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ABSTRACT

The Internet of Things (IoT) links various devices to digital services and significantly improves the quality of
our lives. However, as IoT connectivity is growing rapidly, so do the risks of network vulnerabilities and threats.
Many interesting Intrusion Detection Systems (IDSs) are presented based on machine learning (ML) techniques
to overcome this problem. Given the resource limitations of fog computing environments, a lightweight IDS is
essential. This paper introduces a hybrid deep learning (DL) method that combines convolutional neural networks
(CNN) and long short-term memory (LSTM) to build an energy-aware, anomaly-based IDS. We test this system
on a recent dataset, focusing on reducing overhead while maintaining high accuracy and a low false alarm rate. We
compare CICIoT2023, KDD-99 and NSL-KDD datasets to evaluate the performance of the proposed IDS model
based on key metrics, including latency, energy consumption, false alarm rate and detection rate metrics. Our
findings show an accuracy rate over 92% and a false alarm rate below 0.38%. These results demonstrate that our
system provides strong security without excessive resource use. The practicality of deploying IDS with limited
resources is demonstrated by the successful implementation of IDS functionality on a Raspberry Pi acting as a
Fog node. The proposed lightweight model, with a maximum power consumption of 6.12 W, demonstrates its
potential to operate effectively on energy-limited devices such as low-power fog nodes or edge devices. We prioritize
energy efficiency while maintaining high accuracy, distinguishing our scheme from existing approaches. Extensive
experiments demonstrate a significant reduction in false positives, ensuring accurate identification of genuine
security threats while minimizing unnecessary alerts.
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1 Introduction

The Internet of Things (IoT) is expanding daily as new devices are connected to the network. It
provides ubiquitous connectivity for devices, services, and systems and is widely used in our daily
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routines. We experienced an increase in linked gadgets and IoT technologies, ranging from smart
homes, drones, and even autonomous vehicles. While IoT continues to grow in popularity, security
threats are also increasing [1]. Due to their small size and low power, these devices cannot be equipped
with advanced defense mechanisms. It is critical to ensure network security and information protection
in IoT applications as it could lead to increased network vulnerabilities and threats. It is important to
transport the created data to a device with more computational capability to carry out the storage,
processing, and analysis. However, the move to cloud computing is impeded by these devices’ high
traffic volume. Fog computing is a distributed computing paradigm that works nearer to the network’s
edge, allowing it to pre-process data before sending it to the cloud. It can thus provide faster handling
and response for IoT devices [2].

By bringing computation and storage closer to the data source, fog computing reduces latency
and bandwidth usage, making it an ideal solution for real-time applications in IoT environments.
Despite its advantages, fog computing still faces challenges, particularly in terms of security and
resource constraints. Fog devices are deployed in areas that lack adequate protection, making them
susceptible to various cyberattacks. To address these challenges, IDSs have been implemented in fog
computing to significantly mitigate the security risks posed by attacks on the fog infrastructure. IDSs
are effective methods for detecting the presence of attacks or abnormal behaviors in the fog layer
by monitoring the software and hardware within a network. They assist enterprises in detecting and
mitigating a wide range of attacks, including intrusions, unauthorized access attempts, and malicious
software infections [3]. IDS are deployed in two different methods: at the host level (HIDS) on a
node to monitor system operations on its system application files or the OS that is running on the
node. Second, at the network level (NIDS) on a border router or gateway, where it analyzes traffic
flows on the network [4]. Anomaly-based NIDS is very effective at identifying previously unknown
or novel assaults and zero-day attacks. This proactive strategy allows for rapid detection and response
to security problems, limiting possible harm or illegal access. The signature-based IDS detects known
assaults successfully due to its working technique. However, it does not detect unknown attacks and is
insufficient for the limited resources of the IoT. Anomaly-based IDS is thought to be appropriate for
IoT, it can identify unknown attacks. However, anomaly-based IDS may cause false alerts by wrongly
categorizing regular traffic as abnormal traffic [5]. The defense cannot anticipate that there will be
a clear separation between an attack and the regular usage of resources by a legitimate user, which
presents another difficult situation. Instead, there will likely be some overlap, which could result in
an undesirable circumstance. ML algorithms have been implemented to assist in these situations. ML
in NIDS has emerged as a promising approach to the problem of network security in fog computing.
Through intelligent algorithms that can learn from different datasets, it can help identify patterns
and anomalies in data that may indicate potential security threats. ML-based IDS on fog computing
can also leverage the distributed nature of the computing paradigm to implement more efficient and
effective intrusion detection mechanisms.

Many interesting IDSs have been presented based on ML and DL approaches, such as support
vector machine (SVM) [6], auto-encoder (AE) [7], and artificial neural networks (ANN) [8]. These
methods have demonstrated encouraging results in identifying significant features within IoT traffic
and efficiently detecting network intrusions and attacks. However, implementing IDSs based on IoT
technology on fog nodes with limited capacity and low power can be complex and demanding.
Employing a lightweight IDS can potentially offer a beneficial solution for IoT devices. These
lightweight IDSs utilize machine learning algorithms to effectively detect intrusion attempts without
consuming the energy of the fog node [9].
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This research aims to build a lightweight IDS based on hybrid ML models for IoT systems. This
improves security and reduces overhead at fog nodes while providing services to the IoT layer. This
approach involves leveraging the capabilities of the fog layer by moving the first line of defense closer to
the IoT layer and reducing networking and computation costs from the cloud layer. To the best of our
knowledge, most existing FC-IDSs that use the hybrid approach of CNN and LSTM have achieved
high accuracy [10,11]. However, none of these studies considered energy consumption. The use of
old datasets and deploying the model to the cloud layer are the limitations of the previous work in
lightweight IDSs [12]. The CICIoT2023 dataset, which includes multiple attacks not available in other
IoT datasets, was used to IoT experts develop new security analytics solutions [13]. Fig. 1 illustrates
the proposed lightweight IDS structure for the fog computing environment. The fog computing
environment is comprised of three major components: end devices, fog nodes, and cloud infrastructure.
Fog computing connects the IoT and cloud layers by providing processing, storage, and network
services.

