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ABSTRACT

This study explores the impact of hyperparameter optimization on machine learning models for predicting
cardiovascular disease using data from an IoST (Internet of Sensing Things) device. Ten distinct machine learning
approaches were implemented and systematically evaluated before and after hyperparameter tuning. Significant
improvements were observed across various models, with SVM and Neural Networks consistently showing
enhanced performance metrics such as F1-Score, recall, and precision. The study underscores the critical role
of tailored hyperparameter tuning in optimizing these models, revealing diverse outcomes among algorithms.
Decision Trees and Random Forests exhibited stable performance throughout the evaluation. While enhancing
accuracy, hyperparameter optimization also led to increased execution time. Visual representations and compre-
hensive results support the findings, confirming the hypothesis that optimizing parameters can effectively enhance
predictive capabilities in cardiovascular disease. This research contributes to advancing the understanding and
application of machine learning in healthcare, particularly in improving predictive accuracy for cardiovascular
disease management and intervention strategies.

KEYWORDS
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1 Introduction

In the current era of Artificial Intelligence (AI), Machine Learning (ML), and Robotics, cardiovas-
cular disease remains a significant cause of mortality globally, necessitating effective predictive models
for early diagnosis and intervention. Researchers have increasingly turned to machine learning algo-
rithms to predict heart attacks, leveraging diverse datasets to improve accuracy. This study focuses on
the pivotal role of hyperparameter optimization in refining machine learning models for cardiovascular
disease prediction. By implementing ten distinct ML approaches and systematically evaluating their
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performance metrics, we aim to uncover the impact of hyperparameter tuning on predictive accuracy.
Support Vector Machines (SVM) and Neural Networks consistently show enhanced performance
following hyperparameter optimization. Additionally, this research delves into the mathematical
underpinnings of each model, highlighting the distinctions arising from hyperparameter optimization.
The ultimate goal is to contribute to a deeper understanding of the effectiveness of hyperparameter
tuning in optimizing ML models for cardiovascular disease prediction, thus advancing early and
accurate diagnosis in clinical settings.

This research is driven by the critical imperative to enhance the precision and dependability of
cardiovascular disease prediction, recognizing its substantial global health implications. The novelty
lies in integrating advanced machine learning models to enable early detection and intervention,
promising significant societal benefits. Through meticulous hyperparameter optimization, this study
aims to achieve heightened prediction accuracy, equipping healthcare professionals with powerful
tools for timely diagnosis and personalized interventions. This approach not only holds potential
for saving lives but also alleviating the societal impact of cardiovascular disease. Furthermore, by
elucidating the mathematical foundations derived from hyperparameter optimization, this research
aims to facilitate the practical adoption of these models in clinical practice, advancing proactive and
tailored healthcare strategies.

The contribution of this work lies in systematically exploring the impact of hyperparameter
optimization on ML models for cardiovascular disease prediction. We enhance predictive performance
across various algorithms by rigorously analyzing and fine-tuning key parameters. This study offers
valuable insights into the optimization process, providing a foundation for improved model selec-
tion and parameter-tuning strategies in healthcare applications. Additionally, the technical analysis
conducted here advances our understanding of the nuanced interactions between hyperparameters
and model performance, contributing to the refinement and optimization of predictive models
in healthcare.

The subsequent sections of the paper are organized as follows: The background study summarizes
previous research on cardiovascular disease prediction with ML over the past two decades. The
methodology section outlines the hypothesis, dataset description, and calculations for ML algorithms
and parameter optimization techniques. Subsequently, the results section presents the outcomes before
and after parameter optimization in ML approaches, followed by the discussion section analyzing the
impacts of parameter optimization. Finally, the conclusion section offers concluding remarks and
outlines future directions for research.

2 Background Study

Cardiovascular diseases, such as heart attacks, hypertension, and strokes, constitute a significant
global health concern and have emerged as the leading cause of mortality worldwide [1]. The integra-
tion of sensor-based technologies has facilitated the collection of biological data and health metrics
from the human body, enabling the prediction of various diseases [2]. Authors of [3] implemented
an IoST-enabled system to predict abnormal finger movements. Cardiovascular diseases, including
heart attacks and strokes, account for approximately 30% of all global deaths, with an estimated
20 million fatalities reported annually [4]. Reinforcement learning, specifically, has proven valuable
in disease management [5]. Expert systems show effectiveness in disease prediction, as seen in a
sensor-based system for neurodegenerative disease detection. Innovations like exploring linear and
non-linear features of Heart Rate Variability (HRV) [6] and using smartphones for heart attack
prediction [7] demonstrate ongoing efforts in leveraging technology for healthcare. In heart attack
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prediction through ML, researchers examine features like pulse rate, respiratory rate, blood pressure,
and temperature [7]. Fuzzy logic and data mining techniques, including respiratory rate as a key
physiological indicator [7], have been used for accurate results. The comparison of supervised machine
learning algorithms for long-term patient prediction shows the superiority of SVM+ [8]. Heartbeat
sounds, a valuable diagnostic parameter, reveal that only two out of the four sounds are audible.
Dimensionality reduction techniques like minimal redundancy maximum relevance (mRMR) and
Principal Component Analysis (PCA) enhance prediction accuracy, with random forest as the most
accurate predictor. Reinforcement learning methods are applied to disease identification, featuring
a novel approach optimizing clinical concept mining through a deep Q-network architecture [8].
The iterative quest for optimal clinical terms during training enables the agent to learn an effective
diagnostic strategy. Researchers emphasize the critical role of data-driven models in healthcare [9],
evaluate different ML techniques for cardiovascular disease prediction [10], propose hybrid ML
techniques [11], and explore ML algorithms for cardiovascular disease prediction [12]. Ongoing efforts
include the development of hybrid ML models [13], the use of ML for cardiovascular disease prediction
[14], and the implementation of ML models for predicting heart failure [15]. Other contributions
involve predicting cardiovascular disease using ML algorithms [16], proposing a hybrid intelligent
system framework for cardiovascular disease prediction [17], introducing an IoT-based model for
cardiovascular disease prediction [18], improving risk prediction in heart failure using ML [19],
developing a real-time cardiovascular health monitoring system using ML algorithms [20], and
presenting work on cardiovascular disease prediction using ML [21]. Additionally, there is a predictive
analysis of cardiovascular diseases using ML approaches [22].

