26)

where Hr can be interpreted as any position within the hunting area, while rand6 and rand5 are random
numbers within the range (0, 1). The expression Hr (It + 1) − xi (It) signifies that the electric eels are
migrating towards the hunting area. L represents the Levy flight function, which is incorporated into
the exploitation phase of EEFO to avoid becoming ensnared in local optima. L can be determined as
follows:

L = 0.01 ×
∣∣∣∣∣u · σ

|v| 1
C

∣∣∣∣∣ (27)

u, v ∼ N(0, 1) (28)

σ =
(

� (1 + C) × sin
(

πC
2

)
�

(
1+C

2

) × C × 2
C−1

2

) 1
C

(29)

where � is the standard gamma function, and C = 1.5.

The electric eel can detect the location of its prey through a minor electrical discharge, enabling it
to adjust its position as needed. If the electric eel senses the proximity of the prey during the foraging
process, it advances toward the prospective position. Conversely, if the prey is not within close range,
the electric eels maintain their existing position. The position of the electric eels is updated according
to the following equation:

xi (It + 1) =
{

xi (It) fit (xi (It)) ≤ fit (wi (It + 1))

wi (It + 1) fit (xi (It)) > fit (wi (It + 1))
(30)

3.4.5 Transition from Exploration to Exploitation

In EEFO, search behaviors are governed by an energy agent. This agent can adeptly manage
the transition between exploration and exploitation phases, thereby enhancing the optimization
performance of the algorithm. The energy coefficient value of the electric eel is utilized to choose
between exploration and exploitation. The energy coefficient E in the EEFO algorithm is defined as
follows:

E (It) = 4 × sin
(

1 − It
MaxIt

)
× ln

1
rand7

(31)

As rand7 generates a random number between 0 and 1, Eq. (31) illustrates that E diminishes as
the iterations progress. When E > 1, the electric eels display reciprocal behavior and conduct a global
search across the entire variable space, thereby initiating exploration. On the other hand, when E < 1,
electric eels are inclined to conduct a local search within a promising sub-region. This is achieved
through migration, resting, or hunting behaviors, which leads to exploitation. During the initial half
of the iterations, exploration is the predominant behavior, while the latter half is characterized by a
higher likelihood of exploitation. Based on [44], the likelihood of engaging in either exploration or
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exploitation during the whole optimization process is roughly 50%. It contributes to maintaining an
equilibrium between exploration and exploitation.

3.5 Ensemble Learning Model

The features derived from the preceding stage serve as inputs for seven ML algorithms: RF, LR,
DT, SVM-RBF, ET, MLP, and KNN. These algorithms execute the learning process, and the method’s
performance is assessed based on their outputs. After training the different ML models, the HPF filter
identifies the top three most efficient ML algorithms for the learning process. To achieve this purpose,
the performance of various ML algorithms is assessed and ranked according to their accuracy on
the validation data set, and accordingly, the three algorithms with the highest accuracy are chosen
for the ensemble learning model. Adopting this approach ensures that the ensemble learning model
incorporates the most efficient ML algorithms, thereby enhancing the precision of the predictions.
After selecting the top three ML algorithms, they are employed during the ensemble learning process
to optimize the compatibility and accuracy of the predictions. Eventually, this approach makes the
most use of the strengths of different ML algorithms, leading to improved overall efficiency in the
ensemble learning model.

In the proposed ensemble learning model, we use the weighted average method to calculate the
final output, according to Eq. (32). It is a simple ensemble learning technique in which predictions
from multiple models are combined by computing a weighted average [45]. In this method, the
prediction of each model is multiplied by a specific weight to obtain the final prediction. By carefully
adjusting the weights between 0 and 1, it is possible to give more importance to the prediction of
specific models in the final output. By assigning higher weights to models that perform well on specific
tasks or datasets, we can create a set that is stronger and more accurate than any other model. However,
the main challenge is determining the optimal weights for each model, which can be a time-consuming
and computationally expensive process.

Ensemblew =
∑n

i=1 wi × MLi∑n

i=1 wi

(32)

where wi denotes the weight associated with each MLi, and n is the number of different ML algorithms
in the ensemble model.