Figure 1: The structure of the proposed system

The objective of this research is to address the challenges of building energy-aware IDS in the
fog layer, with a focus on reducing and mitigating overhead. The problem at hand encompasses
several key aspects: existing IDS models often rely on outdated datasets that fail to capture the vast
majority of modern attacks. To overcome this limitation, this study proposes the use of a modern
dataset, CICIoT2023, which includes a comprehensive range of contemporary attack scenarios. By
leveraging this dataset, the proposed IDS model aims to enhance detection accuracy and ensure
its relevance in the context of emerging threats. To achieve effective attack classification, a hybrid
CNN and LSTM machine learning model will be employed. By optimizing the energy efficiency of
the IDS model, the research seeks to minimize resource consumption and improve the sustainability
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of fog computing environments. Furthermore, the study will explore the practicality of deploying
IDSs using limited resources, specifically utilizing the Raspberry Pi as a Fog node. This investigation
aims to demonstrate the feasibility of implementing IDS functionality in resource-constrained fog
computing environments, thereby expanding the applicability of IDS solutions. The performance
evaluation of the proposed IDS model will be conducted based on key metrics, including latency,
energy consumption, and detection rate. By assessing these metrics, the research aims to quantify
the efficiency and effectiveness of the model in comparison to existing techniques, with a particular
emphasis on improving accuracy and reducing the false positive rate.

The key contributions of this work are:

1. Building an energy-aware, IDS in the Fog Computing layer, which reduces and mitigates the
overhead.

2. Using a modern dataset, CICIoT2023, instead of the outdated datasets that do not include
most modern attacks.

3. Using a hybrid CNN and LSTM machine learning model for binary-class and multi-class
attack classification, considering the energy consumption of the model.

4. Exploring IDS using limited resources, specifically the Raspberry Pi 3 as a Fog node.
5. Evaluating the performance of the model based on latency, energy consumption, and detec-

tion rate.
6. Improving the accuracy compared to the existing techniques and reducing the false posi-

tive rate.

The rest of the paper is organized as follows: the next section is a comprehensive literature review
of IDS in fog computing. Section 3 discusses the motivation behind investigating research in the fog
layer. Section 4 provides an overview of the methodology of the proposed work. Section 5 presents
the evaluation of the results and comparison with previous studies. Finally, the conclusion and future
work are presented in Section 6.

2 Literature Review

These studies aim to develop novel techniques, algorithms, or architectures that optimize IDS
performance while minimizing energy and CPU consumption. We explore various approaches, such as
energy-aware algorithms, and lightweight ML models, that contribute to more sustainable and energy-
efficient IDS solutions in fog computing.

Khater et al. [12] proposed a lightweight IDS for a fog computing environment using a Multilayer
Perceptron (MLP) model with a Raspberry Pi serving as a fog node. It was used to detect different types
of attacks on two datasets: ADFA-LD, which had 94% accuracy, 95% recall, and 92% F1 score, and
ADFA-WD, which had 74% accuracy, 74% recall, and 74% F1 score. Their studies showed an average
testing time of about 750 microseconds, which is reasonable for many IoT applications. However, their
model still needs improvement in detection accuracy and computing efficiency, as it cannot detect
present IoT network assaults effectively. Authors in [14] used the ADFA-LD dataset to classify data
using an MLP model and a modified Vector Space Representation (MVSR) approach known as N-
gram. They also used the Linear Correlation Coefficient (LCC) to address test data containing missing
N-grams. Principal Component Analysis (PCA) and Mutual Information (MI) were used for feature
selection. The simulation results showed a 5% False Positive Rate (FPR) and 96% accuracy. It achieved
low energy consumption of 8.809 mj and low CPU time utilization of 4.404 ms. However, to identify the
most recent IoT network threats, their model needs an enhanced dataset. Aliyu et al. [15] suggested IDS
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nodes that identify deviations from typical network activity, classifying them as malicious and isolating
the suspected node. They incorporated Exponentially Weighted Moving Average (EWMA) into the
system to reduce noise from social media discussions. After adding EWMA, accuracy increased from
80% to 95%, and it could identify intrusions 0.25–0.5 s faster. However, using EWMA results in a
minimum 0.75–1.3 s increase in latency. The suggested system’s application to other attack types
or domains was not examined, focusing exclusively on man-in-the-middle (MITM) assaults in fog
computing for social media. Aliyu et al. [16] introduced a unique intrusion detection technique
modeled after the human immune system in fog computing using Artificial Neural Networks (ANN).
Reduced resource usage and increased efficiency can be attained by utilizing a distributed design that
makes use of fog nodes and cloud computing. The suggested solution reduced energy usage by 10%
compared to using a neural network on the fog node, achieving accuracy up to 98.8% in KDD-99 and
96.7% in NSL-KDD datasets. As the duty cycle increases, the system’s accuracy is seen to increase.
However, this also results in increased latency and energy consumption. Roy et al. [17] devised B-
Stacking, a unique IoT intrusion detection approach. Using the CICIDS2017 and NSL-KDD datasets,
it applies improved machine learning algorithms to obtain high accuracies of about 99% and 98%,
respectively. The model includes optimization techniques like sampling, data scaling, dimensionality
reduction, and multicollinearity removal. These processes reduce computing complexity by effectively
identifying critical aspects and drastically reducing the number of features and data points needed for
abnormality identification. According to the experimental results, B-Stacking is a potential intrusion
detection technique for IoT environments due to its high detection rate and very low false alarm rate.
However, the research does not evaluate power consumption through simulation or implementation.
Wardana et al. [18] implemented federated learning (FL) in an edge-fog-cloud architecture to address
latency concerns by distributing resources closer to the data source or end users, leading to shorter
round-trip times and better application responsiveness. The proposed technique was validated using
the CICIoT2023 dataset. FL adds communication and synchronization overhead and had higher
average memory usage than centralized learning.