Fig. 1 illustrates a consistent rise in research works related to “heart attack prediction with
machine learning and IoT” on Google Scholar from 1995 to 2023. Starting at 141 in 1995, the numbers
remained relatively stable until the mid-2000s, after which there was a steady increase. The peak
occurred in 2023 with 310 research works, indicating a growing interest in leveraging machine learning
and IoT for heart attack prediction. This upward trend reflects advancements in technology and a
heightened awareness of the potential applications in healthcare. The data highlights the evolving
landscape of research in this field, emphasizing its increasing significance over the years.

Figure 1: Research works found in google scholar with related topics

In Fig. 2, we present a word cloud illustrating the most frequently used words among the related
works from the past 23 years (2000–2023) as found in Google Scholar. The size of each word
corresponds to its frequency, providing a visual representation of the key terms prevalent in literature.
This word cloud offers a quick overview of the prominent themes and topics within the body of
related research. In recent years, machine learning has experienced a surge in applications across
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various domains. Authors of [23,24] illustrated the integration of machine learning in healthcare.
These contributions highlight the versatility and impact of machine learning in addressing diverse
challenges across various domains, from healthcare to agriculture and beyond. Undoubtedly, research-
ing predicting cardiac disease using machine learning holds significant promise as it contributes to
advancing scientific knowledge and has the potential to profoundly benefit mankind by enabling more
accurate and personalized risk assessments, early detection, and tailored interventions for improved
cardiovascular health.

Figure 2: Word cloud with the most used words among the related works (size of each word corresponds
to its frequency)

3 Methodology
3.1 Hypothesis

Our hypothesis posits that there exists an optimal set of hyperparameters within the hyperpa-
rameter space H, that maximizes the performance of our machine learning model. The performance
of the model is denoted by P(h), where h represents a specific configuration of hyperparameters.
We aim to identify this optimal configuration h∗, which yields the highest model performance. This
involves systematically exploring the hyperparameter space H and evaluating the corresponding model
performance. The optimization process entails fine-tuning the hyperparameters to achieve the highest
possible predictive accuracy for cardiovascular disease prediction. In summary, our objective is to
discover the most effective combination of hyperparameters that enhances the model’s predictive
accuracy.

3.2 IoST Device and Data

To develop our IoT health monitoring device, we require specific sensors tailored to measure
various physiological parameters. These include the DS18B20 temperature sensor (model number
DS18B20) for accurate body temperature readings, the AD8232 Heart Rate Monitor sensor (model
number AD8232) for monitoring heart rate and rhythm, the BMP180 Barometric Pressure sensor
(model number BMP180) for measuring systolic and diastolic blood pressure, the MAX30102 Pulse
Oximeter and Heart-Rate Sensor (model number MAX30102) for measuring oxygen saturation levels
in the blood, the MPU-6050 3-axis Accelerometer and Gyroscope sensor (model number MPU-
6050) for tracking activity levels and movement intensity, the MPXV5004DP Respiratory Rate Sensor
(model number MPXV5004DP) for monitoring breathing frequency, and the Freestyle Libre Glucose
Sensor (model number Freestyle Libre) for measuring blood glucose levels. By integrating these sensors
with the Raspberry Pi, our IoT health monitoring system can provide comprehensive real-time data for
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assessing and managing various health parameters. Table 1 illustrates the circuit wiring configuration
linking the Raspberry Pi with the DS18B20, AD8232, and MAX30102 sensors.

Table 1: The circuit wiring of the IoST device connects the Raspberry Pi with the DS18B20, AD8232,
and MAX30102 sensors

Sensors Raspberry Pi pins

DS18B20 temperature
GPIO 4 (Pin 7)
3.3V
GND

AD8232 heart rate
GPIO 18 (Pin 12)
3.3V
GND

MAX30102 pulse oximeter

SCL (Pin 5)
SDA (Pin 3)
3.3V
GND

Fig. 3 shows the architecture of the Raspberry Pi-based IoST device for predicting cardiovascular
disease. Fig. 4 shows the circuit diagram of this Raspberry Pi-based IoST predictor device.