In the proposed weighted average technique, GRidSearchCV and Cross_val_Score are used to
select the best weights. GridSearchCV searches among these combinations of parameters to find the
best weights that optimize the performance of the ensemble model. cross_val_score is a function that
can be used to evaluate the performance of each model in the set using cross-validation. We use
cross_val_score to evaluate the accuracy of each model and assign weights based on their performance.
More specifically, the weight of each selected ML model is proportional to its normalized accuracy
level on the validation dataset. Algorithm 1 displays the pseudo-code of the proposed weighted average
ensemble learning model.

Algorithm 1: Pseudo-algorithm for weighted average ensemble learning
1. Define a list of models (ML_1, ML_2, ..., ML_n) within the ensemble learning model.
2. Train each model in the set on the input data (X, y).
3. Evaluate the performance of each model by calculating the accuracy score on the training data.
4. Define a parameter network with different sets of weights for each model.
5. Use GridSearchCV to find the optimal weights that maximize the accuracy score.

(Continued)
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Algorithm 1 (continued)
6. Retrieve the optimal weights from the GridSearchCV results.
7. Compute the weighted average forecast by combining forecasts of each model using the optimal

weights.
8. Evaluate the ensemble model by calculating the accuracy score of the combined predictions.

4 Research Finding

In this section, we assessed our final model using the LC25000 dataset and our suggested approach
utilizing measures such as accuracy, precision, recall, and F1-score. Here is a list of all the acquired
findings, together with the necessary graphics. During the experiment, we evaluated the EEFO with
the following parameters: 50 eels and a maximum of 100 repetitions. The experiments were carried
out on a device equipped with Windows 10 Pro, an Intel® Core™ i7-9700 processor operating at a
frequency of 3.00 GHz, 8 cores, a 512 GB SSD (Solid State Drive), a 1 TB hard disk, and 16 GB of
RAM (Random Access Memory).

4.1 Evaluation Metrics

In the following, we will examine the criteria of accuracy, precision, recall, and F1-score. In the
proposed classification method, one of the following cases will occur based on a comparison between
the system’s predicted label and the actual label for each test instance:

• True Positive (TP) represents the condition where the algorithm correctly identifies individuals
with lung and colon cancer.

• False Negative (FN): a state in which the algorithm mistakenly identifies individuals with lung
cancer and colon as healthy.

• False Positive (FP) occurs when some individuals are healthy, but the algorithm incorrectly
diagnoses them with cancer.

• True Negative (TN) is a state in which individuals are healthy and the algorithm correctly
recognizes this.

Accuracy is the main measure of performance, denoting the proportion of correctly predicted
samples to the overall number of predictions, which can be calculated as Eq. (33). Precision can be
defined as a quantification of the predicted positive observations. It is derived from the proportion of
accurately predicted positive instances to the overall number of positive predictions, and is computed
as Eq. (34). Recall is a measure of the proportion of positive observations that were accurately
predicted. According to Eq. (35), it is calculated as the ratio of accurately anticipated positives to
total positive observations. F1-score can be defined as the mathematical average of the precision and
recall values that are derived from a specific classification model. The F1-score can be determined as
Eq. (36). Specificity quantifies the ability of a model or a diagnostic test to correctly identify true
negative instances, which can be calculated as Eq. (37). Finally, Negative Predictive Value (NPV)
measures the ability of a test or model to accurately identify negative instances, which is computed
as Eq. (38).

Accuracy = TP + TN
TP + FP + TN + FN

(33)

Precision = TP
TP + FP

(34)
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Recall = TP
FN + TP

(35)

F1 − score = 2 × Precision × recall
Precision + recall

(36)

Specificity = TN
TN + FP

(37)

NPV = TN
TN + FN

(38)

4.2 Performance Evaluation

4.2.1 Evaluation of Deep CNN Models

The results of the different CNNs using MLP at the last layer are reported in Table 3. According
to the obtained results, DenseNet121 demonstrated superior performance compared to ResNet18,
VGG16, and Efficientnet-b4, in all classification tasks. In addition, DenseNet121 consistently outper-
formed other models in all classification tests with minimal fluctuations, as seen by its higher F1-score,
which assesses both accuracy and recall.