The studies primarily focus on IDS functionality without explicitly considering energy constraints.
Samy et al. [19] compared six distinct DL models to determine the most effective one. These
models were evaluated using five distinct datasets, each with a unique attack type. The experiments
demonstrated that the LSTM model outperforms the other DL models in terms of accuracy and
detection rate. De Souza et al. [20] proposed a binary Extra Tree (ET) classifier for traffic analysis,
while Rai [21] utilized ensemble techniques such as Distributed Random Forest (DRF) and Gradient
Boosting Machine (GBM). Sadaf et al. [22] introduced the Auto-IF method using Autoencoder
(AE) and Isolation Forest (IF). Abdussami [23] developed an Incremental Deep Neural Network
(DNN) for intrusion detection. Souza et al. [24] combined Deep Neural Networks (DNN) and k-
Nearest Neighbor (kNN) in a hybrid binary classification technique called DNN-KNN. Sun et al. [25]
emphasized the achievements of DL-IDS, including the usage of CNN-LSTM hybrid networks
and category weight optimization. Attique et al. [26] proposed the Cu-DNNGRU system based on
CUDA-deep neural network gated recurrent units. Tuli et al. [27] presented a lightweight automatic
object identification system using deep learning and the Aneka framework. Çavuşoğlu et al. [28]
utilized deep learning and transfer learning for network traffic classification. Chang et al. [29]
introduced fast Fourier transform (FFT) and DL approaches for extracting high-level information.
Jiang et al. [30] proposed a model with algorithms to maximize accuracy and minimize latency.
Gudla et al. [31] compared DL models with traditional ML models for DDoS attack detection.
Singh et al. [32] combined Naive Bayesian-based IDS with a Markov Model and Virtual Honey Pot
Device. Roopak et al. [33] explored deep learning models such as CNN and LSTM for DDoS attack
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detection. Various other methods and frameworks were also introduced by different authors to address
DDoS attacks in fog and cloud computing settings, IoT networks, and VPN servers. Diro et al. [34]
found that distributed threat detection at the fog level is more scalable than centralized cloud-based
methods. The DAE-BILSTM model, as proposed by Selim et al. [35], combines a Bidirectional
Long Short-Term Memory (BiLSTM) with a Deep AutoEncoder (DAE) to provide effective feature
extraction, noise reduction, and network traffic analysis. Alzahrani et al. [36] extracted features
from the data using a correlation-based method to eliminate unnecessary information, producing a
model with no computational overhead. Onah et al. [37] combined a Genetic Algorithm Wrapper-
Based feature selection approach with a Naive Bayes Classifier. Kumar et al. [38] suggested using
interplanetary file systems (IPFS) for off-chain storage in blockchain networks and AI for real-time
analysis in blockchain-IoT systems. Almaiah et al. [39] examined and analyzed the behavior and
propagation of Shamoon assaults in the fog computing edges. Xu et al. [40] underlined the requirement
for a fully functional infrastructure backed by cloud computing and fog computing, in addition to
a data-driven core engine and semi-supervised techniques. Rahman et al. [41] proposed techniques
to overcome resource limitations in IoT devices while achieving detection accuracy comparable to
centralized IDS. Tu et al. [42] used physical layer security (PLS) to identify and prevent impersonation
attacks in fog computing networks. The authors [43] proposed a method involving two stages of
classification for improved accuracy, calling for various base learners and ensemble approaches.
Moustafa et al. [44] presented the outlier Dirichlet mixture-based ADS (ODM-ADS) technique,
allowing for self-adaptation to data poisoning attempts, creating a valid profile, and using an outlier
function to identify anomalies. Gazdar [45] offered FDeep, an IDS deployed in the Fog Layer of the
IoT system in smart home environments. To prevent degradation of detection skills, the DL model in
FDeep is re-trained and updated periodically. The results showed that the LSTM model using CNN
surpassed other models in terms of detection accuracy. The authors [46] tested several DL models,
including DNMLP, LSTM, BiLSTM, GRU, CNN + LSTM, and HEM. The results revealed that
the LSTMDL model surpassed DNMLP in properly predicting attacks, although it took longer to
detect activity (CBDT) than other models. Authors in [47] developed a hybrid deep learning system
to detect DDoS attacks by combining CNN and LSTM models. Utilizing the CICIoT2023 dataset,
their system achieved a high attack detection rate of 99.995% and an attack type detection rate of
99.96%. However, the analysis revealed certain drawbacks and areas for development. One issue is that
achieving high accuracy requires a vast amount of data. The use of large datasets increases training
and testing timeframes, which can be inefficient in real-time detection settings where immediate
response is required. Gad et al. [48] examined different machine learning techniques in the context
of ToN-IoT dataset partitions, assessing their performance in binary and multi-class classification
tasks. The authors emphasized how much better the XGBoost method is in the suggested model
compared to other ML algorithms. According to Labiod et al. [49], an intrusion detection system
that uses a two-layered fog architecture operates by placing an attack identification module in the
cloud and an anomaly detector inside fog nodes. This approach restricts connection between fog nodes
and the cloud, allowing real-time data processing while simultaneously lowering latency. de Araujo-
Filho et al. [50] presented a novel method for intrusion detection using generative adversarial networks
(GANs) and a fog-based architecture. The proposed method effectively addresses latency and lack of
labeled data, as demonstrated by the experimental findings. Meng et al. [51] offered a plan of defense
for mobile fog computing (MFC) networks against clever attackers, integrating the DQL algorithm,
prospect theory, and static subjective game modeling. Several studies [52,53] presented approaches to
DDoS defense for fog and cloud computing settings.
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3 Motivations