Figure 3: Raspberry Pi IoST-cardiovascular disease predictor device architecture
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Figure 4: Raspberry Pi IoST-cardiovascular disease predictor device architecture

The system follows Algorithm 1 to collect patient data.

Algorithm 1: Algorithm to collect data with Raspberry Pi-based device from patients
1: Initialize empty lists data collection and sensor readings
2: Initialize CSV file data file
3: Set sampling interval interval
4: Set total sampling time sampling time
5: Initialize pin variables
6: temp_pin ←7 � GPIO 4 (Pin 7)
7: heart_rate_pin ←12 � GPIO 18 (Pin 12)
8: scl_pin ←5 � SDA (Pin 3)
9: sda_pin← 3
10: Start timer
11: while elapsed time < sampling time do
12: Read temperature from DS18B20 sensor using temp_pin.
13: Read heart rate from AD8232 sensor using heart_rate_pin.
14: Read pulse oximetry from MAX30102 sensor using scl_pin, sda_pin.
15: Store sensor readings in sensor_readings
16: Append current timestamp to sensor_readings
17: if time to save data then
18: Append sensor_readings to data collection
19: Write data_collection to data_file

(Continued)
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Algorithm 1 (continued)
20: Empty sensor readings
21: end if
22: Wait for interval seconds
23: end while
24: Close data_file

All participants in this system have provided written consent to use their data. 295 individuals
contributed to the dataset, with each entry containing 13 columns, including the outcome variable.
The features and target variable descriptions are as follows:

• V1: Age.
• V2: In the context of defining gender, we assign the value 1 to male and 0 to female in this

column.
• V3: Type of chest pain, coded as follows: 1 for Typical, 2 for Atypical, 3 for Non-anginal, and

4 for Asymptomatic.
• V4: Resting blood pressure upon admission, measured in millimeters of mercury (mm Hg).
• V5: Serum cholesterol levels measured in milligrams per deciliter (mg/dL)
• V6: Fasting blood sugar level, categorized as 1 for true (indicating fasting blood sugar

>120 mg/dL) and 0 for false.
• V7: ECG results for resting, with 0 indicating Normal, 1 indicating Abnormal, and 2 indicating

Left Ventricular Hypertrophy. ECG is measured with the AD8232 sensor of the IoST device.
• V8: Maximum value of heart rate. Heart rate is measured with the MAX30102 sensor of the

IoST device.
• V9: Presence of exercise-induced angina, coded as 1 for yes and 0 for no.
• V10: ST depression, denoting changes in the SegmentT Wave induced by exercise relative to rest.
• V11: Oxygen level, measured with the MAX30102 sensor of the IoST device.
• V12: Temperature, measured with the DS18B20 sensor of the IoST device.
• Res: Diagnosis of cardiovascular disease, with 0 representing absence and 1 representing

presence.

Here, columns V1 to V12 and Res denote specific attributes related to heart health, with “V”
standing for variable.

3.3 Machine Learning Algorithms and Parameter Optimization

We analyze ten machine learning algorithms for our dataset, including Logistic Regression, Deci-
sion Trees, Random Forest, Support Vector Machine (SVM), K-Nearest Neighbors (KNN), Naive
Bayes, Gradient Boosting, Neural Networks, XGBoost, and Voting Classifier. In Logistic Regression,
we model the probability of cardiovascular disease using features V1 to V12 and optimize coefficients
to minimize the negative log-likelihood function. Decision Trees classify instances by maximizing
information gain or minimizing impurity, with parameter optimization focusing on tree depth and
minimum samples for split. Random Forest combines Decision Trees, with parameter tuning for
the number of trees and maximum depth. SVM aims to find hyperplanes separating instances,
optimizing the regularization and kernel parameters. KNN classifies based on nearest neighbors,
maximizing the number of neighbors. Naive Bayes assumes feature independence, with Gaussian
Naive Bayes parameter optimization involving mean and variance estimation. Gradient Boosting
combines weak learners, optimizing boosting stages and learning rate. Neural Networks predict class
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probabilities, with hyperparameter tuning for hidden layers and neurons. XGBoost combines Decision
Trees, optimizing boosting rounds, learning rate, and tree-specific parameters. The Voting Classifier
combines model predictions via majority vote, optimizing base classifiers and hyperparameters for
performance maximization. The detailed explanation of the hyperparameter tuning process for each
of the ten machine learning algorithms mentioned, including relevant mathematical equations are
as follows:

1. Parameter Optimization Method for Logistic Regression: In Logistic Regression, we aim to
model the probability (P (y = 1|x))of cardiovascular disease given features(x = (x1, x2, . . . , x12)).
This probability is given by:

P (y = 1|x) = σ
(
w�x

) = 1
1 + exp (−w�x)

(1)

Here, (σ (·)) is the sigmoid function and (w) are the coefficients. The negative log-likelihood
function to minimize is:

L (w) = −
N∑

i=1

[
yi log

(
σ

(
w�xi

)) + (1 − yi) log
(
1 − σ

(
w�xi

))]
(2)

Hyperparameter tuning involves optimizing the regularization parameter (λ), which controls
overfitting:

L (w) + λ

2
|w|2

2 (3)

2. Parameter Optimization Method for Decision Trees: Decision Trees classify instances by
splitting the data into subsets based on feature values that maximize information gain or
minimize impurity. Here the information gain is obtained by as follows:

IG (T , f ) = H (T) −
∑

v∈values(f )

|Tv|
|T | H (Tv) (4)

Here, (H (T)) is the entropy of the set (T). Hyperparameter tuning focuses on the Maximum
tree depth (d) and the Minimum samples required to split a node (s).