Table 3: Results of CNN models using trained weights

Classifier Accuracy (%) Precision (%) Recall (%) F1-score

ResNet18
2-Class 96.39 93.84 95.99 94.9
3-Class 92.34 94.84 92.23 93.10
5-Class 95.41 95.89 95.41 93.33

VGG16
2-Class 96.35 95.72 96.34 96.03
3-Class 93.51 94.28 93.5 88.43
5-Class 91.4 92.72 91.4 87.62

DenseNet121
2-Class 98.69 98.57 98.41 98.5
3-Class 94.6 97.1 92.48 94.38
5-Class 95.94 96.94 96.15 95.7

Efficientnet-b4
2-Class 96.42 96.48 96.66 96.57
3-Class 93.01 93.53 92.01 92.81
5-Class 94.84 95.02 94.66 94.84

4.2.2 Evaluation of ML Models

Table 4 shows that all ML models have good accuracy, precision, recall, and F1-score values,
suggesting robust categorization. The FR, LR, and SVM classifiers surpass other classification tasks
in accuracy, precision, recall, and F1-score, while DT, ET, MLP, and KNN classifiers also perform
well, with accuracy ratings of 88.70% to 99.71% across classification tests. Although their accuracy
ratings are somewhat lower than RF, LR, and SVM, these models have good precision, recall, and
F1-score values, making them suitable for many classification applications.
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Table 4: Results of different ML models with feature selection

Classifier Accuracy (%) Precision (%) Recall (%) F1-score

RF
2-Class 99.20 99.20 99.00 99.10
3-Class 95.93 95.92 95.93 95.93
5-Class 96.03 96.02 96.02 96.03

LR
2-Class 99.82 99.82 99.91 99.86
3-Class 98.36 98.36 98.37 98.37
5-Class 98.41 98.40 98.40 98.40

DT
2-Class 95.89 95.9 95.88 95.89
3-Class 91.87 91.83 91.86 91.84
5-Class 88.70 88.67 88.70 88.68

SVM
2-Class 99.71 99.80 99.71 99.75
3-Class 97.60 97.62 97.60 97.60
5-Class 97.96 97.97 97.96 97.96

ET
2-Class 99.32 99.27 99.34 99.30
3-Class 95.43 95.41 95.43 95.42
5-Class 95.76 95.75 95.76 95.76

MLP
2-Class 99.71 99.71 99.80 99.75
3-Class 95.73 95.74 95.73 98.73
5-Class 98.90 98.91 98.90 98.91

KNN
2-Class 99.63 99.63 99.57 99.60
3-Class 97.26 97.32 97.26 97.26
5-Class 97.04 97.12 97.04 97.08

4.2.3 Evaluation of Feature Selection Algorithm

Fig. 5 demonstrates the convergence curve in 2-Class, 3-Class, and 5-Class scenarios. In the
following illustrations, the upper graph typically portrays the number of algorithm iterations at each
time point on the horizontal axis, while the vertical axis represents the fitness level. Likewise, the
lower graph usually displays the number of iterations of the algorithm at each point in time on the
horizontal axis, while the vertical axis displays the number of features selected. Therefore, in our
graphical representations, we can see a very gradual and progressive increase in the value of the fitness
as the performance of the algorithm progresses towards an optimum point or close to it. Consequently,
our approach successfully attains convergence, signifying the algorithm’s achievement of the optimal
solution. In fact, this graph shows the number of features that are selected in each iteration. The total
number of features is 7424, and each time in each iteration, a number of these features is selected.
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Figure 5: Convergence graph of EEFO for (a) 2-Class, (b) 3-Class, and (c) 5-Class scenarios
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4.2.4 Evaluation of Ensemble Learning Model

Table 5 demonstrates that the ensemble model outperforms alternative classification models,
obtaining outstanding results with accuracy, precision, recall, specificity, F1-score, and NPV, sur-
passing 99.8% for the 2-Class classification. It continuously exceeds 98.5% in the 3-Class and 5-Class
scenarios. The model’s elevated specificity values underscore its dependability in forecasting negative
outcomes across diverse categories.