In recent years, the proliferation of interconnected devices and the growing adoption of fog
computing have introduced new security challenges in the Fog layer. IDS play a crucial role in detecting
and mitigating potential security threats in these environments. However, building energy-aware,
anomaly-based IDS in the Fog layer poses significant challenges that need to be addressed.

One of the primary limitations of existing IDS models is their reliance on outdated datasets
that fail to capture most modern attacks. This research is motivated by the need to overcome this
limitation by leveraging a modern dataset, CICIoT2023, which includes a comprehensive range of
contemporary attack scenarios. By incorporating this dataset, the proposed IDS model aims to
enhance detection accuracy and ensure its relevance in the face of emerging threats. Effective attack
classification is another critical aspect that needs to be addressed. To achieve this, a hybrid CNN
and LSTM machine learning model will be employed. This hybrid architecture is capable of handling
both binary-class and multi-class attack classification tasks while considering the energy consumption
of the model. By optimizing the energy efficiency of the IDS model, this research aims to minimize
resource consumption and improve the sustainability of fog computing environments. To the best of
our knowledge, most existing IDSs that use CNN and LSTM have achieved high accuracy, however
none of these studies considered the energy consumption.

Furthermore, the practicality of deploying IDSs using limited resources is an important consid-
eration. Utilizing Raspberry Pi as a Fog node, this study explores the feasibility of implementing IDS
functionality in resource-constrained fog computing environments. By demonstrating the viability of
IDS solutions in such environments, the applicability and effectiveness of IDS can be expanded. The
proposed IDS model will be evaluated based on key performance metrics, including latency, energy
consumption, and detection rate. Through this evaluation, the efficiency and effectiveness of the model
will be quantified and compared to existing techniques. Special emphasis will be placed on improving
accuracy and reducing the false positive rate, addressing the pressing need for reliable and efficient
IDS solutions in the Fog layer.

Overall, this research is motivated by the need to address the challenges of energy-aware, anomaly-
based IDS in the Fog layer, with a focus on reducing and mitigating overhead. By leveraging a modern
dataset, employing a hybrid CNN-LSTM model, and considering resource constraints, this study aims
to contribute to the development of more efficient and effective IDS solutions for fog computing
environments.

4 Methodology and Analysis

This study evaluates an energy-efficient Internet of Things IDS model using various datasets,
including CICIoT2023, a modern dataset featuring contemporary attack scenarios. The model
employs a hybrid CNN and LSTM machine learning model. The study explores the practicality of
deploying IDSs using limited-resources devices like Raspberry Pi as a Fog node, a method consistent
with previous research. The study aims to identify areas for improvement and assess the model’s
generalization capabilities. Papers [12,14] shared a similar methodology with this study. The authors
tested the model performance using the Raspberry Pi. Fig. 2 illustrates the proposed IDS methodology.
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Figure 2: The proposed methodology

4.1 Dataset Processing

The CICIoT2023 dataset is a comprehensive collection of IoT attack data that provides valuable
support for developing security analytics applications in real-world IoT operations. It offers oppor-
tunities to optimize ML models, explore the impact of features on models, and gain insights into
classification interpretations. The dataset was categorized into binary and multi-class categories for
classification tasks. Binary classification divides instances into normal and abnormal classes, while
multi-class classification identifies different types of attacks, such as DDoS, DoS, Mirai, Benign
Traffic, Spoofing, and Recon.

The preprocessing phase includes an attack labeling step to ensure proper labeling. This labeled
dataset serves as the foundation for the CNN-LSTM model’s supervised training, allowing the model
to learn patterns and relationships between network traffic data and attack types. Class imbalance can
occur if there is a significant difference in the number of instances across attack labels or classes. In
binary classification, the model performs well on both classes, while in multi-class classification, the
model learns to differentiate between different types of attacks and normal traffic.