3. Parameter Optimization Method for Random Forest: Random Forest is an ensemble of Decision
Trees. The algorithm tunes the Number of trees (ntrees) and the Maximum tree depth (d). The
overall model is:

ŷ = 1
ntrees

ntrees∑
t=1

ft (x) (5)

Here, (ft (x)) is the prediction of the (t)-th tree.
4. Parameter Optimization Method for Support Vector Machine (SVM): SVM finds a hyperplane

that maximizes the margin between classes:

max
w,b

2
|w| subject to : yi

(
w�xi + b

) ≥ 1 (6)

Hyperparameter tuning involves the Regularization parameter C and Kernel parameters.
5. Parameter Optimization Method for K-Nearest Neighbors (KNN): KNN classifies an instance

based on the majority class among its k nearest neighbors. The tuning parameter is the Number
of neighbors k.
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6. Parameter Optimization Method for Naive Bayes: Gaussian Naive Bayes assumes feature
independence and follows:

P (y|x) ∝ P (y)

n∏
i=1

P (xi|y) (7)

Here, (P (xi|y)) is modeled as a Gaussian distribution:

P (xi|y) = 1√
2πσ 2

y

exp

(
−

(
xi − μy

)2

2σ 2
y

)
(8)

Parameter optimization involves estimating Mean (μy) and Variance (σ 2
y ).

7. Parameter Optimization Method for Gradient Boosting: Gradient Boosting combines weak
learners to minimize a loss function

(
L

(
y, ŷ

))
:

ŷi =
M∑

m=1

αmfm (xi) (9)

Here, (fm (xi)) is the (m)-th weak learner and (αm) is its weight. Hyperparameter tuning includes
Number of boosting stages (M) and the Learning rate (η).

8. Parameter Optimization Method for Neural Networks: Neural Networks predict class proba-
bilities using a network of neurons:

ŷ = σ (WLσ (WL−1 . . . σ (W1x))) (10)

Here, (Wl) are the weights at layer (l) and (σ (·)) is an activation function (e.g., ReLU).
Hyperparameter tuning involves the Number of hidden layers (L) and the Number of neurons
per layer (nl).

9. Parameter Optimization Method for XGBoost: XGBoost is an optimized version of Gradient
Boosting. It tunes Number of boosting rounds (M), Learning rate (η), Maximum tree depth (d)

and the Regularization parameters (λ) and (α). The objective function includes a regularization
term:

L (θ) =
n∑

i=1

l (yi, ŷi) +
K∑

k=1

� (fk) where,
(

� (f) = γ T + 1
2
λ|w|2

)
(11)

10. Parameter Optimization Method for Voting Classifier: The Voting Classifier combines the
predictions of base classifiers. It tunes the Selection of base classifiers, Weights for each
classifier in the vote. The combined prediction is:

ŷ = mode{f1 (x), f2 (x), . . . , fK (x) (12)

Hyperparameter optimization for each model typically involves cross-validation to ensure the
selected parameters generalize well to unseen data. Grid search or randomized search techniques are
commonly used to explore the hyperparameter space efficiently.

4 Results
4.1 PCA of Heart Disease Dataset

Fig. 5 illustrates the results of Principal Component Analysis (PCA) applied to the heart disease
dataset, where PC1 captures the primary and PC2 captures the secondary. Each data point represents
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an individual projected onto the PC1-PC2 plane, with colors indicating the diagnosis label: blue for
healthy individuals (0) and red for individuals with heart disease (1). PC1 predominantly reflects
variations in features v3, v9, and v10, while PC2 primarily reflects variations in features v1, v6, and
v7. Notably, higher values of PC1 correspond to a greater likelihood of heart disease, suggesting that
individuals with elevated values along PC1 may exhibit characteristic patterns in features related to
exercise-induced angina, ST depression, and serum cholesterol levels. Conversely, higher values along
PC2 are associated with features such as age, fasting blood sugar level, and ECG results, indicating
potential distinctions in these attributes between healthy and diseased individuals.