Table 5: Results of the weighted ensemble

Classifier Accuracy Precision Recall Specificity F1-score NPV

Proposed ensemble
model

2-Class 99.85 99.85 99.85 99.80 99.85 99.80
3-Class 98.70 98.70 98.70 99.36 98.67 99.37
5-Class 98.96 98.96 98.96 99.73 98.96 99.74

Figs. 6–8 display the Receiver Operating Characteristic (ROC) and confusion matrix for the
different scenarios. Fig. 6a outstands the ROC of the different ML algorithms, and Fig. 6b illustrates
the confusion matrix of the ensemble model for the 2-Class scenario. Fig. 7a shows the superior
performance of the classification algorithms we implemented. As can be seen, we have obtained the
highest AUC in the 3-Class scenario. Fig. 7b provides the confusion matrix of the ensemble model
for the 3-Class scenario. Fig. 8a illustrates the remarkable efficacy of the classification algorithms we
have implemented. As can be discerned, we have attained the utmost AUC in the 5-Class scenario.
This outcome resulted in an increase in the TPR (True Positive Rate) and a decrease in the FPR (False
Positive Rate), indicating a significant improvement in the proportion of precisely detected positive
cases in contrast to real negative instances.

Figure 6: ROC curve and confusion matrix of the proposed model for 2-Class scenario
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Figure 7: ROC curve and confusion matrix of the proposed model for 3-Class scenario

Figure 8: ROC curve and confusion matrix of the proposed model for 5-Class scenario

4.2.5 Comparison with Existing Techniques

The comparative analysis of the proposed ensemble learning model with existing techniques is
presented in Table 6. Specifically, we have implemented an ML technique known as RICA [24], a DL
technique called AD-CNN [34], and a feature selection algorithm termed INCA [39]. To ensure a fair
comparison, all techniques were applied to the same lung/colon datasets under identical conditions.
The results, as shown in Table 6, clearly illustrate the superiority of the proposed ensemble learning
model over all the compared techniques.
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Table 6: Comparison of the proposed ensemble learning model with the existing techniques

Classifier Accuracy (%) Precision (%) Recall (%) F1-score

RICA [24] (ML)
2-Class 99.27 99.42 98.71 99.06
3-Class 95.65 96.12 95.41 95.76
5-Class 96.08 95.87 96.51 96.19

AD-CNN [34] (DL)
2-Class 99.43 99.66 99.70 99.68
3-Class 96.62 95.02 95.14 95.08
5-Class 98.21 98.51 98.10 98.30

INCA [39] (Feature
selection)

2-Class 99.12 99.25 99.52 99.38
3-Class 96.48 96.71 96.28 96.49
5-Class 96.78 97.12 96.42 96.77

Proposed ensemble
deep learning model

2-Class 99.85 99.85 99.85 99.85
3-Class 98.70 98.70 98.70 98.67
5-Class 98.96 98.96 98.96 98.96

5 Conclusion

This study emphasizes the crucial importance of image processing and deep learning in the
prompt detection of lung and colon malignancies, leading to early treatment start and enhanced
chances of survival. The framework utilizes ensemble deep learning and metaheuristic techniques to
accurately predict colon or lung cancer from histopathology pictures with a high level of precision.
The work not only emphasizes the need for data pretreatment but also performs noise reduction
and contrast enhancement to get precise and pertinent characteristics. Utilizing machine and deep
learning algorithms and metaheuristic approaches enhances the performance of the classification
model, resulting in exceptional accuracy. Additional comparable approaches were incorporated into
the weighted ensemble, and the suggested model demonstrated improved performance in comparison
to the others. The results confirm that the proposed model significantly improves the accuracy of
diagnosing lung and colon cancers, leading to substantial improvements in patient outcomes and
medical treatment options.

The proposed ensemble learning model reduces overfitting through multiple mechanisms. By
combining various ML algorithms, it balances the bias-variance tradeoff, improving generalization
to unseen data. Averaging predictions from multiple DL and ML models minimizes individual errors,
and the diversity of base learners cancels out specific mistakes, leading to more robust and accurate
lung/colon cancer classification.

Despite the mentioned advantages, our proposed model has some limitations. One limitation is
the lack of external datasets in the model’s analysis, which may not fully capture its performance across
diverse real-world scenarios. Future research should aim to expand the model’s applicability by testing
it on a broader range of datasets and exploring advanced techniques to enhance both its robustness
and transparency. Moreover, aggregation of the multiple CNN and ML models lacks interpretability,
making it challenging to understand how the model arrives at its conclusion and the logical basis for its
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outputs, which poses a challenge in applications requiring transparency and accountability. To address
this limitation, we intend to incorporate Explainable AI (XAI) methods in future works.
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