Normalization is a crucial process in data preprocessing, translating numerical data to a common
scale to prevent bias in machine learning applications. It aims to maintain similar scales for features,
preventing dominance or bias. Standardization transforms data to have a mean of 0 and a standard
deviation of 1. The Label Encoder function converts categorical labels into numerical representations,
ensuring each unique label is consistently mapped to a unique numerical value. This helps in efficient
computation during the training and prediction phases of machine learning models. The encoding
method depends on the features of the categorical variables and the dataset. One-hot encoding can
increase dataset dimensionality, while attack labeling allocates labels to relevant classes, preserving
category distinctiveness and eliminating unintended ordinality.
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One-hot encoding is a binary representation strategy used in binary classification, where two
classes are present. It creates a binary feature for each distinct label, indicating its presence or absence.
This is suitable for binary classification problems as it allows machine learning models to interpret
labels in a binary format. In multi-class classification, label binarization is used to encode category
labels, converting the binary matrix representation into a binary column. This reduces imbalanced class
distributions and allows the model to learn independently for each class label, potentially improving
minority class representation and prediction.

The dataset is split into a training set and a testing set using an 80% to 20% ratio. The training
set is used to train the CNN-LSTM model, while the testing set is used for the final evaluation. The
testing set is further divided into a final testing set and a validation set using a 50%:50% ratio. This
secondary split allows for fine-tuning and hyperparameter adjustment, providing an unbiased estimate
of the model’s performance when applied to unseen data.

4.2 Anomaly Detection Using Machine Learning Models

In the fields of ML and DL, the most advanced and high-performing models typically require a
significant number of resources. For this effort, it is essential to conduct research and apply light-ML
models in order to effectively implement them on low-power devices. The suggested IDS model uses
CNN and LSTM as hybrid machine learning methods to identify normal and abnormal traffic. The
architecture of CNN-LSTM shown in Fig. 3.

Figure 3: CNN-LSTM architecture

The structure of the model with the function of each layer is as follows:

• Conv1D Layer: This layer performs 1-dimensional convolutions on the input. It has 32 filters,
each with a kernel size of 9. The activation function used in this layer is ReLU (Rectified Linear
Unit), which introduces non-linearity.

ReLU (x) = max (0, x) (1)

where x is the output of the first layer Conv1D, then passed into the second layer which is MaxPool-
ing1D layer to reduce the feature map.
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• MaxPooling1D Layer: This layer performs max pooling on the output of the Conv1D layer. It
reduces the spatial dimensions by selecting the maximum value within a window of size 2 while
retaining the most important features. The purpose of this layer is to down sample the feature
maps, reducing computational complexity and controlling overfitting.

• LSTM Layer: This layer utilizes LSTM units for sequential processing. It has 16 units specifies
the number of LSTM cells or memory units in the layer, which capture dependencies and
patterns in the input sequence. This layer only returns the output at the last time step, rather
than the full sequence of outputs. The dropout rate is set to 0.2, which means that 20% of the
LSTM units’ inputs will be randomly set to zero during training to prevent overfitting.

• Dense Layer: This layer is a fully connected layer with 1 unit indicates that the layer has a
single neuron. It serves as the output layer of the model. The activation function used in this
layer is sigmoid, which squashes the output value between 0 and 1, representing the probability
of the positive class for binary classification. The activation function that used for multi-class
classification is SoftMax, which calculates the probabilities of each class.

Additionally, the model is compiled with the following settings:

• Loss Function: A function for measuring the performance of an algorithm: if the predictions
are incorrect, the loss function will return a greater value, whereas if the model makes correct
predictions, the loss function will return a lower value. Cross-entropy, which evaluates the
difference between two probability distributions for a given random variable or series of
events, is commonly employed as a loss function when optimizing classification models. Binary-
Crossentropy loss function is commonly used for binary classification problems. Categorical-
Crossentropy, which is appropriate for multi-class classification problems.

Binary − loss = −(y ∗ log(p) + (1 − y) ∗ log(1 − p)) (2)

where y represents the true label of the sample (either 0 or 1). p represents the predicted probability of
the positive class (class 1).

Categorical − Crossentropyloss = −
∑

(y ∗ log(p)) (3)

where
∑

represents the summation over all classes, y is a one-hot encoded vector representing the true
label of the sample. It has a value of 1 for the true class and 0 for all other classes. The loss is computed
by taking the negative sum of the element-wise multiplication of y and log(p).

• Optimizer: Adam. It is an optimization algorithm that adapts the learning rate during training
to improve convergence. It adjusts the parameters based on the gradients of the loss function
with respect to the parameters computed during backpropagation using the chain rule.

By integrating CNN and LSTM layers, the model achieves a better balance between feature
extraction and capturing long-term dependencies compared to using only CNN layers. This approach
reduces the need for a very deep network with many convolutional layers, addressing the challenge
of modeling long-term dependencies in sequences and potentially alleviating the requirement for an
excessively deep architecture. Throughout the fine-tuning and optimization process, model architec-
ture modifications, such as adding or removing layers and adjusting the number of units or filters in
each layer, have been made to enhance its performance.

While previous studies have demonstrated high detection performance, understanding the energy
consumption implications of CNN-LSTM models is crucial for practical deployment and resource
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management. Table 1 presents the final model parameters adopted for better results. Increasing the
kernel size and filter count in the convolutional layer allows the model to capture more diverse and
complex features. Additionally, reducing the number of LSTM units helps mitigate overfitting while
still preserving the model’s ability to capture relevant temporal information. Classifying the attack
labels into six classes mitigates data imbalance and improves training efficiency.