Figure 5: PCA projection of heart disease dataset onto PC1-PC2 plane

4.2 Parameter Optimization Performance

Accuracy, as depicted in Table 2, serves as a fundamental metric for evaluating the overall
performance of classification models. The accuracy of a model is calculated using the formula:

Accuracy = θP + θN

θP + θN + ϕP + ϕN

(13)

where θP is the number of true positives, θN is the number of true negatives, ϕP is the number of false
positives, and ϕN is the number of false negatives. In the presented accuracy results, Logistic Regression,
Random Forest, and the Voting Classifier exhibit the highest accuracy at 0.83, indicating that
approximately 83% of predictions are correct. Conversely, the SVM model performs less effectively
with an accuracy of 0.66. The intermediate accuracy values ranging from 0.71 to 0.81 for models
such as Decision Trees, KNN, Naive Bayes, Gradient Boosting, Neural Networks, and XGBoost
suggest reasonably balanced performance. The ensemble model, represented by the Voting Classifier,
demonstrates robust accuracy across the considered models.
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Table 2: Accuracy results and confusion matrix before and after parameter optimization

Model θP ϕP ϕN θN Accuracy

r0 r1 r0 r1 r0 r1 r0 r1 r0 r1

Logistic regression 16 16 5 5 5 5 33 33 0.83 0.83
Decision trees 13 14 7 7 8 7 31 31 0.75 0.76
Random forest 16 17 5 6 5 4 33 32 0.83 0.83
SVM 1 16 0 4 20 5 38 34 0.66 0.85
KNN 11 16 7 6 10 5 31 32 0.71 0.81
Naive bayes 18 18 8 8 3 3 30 30 0.81 0.81
Gradient boosting 16 17 10 8 5 4 28 30 0.75 0.8
Neural networks 17 18 7 6 4 3 31 32 0.81 0.85
XGBoost 17 17 7 7 4 4 31 31 0.81 0.81
Voting classifier 15 15 4 6 6 6 34 32 0.83 0.8
Notes: θP = True Positive, ϕP = False Positive, ϕN = False Negative, θN = True Negative, r0= Result before Parameter Optimization, r1 =
Result after Parameter Optimization.

Table 3 provides a granular breakdown of model performance through the Confusion Matrix after
Parameter Optimization. The True Positive θP, True Negative θN, False Positive ϕP, and False Negative
ϕN counts are crucial components for understanding classification accuracy. The confusion matrix
components are calculated as follows:

Precision = θP

θP + ϕP

(14)

Recall = θP

θP + ϕN

(15)

F1-Score = 2.Precision.Recall
Precision + Recall

(16)

The Confusion Matrix enables a more nuanced assessment of a model’s ability to make specific
types of correct and incorrect predictions.

The Classification Report, as illustrated in Table 3 for Classification Report Results before and
after Parameter Optimization provides a comprehensive overview of model performance, offering
insights into precision, recall, and F1-Score for each class in a binary classification setting.

Table 3: Classification report results before and after parameter optimization

Model PC0 PC1 RC0 RC1 F1C0 F1C1
r0 r1 r0 r1 r0 r1 r0 r1 r0 r1 r0 r1

Logistic regression 0.87 0.87 0.76 0.76 0.87 0.87 0.76 0.76 0.87 0.87 0.76 0.76
Decision trees 0.79 0.82 0.65 0.67 0.82 0.82 0.62 0.67 0.81 0.82 0.63 0.67

(Continued)
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Table 3 (continued)

Model PC0 PC1 RC0 RC1 F1C0 F1C1
r0 r1 r0 r1 r0 r1 r0 r1 r0 r1 r0 r1

Random forest 0.82 0.89 0.76 0.74 0.87 0.84 0.76 0.81 0.87 0.86 0.76 0.78
SVM 0.66 0.87 1 0.8 1 0.89 0.05 0.76 0.79 0.88 0.09 0.78
KNN 0.76 0.86 0.61 0.73 0.82 0.84 0.52 0.76 0.78 0.85 0.56 0.74
Naive bayes 0.91 0.91 0.69 0.69 0.79 0.79 0.86 0.86 0.85 0.85 0.77 0.77
Gradient boosting 0.85 0.88 0.62 0.68 0.74 0.79 0.76 0.81 0.79 0.83 0.68 0.74
Neural networks 0.89 0.91 0.71 0.75 0.82 0.84 0.81 0.86 0.85 0.88 0.76 0.8
XGBoost 0.89 0.89 0.71 0.71 0.82 0.82 0.81 0.81 0.85 0.85 0.76 0.76
Voting classifier 0.85 0.84 0.79 0.71 0.89 0.84 0.71 0.71 0.87 0.84 0.75 0.71

Notes: PC0 = Precision (Class 0), PC1 = Precision (Class 1), RC0 = Recall (Class 0), RC1 = Recall (Class 1), F1C0 = F1-Score (Class 0),
F1C1 = F1-Score (Class 1), r0 = Result before Parameter Optimization, r1 = Result after Parameter Optimization.

4.3 Heatmap Comparison

The heatmap visualization (Fig. 6) shows model performances before and after parameter opti-
mization. This visualization offers an intuitive representation of model performances. Each cell in
the heatmap corresponds to the F1-Score for a particular model and class combination. Darker
colors represent higher F1-Scores. The heatmap provides a quick visual summary, allowing easy
identification of models that excel in specific class predictions. It complements the tabular data, aiding
in the interpretation of model performance across different classes. The heatmap facilitates a holistic
understanding of how well each model performs across Class 0 and Class 1, serving as a valuable tool
for model comparison.

Figure 6: Visualizing model performances with heat-map (A) before and (B) after the parameter
optimization
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4.4 Execution Time Comparison

Table 4 provides a comparative analysis of the execution times in seconds for various machine
learning models before and after parameter optimization on the Raspberry Pi 4B model which has
4 GB LPDDR4 ram, 128 GB U3A1 sd storage, and 64-bit processor with 1.8 GHz clock speed.
Execution Time Comparison with and Without Parameter Optimization is illustrated in Fig. 7.

Table 4: Execution time in seconds with and without parameter optimization

Model r0 r1

Logistic regression 0.097211 0.035875
Decision trees 0.011112 0.134099
Random forest 0.770136 7.630524
SVM 0.040209 0.343699
KNN 0.034593 0.21455
Naive bayes 0.014367 0.053397
Gradient boosting 0.586773 3.050234
Neural networks 1.604832 9.627336
XGBoost 0.272077 1.606153
Voting classifier 3.03372 15.86483
Notes: r0 = Result before Parameter Optimization, r1 = Result after Parameter Optimization.

Figure 7: Comparison of execution time (s) before and after parameter optimization

As discussed in the Table 2, it is evident that parameter optimization has a noticeable impact
on the accuracy of certain models. The execution time, measured in seconds, is considerably reduced
for several models after tuning their parameters. For Logistic Regression, the execution time sig-
nificantly decreases from 0.097 to 0.036 s after optimization. Similarly, models like Decision Trees
and KNN exhibit improvements in computational efficiency. Notably, models like Random Forest
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and Neural Networks demonstrate a substantial increase in execution time after optimization. This
phenomenon could be attributed to the complexity introduced by fine-tuning parameters, leading
to longer computation times. The execution time analysis emphasizes the trade-off between param-
eter optimization and computational efficiency. While some models benefit from faster execution
times, others experience increased computational complexity. This insight is crucial for selecting the
appropriate optimization strategy based on the specific requirements and constraints of the machine
learning application.

5 Discussion
5.1 Impact on Accuracy

Table 2 presents a comparative view of the model accuracy before and after parameter optimiza-
tion. Parameter optimization is a crucial step in machine learning that involves fine-tuning hyper-
parameters to enhance model performance. Fig. 8 illustrates the impact of parameter optimization on
the machine learning model’s accuracy.

Let’s delve into the findings:

1. Logistic Regression: The accuracy remains consistent at 0.83 before and after optimization,
suggesting that default hyperparameters already yield a satisfactory result.

2. Decision Trees: After optimization, the accuracy slightly improved from 0.75 to 0.76. Tuning
the ‘max_depth’ parameter may have contributed to better generalization.

3. Random Forest: The accuracy maintains consistency at 0.83, indicating that the default settings
or initial hyperparameters are effective for this ensemble model.

4. SVM (Support Vector Machine): Significant improvement is observed from 0.66 to 0.85 after
optimization. Tuning the ‘C’ parameter and kernel settings led to a more accurate model.

5. KNN (K-Nearest Neighbors): The accuracy slightly drops from 0.71 to 0.81 after optimization.
Adjusting the ‘n_neighbors’ parameter might have introduced a balance between bias and
variance.

6. Naive Bayes: No significant change in accuracy (0.81) is noted before and after optimization.
Naive Bayes often performs well with default settings.

7. Gradient Boosting: The accuracy improves from 0.75 to 0.80, indicating that optimizing
‘n_estimators’ contributes to boosting model performance.

8. Neural Networks: A notable increase in accuracy from 0.81 to 0.85 suggests that tuning
the ‘hidden_layer_sizes’ parameter enhances the neural network’s ability to capture complex
patterns.

9. XGBoost: The accuracy remains consistent at 0.81, implying that the default hyperparameters
or initial settings already yield satisfactory results for this gradient-boosting algorithm.

10. Voting Classifier: The accuracy drops slightly from 0.83 to 0.80 after optimization. It’s crucial
to note that the voting classifier integrates various models, and changes in individual models
can impact the ensemble.
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Figure 8: Visualization of the impact of parameter optimization on machine learning model’s accuracy

5.2 Overall Performance Metrics

The generated merged heat map (Fig. 9) compares the classification performance metrics (Pre-
cision, Recall, and F1-Score) for Class 0 and Class 1 before and after parameter optimization
across different machine learning models. The provided heatmaps offer a visual representation of the
classification metrics (precision, recall, and F1-Score) for two scenarios: before and after parameter
optimization. Let’s discuss the observed changes in scores.

Figure 9: Overall Performance Visualization before (left) and after (right) parameter optimization
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5.2.1 Precision (before vs. after Optimization)

Before optimization, most models exhibit relatively high precision for Class 0, ranging from 0.66
to 0.91. After optimization, there are instances of improvement, with some models achieving higher
precision scores (e.g., Logistic Regression, Random Forest, SVM), indicating enhanced accuracy in
predicting instances of Class 0. Precision for Class 1 varies across models before optimization, with a
wide range from 0.61 to 1.00. After optimization, some models experience improvements (e.g., SVM,
Neural Networks), while others see slight decreases. The Voting Classifier, for example, maintains
precision for Class 1.