Table 1: CNN-LSTM parameters

CNN-LSTM Layers Kernel/Neurons Activation/loss Optimizer Epoch Batch size

Binary-class Conv1D (9/32) ReLU Adam 20 128
MaxPooling 2 –
LSTM 16 –
Dense 1 Sigmoid/binary

_crossentropy
Multi-class Conv1D (9/32) ReLU Adam 20 128

MaxPooling 2 –
LSTM 16 –
Dense 8 Sofmax/categorical

_crossentropy

To identify the combination of epoch and batch size that provides the best balance between
training time and model performance, and to consider the stability and overall performance on the
validation set, the optimized version involves iterating through the entire dataset 20 times (epochs)
while using a batch size of 128. The goal is to adapt the architecture to better capture the underlying
patterns in the data and improve the trade-off between energy efficiency and detection rate.

4.3 Evaluation Metrics

When evaluating the CNN-LSTM model, several metrics can be used to assess its performance.
Here are some commonly used evaluation metrics along with their equations:

• True Positive (TP) indicates the number of attack traffic detected as attack traffic.
• True Negative (TN) indicates the number of normal traffic detected as normal traffic.
• False Positive (FP) indicates the number of attack traffic detected as normal traffic.
• False Negative (FN) indicates the number of normal traffic detected as attack traffic.

Accuracy (ACC): Accuracy measures the overall correctness of the model’s predictions.

Accuracy = (TP + TN) / (TP + TN + FP + FN) (4)

Precision: Precision measures the proportion of correctly predicted positive instances out of all
instances predicted as positive.

Precision = TP / (TP + FP) (5)
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Recall: measures the proportion of correctly predicted positive instances out of all actual positive
instances.

Recall = TP / (TP + FN) (6)

F1 score: The F1 score is the harmonic mean of precision and recall, providing a balanced
evaluation metric.

F1 score = 2 ∗ (Precision ∗ Recall) / (Precision + Recall) (7)

Area Under the Receiver Operating Characteristic Curve (AUC-ROC): AUC-ROC measures the
model’s ability to distinguish between classes by plotting the true positive rate (TPR) against the false
positive rate (FPR). AUC-ROC represents the area under the ROC curve, which ranges from 0 to 1.
A value closer to 1 indicates better classification performance. False Positive (FP): False positive is a
metric used in binary classification problems, representing the number of negative instances incorrectly
classified as positive by the model. It measures the model’s propensity to generate false alarms or false
positives.

False Positive = FP / (FP + TN) (8)

4.4 Evaluation Environment

The ML models are implemented using Python 3.9, leveraging libraries such as Numpy, Scikit-
learn, and Pandas for data manipulation and preprocessing. Matplotlib and Seaborn are used for
data visualization and analysis. TensorFlow’s Keras provides the classes and functions necessary
for defining and training neural network models. The experiment was tested on a Raspberry Pi 3
Model B+, which features a 64-bit quad-core ARM Cortex-A53 CPU and 1 GB LPDDR2 SDRAM
main memory. The Raspberry Pi has been deployed as a fog node in various IoT applications, as
referenced in [12,33]. The power consumption and latency at different phases of the model simulation
were investigated using the Raspberry Pi in conjunction with an Arduino Uno. Table 2 presents the
evaluation environment specifications.

P = I ∗ V (9)

Table 2: Evaluation environment specifications

CPU 64-bit quad-core ARM cortex-A53

RAM 1 GB
TensorFlow 2.7
Python 3.9
Arduino Uno

This equation calculates the power consumption (P) of the Raspberry Pi by multiplying the current
(I) passing through the shunt resistor by the voltage across the Raspberry Pi. The current (I) passing
through the 1-ohm shunt resistor (R) is the same as the current passing through the Raspberry Pi since
they are connected in series. The voltage across the Raspberry Pi (V_RPi) is measured by subtracting
the voltage measured with the Arduino Uno from the power supply voltage. Power consumption was
sampled every 2000 ms.
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The main phases of running the code included importing necessary packages, loading the dataset
sample, preprocessing the dataset, and making predictions. The latency for each step was recorded,
and the code was executed multiple times to ensure precision and avoid errors. The experimental setup,
including the Raspberry Pi, Arduino, and resistor shunt, is illustrated in Fig. 4. This setup allowed for
the detailed measurement and analysis of power consumption during the execution of the ML models.

Figure 4: Experiment setup and circuit diagram

4.5 Experiment Setup

The training and validation steps of the ML models were carried out on a PC with a 1.8 GHz
Dual-Core Intel Core i5 processor. The classifiers were implemented in Python 3.9, and the trained
models were subsequently transferred to a Raspberry Pi 3 Model B+ for further experimentation. The
experiment platform for the lightweight IDS utilized the Raspberry Pi 3 Model B+, with the trained
ML model and datasets, each with a sample size of 1000, loaded onto the Raspberry Pi.

Energy consumption and latency were investigated to evaluate the efficiency of the model
simulation for both binary-class and multi-class classifications during testing. The main phases of
running the code were recorded, including importing necessary packages, loading the dataset sample,
preprocessing the dataset, and making predictions. Each code execution was manually performed
multiple times to ensure precision and avoid errors.

Fig. 4 illustrates the experimental setup, which included a Raspberry Pi, Arduino, and resistor
shunt to measure power consumption. The circuit diagram details the experimental configuration for
measuring power supplied to the Raspberry Pi. The ground (GND) terminals of the Raspberry Pi,
Arduino Uno, and power supply were connected together to ensure a common reference point for the
circuit. A 1-ohm shunt resistor was inserted between the positive terminal of the power supply and
the positive terminal of the Raspberry Pi. This resistor allows for the measurement of current flowing
through the circuit. The A0 (analog input) pin of the Arduino Uno was connected to a point between
the shunt resistor and the positive terminal of the Raspberry Pi. This setup enables the Arduino Uno
to measure the voltage drop across the shunt resistor, which is proportional to the current flowing
through the circuit.
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The code was run through an SSH connection with the Raspberry Pi, and the latency for each
step was recorded. Eq. (9) was used to calculate the power consumed by the Raspberry Pi.

5 Results and Discussion

In this section, we conduct a detailed performance analysis and explain the findings of the ML
models mentioned in the preceding paragraph. The collected results are compared and examined
with the goal of documenting and assessing model behavior on recent datasets. Finally, this work
is compared to earlier investigations to highlight improvements and differences in performance.

5.1 Model Performance Evaluation

We first evaluate the detection quality of the proposed method for distinguishing between normal
and anomalous network traffic in the CICIoT2023 dataset. As shown in Fig. 5, the training and
validation accuracy values are reported to be approximately 99.17% and 99.21%, respectively. It is
desirable to have a model that performs well on both the training and validation datasets without a
substantial difference between the accuracy values. The training accuracy line measures the model’s
performance on the training dataset, indicating its ability to classify training examples accurately.
The validation accuracy line represents the model’s performance on unseen data, indicating its ability
to detect attacks in real-world fog computing environments. The fact that the validation accuracy is
slightly higher than the training accuracy suggests that the model is performing well and generalizing
effectively without overfitting to the training data. Fig. 6 shows the training and validation losses,
further illustrating the model’s performance.

Figure 5: Accuracy of CICIoT2023 binary classification

In ROC analysis, the FPR (False Positive Rate) and TPR (True Positive Rate) are used to plot
the ROC curve, which visualizes the performance of a binary classification model across different
classification thresholds. In Fig. 7, the ROC curve illustrates the trade-off between the true positive
rate and the false positive rate. A score of 99.79% indicates that the model has excellent discrimination
ability, achieving a high TPR while keeping the FPR low. This demonstrates that the model is effective
in correctly classifying positive instances and avoiding false positives.
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Figure 6: Loss of CICIoT2023 binary classification

Figure 7: ROC curve of CICIoT2023 binary classification

To evaluate the detection quality of the proposed method for distinguishing between different
classes of the CICIoT2023 dataset, we labeled the data for DDoS, DoS, Mirai, Recon, Spoofing, and
Benign traffic. Fig. 8 presents the training and validation accuracy values for the multi-class model,
which are approximately 92.37% and 92.76%, respectively. The small difference between training and
validation results suggests that the model is generalizing well and learning meaningful patterns. The
graph indicates that the model is neither overfitting nor underfitting, as the training and validation
accuracy lines are relatively close to each other. This demonstrates that the model effectively learns
from the training data and adjusts its parameters, enabling it to make more accurate predictions over
time. Fig. 9 shows the training and validation losses for the CICIoT2023 dataset, further illustrating
the model’s performance.

Fig. 10 represents the ROC AUC with a score of 0.95, indicating excellent performance. Random
guessing corresponds to a diagonal line from the bottom-left corner to the top-right corner. The
model’s FPR (False Positive Rate) and TPR (True Positive Rate) show moderate misclassification
rates for the attack classes. The detection performance of the CNN-LSTM model for each class of
the test dataset is shown in Table 3. It is evident that some classes are well-classified, particularly those
with a high number of occurrences in the dataset. For example, Benign Traffic, DoS, and Mirai have
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very low misclassification rates, followed by DDoS, Recon, and Spoofing. Due to the similarity in
data patterns, the model makes mistakes when distinguishing between DDoS, Recon, and Spoofing.
However, the classification is generally successful.

Figure 8: Accuracy of CICIoT2023 multi classification

Figure 9: Loss of CICIoT2023 multi classification

Fig. 11 shows the performance of the CNN-LSTM model on the binary and multi-class
CICIoT2023, NSL-KDD, and KDD-99 datasets. Evaluating the generalization ability of a model
to unseen data involves using a separate test set. The results show high accuracy and consistent
performance on the test set, indicating better generalization. Recall measures the proportion of actual
positive instances correctly identified by the model. In this model, a recall score of 94% suggests a
high ability to correctly identify positive instances. The F1 score provides a balance between precision
and recall, considering both false positives (precision) and false negatives (recall). In the binary-class
model, an F1 score of 92% suggests a reasonable balance between precision and recall. A higher
precision score indicates that the model has a low false positive rate. In our case, a precision score of
90% suggests the model’s ability to limit false positive predictions. The evaluation metrics for multi-
classification—precision, recall, and F1 score—are 94%, 92%, and 93%, respectively. These metrics
demonstrate the performance of the multi-class model on the NSL and KDD-99 datasets. The model
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achieved high accuracy rates on both datasets, with a slightly higher accuracy of 99.94% on the KDD-
99 dataset. The false alarm rates are relatively low for both the NSL and KDD-99 datasets, indicating
a good ability to avoid false positives. The multi-classification of CICIoT2023 achieved a lower false
alarm rate compared to other datasets, while KDD-99 had the highest accuracy. In general, the models
provide excellent results across multiple datasets and evaluation metrics.