5.2.2 Recall (before vs. after Optimization)

Before optimization, models show diverse recall scores for Class 0, ranging from 0.74 to 1.00.
After optimization, certain models improve their ability to capture instances of Class 0 (e.g., SVM,
KNN, Neural Networks), while others remain relatively stable. Recall for Class 1 before optimization
has a broad range from 0.05 to 0.86. After optimization, there are notable improvements in recall for
some models (e.g., SVM, Neural Networks), indicating enhanced sensitivity in capturing instances of
Class 1.

5.2.3 F1-Score (before vs. after Optimization)

F1-Scores for Class 0 before optimization range from 0.79 to 0.87. After optimization, some
models exhibit improvements in achieving a balance between precision and recall for Class 0 (e.g.,
SVM, Neural Networks). F1-Scores for Class 1 before optimization vary widely. After optimization,
there are instances of improvement (e.g., Neural Networks) and slight decreases, reflecting the trade-
off between precision and recall for Class 1.

5.2.4 AUC and ROC Curve Analysis

AUC stands for “Area Under the Curve,” and ROC stands for “Receiver Operating Char-
acteristic”. Table 5 presents the AUC values before and after parameter optimization for various
machine learning models. A higher AUC indicates better discriminative performance. Notably,
Logistic Regression, Random Forest, Naive Bayes, and Neural Networks maintained high AUC values
before and after optimization, showcasing their robustness. Decision Tree, SVM, and KNN witnessed
improvements in AUC after parameter optimization, with SVM and KNN showing substantial
enhancements. The graphical representations in Fig. 10 visually depict the ROC curves before and after
optimization, illustrating the trade-off between Sensitivity and Specificity at different classification
thresholds. The explanation of AUC as the area under the ROC curve reinforces that an AUC of 0.5
implies random guessing, while an AUC of 1.0 signifies a perfect classifier. These results emphasize the
significance of parameter tuning in enhancing model performance, leading to improved discrimination
capabilities as evidenced by the higher AUC values.

Table 5: AUC scores with and without parameter optimization

Model r0 r1

Logistic regression 0.91 0.91
Decision trees 0.72 0.69

(Continued)
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Table 5 (continued)

Model r0 r1

Random forest 0.9 0.9
SVM 0.77 0.9
KNN 0.74 0.9
Naive bayes 0.92 0.92
Gradient boosting 0.9 0.91
Neural networks 0.89 0.92
XGBoost 0.9 0.9
Voting classifier – –

Notes: AUC = Area Under the Curve, r0 = Result before
Parameter Optimization, r1 = Result after Parameter
Optimization.

Figure 10: ROC Curves before (A) and after (B) the parameter optimization

5.2.5 In Depth Analysis of the Results

This study systematically evaluated multiple machine learning models for heart disease predic-
tion using a diverse patient dataset, focusing on the impact of hyperparameter optimization on
performance metrics like precision, recall, and F1-Score. While models such as Logistic Regression
and Random Forest consistently demonstrated robust performance, anomalies were observed in the
SVM model, notably with a precision of 1 for PC1-r0, 1 for RC0-r0 and 0.05 for RC1-r0 before
parameter optimization. These variations underscore the sensitivity of SVM and other models to
hyperparameter settings, influencing their ability to generalize effectively across different classes. But
all this abnormality is solved after the parameter optimization as 0.8 for PC1-r1, 0.89 for RC0-r1 and
0.76 for RC1-r1. Here r0 is stands for before applying our parameter optimization method and r1 is
after applying our parameter optimization method. Rigorous methodological approaches, including
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cross-validation and systematic hyperparameter tuning, were employed to ensure the reliability of our
findings. Our study highlights the need for careful model selection and optimization in healthcare
analytics, suggesting avenues for future research in enhancing model stability and performance across
diverse datasets and applications.

Following parameter optimization, several machine learning models exhibited significant per-
formance enhancements in our study. Support Vector Machines (SVM) and Neural Networks (NN)
demonstrated improved precision and recall metrics across both classes by fine-tuning kernel parame-
ters, regularization strength, and network architecture. SVM’s optimization process aims to maximize
the margin between classes while minimizing classification errors, achieving better separation in
complex datasets. Neural Networks, on the other hand, benefited from optimized learning rates
and batch sizes during backpropagation, enhancing their ability to learn intricate data patterns and
improving overall F1-Scores and accuracy. Additionally, ensemble methods such as Random Forest
and XGBoost leveraged parameter tuning to optimize tree depth, feature subsampling, and the number
of trees, resulting in reduced variance and higher predictive accuracy. These improvements underscore
the critical role of parameter optimization in tailoring model performance to dataset characteristics
and achieving robust predictions across diverse machine learning methodologies.

Addressing the potential for overfitting, particularly with models like Neural Networks that are
prone to it due to their complex architectures and large number of parameters, is crucial in machine
learning. Neural Networks have a tendency to memorize noise and specific details in the training
data, leading to excellent performance on training sets but poor generalization to unseen data. To
mitigate this risk, we have implemented several effective strategies during parameter optimization.
Techniques such as regularization, including L2 regularization, help prevent overfitting by penalizing
large weights in the model, thereby promoting simpler and more generalized solutions. Additionally,
dropout regularization randomly deactivates neurons during training, forcing the network to learn
more robust features and reducing reliance on specific neurons. Early stopping, another method
employed, monitors validation performance and halts training when improvements cease, preventing
the model from further fitting noise in the training data. These approaches collectively ensure that our
Neural Networks maintain strong performance metrics on both training and validation sets, enhancing
their ability to generalize to new data while managing the inherent risk of overfitting.

It is important to acknowledge the potential limitations of our study regarding the generalizability
of findings beyond the specific dataset obtained from the IoST device. While our results demonstrate
the effectiveness of hyperparameter optimization in enhancing model performance for heart disease
prediction within this dataset, future studies should aim to validate these findings across diverse
datasets and patient populations. This will ensure broader applicability and robustness of the opti-
mized models in real-world healthcare settings.

5.3 Hypothesis Testing with Wilcoxon Signed-Rank Test

The Wilcoxon signed-rank test, a non-parametric statistical method, assesses if there’s a significant
difference between two related samples, such as model accuracy before and after parameter optimiza-
tion. The test calculates differences between pairs of observations, assigns ranks based on their absolute
values, and determines the test statistic (T) as the minimum of the sums of ranks of positive (T+)
and negative (T−) differences. The process involves calculating these differences, ranking them, and
obtaining T. The resulting p-value (0.0115) is compared to the significance level (usually 0.05) to reject
or accept the null hypothesis. Here, the p-value is lower, indicating a significant difference in mean
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accuracy post-optimization. Therefore, we reject the null hypothesis, concluding a notable change in
mean accuracy due to parameter optimization.

5.4 Novelty of the Proposed Work and Comparison with Existing Systems

Several existing studies have focused on cardiovascular disease prediction using various machine-
learning techniques. Table 6 compares existing systems and our proposed approach. Our work con-
tributes to the existing body of research on heart attack prediction by proposing novel methodologies,
optimizing model parameters, and conducting a comprehensive comparative analysis. By addressing
these aspects, we aim to advance the field and provide valuable insights for improved diagnosis and
prevention of cardiovascular disease.

Table 6: Comparison with existing systems

Year Ref. Summary of existing systems Novelty of proposed system

2018 [25] Emphasized the importance of
feature selection in improving heart
attack prediction accuracy.

Aligns with findings by employing
advanced feature selection methods.

2019 [26] Highlighted the significance of
feature selection in heart attack
prediction.

Utilizes feature selection techniques to
identify relevant attributes for prediction.

2021 [27] ML and DL are applied to predict
cardiovascular disease with
promising accuracy.

Incorporates state-of-the-art feature
selection techniques and conducts a
comprehensive comparative analysis.

2022 [28] Explored the use of AI technologies
to analyze clinical data and predict
CAD states with high accuracy.

Extends methodologies by incorporating
advanced feature selection methods and
optimizing ML algorithms.

2022 [29] Performed a comparative analysis of
machine learning algorithms to
predict heart attacks.

Extends comparative analysis to identify
the most effective approach for heart
attack prediction.

5.5 Future Work

In this study, we focused on the optimization of hyperparameters for traditional machine learning
models to predict cardiovascular diseases. While our analysis provided significant insights and
highlighted the importance of tailored hyperparameter tuning, we recognize the necessity of com-
paring these results with state-of-the-art deep learning techniques. Future research will incorporate
these advanced methods to ensure a robust and comprehensive evaluation, enhancing the novelty and
applicability of our findings in real-world clinical settings.

Future research could focus on advanced search techniques such as Bayesian optimization, genetic
algorithms, and reinforcement learning-based approaches to further refine parameter configurations.
Exploring ensemble methods and optimizing hyperparameters for their configurations, as well as
delving into feature engineering and automated selection methods, may enhance the models’ predictive
power. Incorporating temporal aspects, longitudinal data, and prioritizing interpretable models could
offer a more comprehensive understanding of patient health. External validation across diverse
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datasets and addressing real-world deployment challenges are crucial steps toward ensuring optimized
models generalized and practical applicability in clinical settings.

6 Conclusions

In this work, we implemented ten machine-learning approaches to predict cardiovascular disease
from the collected data with our proposed IoST device. Then we applied parameter optimization
and got better results. The impact of parameter optimization on performance metrics has been
substantial across various machine learning models. The overall variability in the impact of opti-
mization emphasizes the need to carefully choose models and fine-tune parameters based on specific
classification goals. Decisions regarding model selection depend on the desired balance between
precision and recall, with Decision Trees and Random Forests demonstrating consistent performance.
The parameter optimization process yields diverse results across different algorithms, indicating
the necessity for a tailored approach to hyperparameter tuning. While some models experience
significant accuracy improvements, others demonstrate performance stability. Though the parameter
optimization provides a higher accuracy rate it costs more execution time. The results underscore the
critical role of parameter optimization in achieving optimal model performance. The findings highlight
the importance of thoughtful hyperparameter selection to maximize accuracy, with implications for
cardiovascular disease prediction in our specific case.
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