Figure 10: ROC AUC performance

Table 3: Detection performance of the attack classes

Labels DDoS Benign traffic DoS Mirai Recon Spoofing

DDoS 90.1% 0 0 0 7.45% 9.91%
Benign traffic 0.01% 99.01% 2.95% 0.07% 0.13% 0
DoS 0 0.44% 98.99% 0.12% 0.17% 0.01%
Mirai 0 0.03% 0.08% 99.47% 0.19% 0.02%
Recon 6.82% 0 0 0 92.99% 4.55%
Spoofing 8.2% 0 0 0 3.51% 91.29%

The variation in performance across the datasets can be attributed to several factors. NSL is a
new version of the KDD-99 dataset, and the difference in performance between the NSL and KDD-99
datasets is because KDD-99 contains many redundant records, which are extremely easy for classifiers
to identify, resulting in high performance. In contrast, NSL does not include redundant records in the
training set, preventing classifiers from being biased towards more frequent records. The CICIoT2023
dataset encompasses both network traffic and IoT data, making it unique compared to the NSL
and KDD-99 datasets. The inclusion of IoT data introduces additional challenges, as IoT devices
have distinct communication patterns and may exhibit different behaviors compared to traditional
network traffic. The CICIoT2023 dataset, compared to NSL and KDD-99, is larger and includes a
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more diverse range of attack types, providing the model with more opportunities to learn and improve
its performance in terms of multi-classification.

0.00%
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30.00%
40.00%
50.00%
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70.00%
80.00%
90.00%

100.00%
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Figure 11: Performance evaluation of the model for CICIoT2023, NSL, and KDD-99 datasets

The Raspberry Pi is an appropriate platform for assessing the performance of the model due
to its limited processing resources. The power consumption of the Raspberry Pi, which was utilized
to mimic a fog node, peaks at 3.9 W during boot. In idle mode, consumption drops to 3 W. Fig. 12
displays the energy consumption recorded for each step of employing CNN-LSTM intrusion detection
on the Raspberry Pi with various datasets. However, the energy consumption of the cloud and the IoT
layer are beyond the scope of this work. For the dataset in testing, the maximum power consumption
of 6.12 W was recorded during the prediction step in evaluating the multi-class CICIoT2023 dataset.
The KDD-99 dataset recorded the lowest power consumption in every single run compared with other
datasets.

Figure 12: Energy consumption of the model steps

We also investigated the latency of the proposed model. Latency is defined as the period between
when an input is supplied to the model and when an output classifying the packet is detected. Fig. 13
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displays the model latency for CICIoT2023, KDD-99, and NSL-KDD on the Raspberry Pi. The
results were obtained using a 1000-instance sample size, selected uniformly at random. This helps
us to acquire statistically accurate latency values. Additionally, comparing the results of the training
and validation sets with a separate test sample enhances the reliability of the findings. Larger sample
sizes contribute to more precise estimates and increase statistical power. However, it is important to
consider the impact on energy consumption and the time required for data processing.

Figure 13: Latency of the model steps

To prevent experimental mistakes, the model code was manually executed 12 times for each
dataset. The latency for each step was embedded in the code testing the model. To get the worst-
case scenario for CNN-LSTM and different dataset loading and processing, the maximum result was
presented. It’s worth noting that the presented results of energy and latency for each dataset are from
a single run. Each phase of code execution has different latency and time consumption; for example,
importing the necessary packages to run the model has a different cost than uploading a sample
dataset for inference, as importing packages takes more time. High latency during the importing
packages step is due to loading and initializing libraries and packages for ML model execution. Some
packages require configuration steps, like loading model weights. However, with each iteration, latency
decreases due to caching mechanisms, reducing overhead and improving overall execution speed,
while the energy consumption doesn’t show significant differences or variations across iterations.
This is attributed to various factors. Establishing benchmark datasets and performance metrics that
include latency measurements would facilitate better evaluation and comparison of IDS solutions.
This study encourages future researchers to consider latency as an essential metric when evaluating
IDS performance. The detection and response time can directly impact the system’s effectiveness
in identifying and mitigating security threats. Minimizing detection and response time is crucial to
reducing potential damage caused by intrusions.

In terms of reducing and mitigating overhead of the IDS, during the load dataset phase, the
model consumes 6.04 W, while before increasing the kernel size and filter count of the CNN layer
and reducing the number of LSTM units and classifying the attack labels into 6 classes, the model
consumes 6.05 W. In the preprocess phase, the model consumes 6.07 W of power, whereas the model



4722 CMC, 2024, vol.80, no.3

consumed 6.13 W before optimization. Finally, in the prediction phase, the model consumes 6.12 W
of power, while it consumed 6.25 W before optimization. The model, after optimization, showcases
better power consumption efficiency across all phases, indicating that it can perform the required tasks
while utilizing fewer resources.

5.2 Comparison with Related Work

First, we review studies that proposed hybrid classification models combining CNN with LSTM
[10,11,19,45,46] and studies that tested on the CICIoT2023 dataset [18,47]. However, these studies
did not consider energy and CPU consumption. Table 4 presents a comparison in terms of the
datasets used for evaluation, number of epochs, accuracy, false alarm rate, and architecture design.
The proposed system outperforms previous studies [11,19] in terms of false alarm rate, achieving
high accuracy rates on the NSL-KDD and KDD-99 datasets, surpassing most prior studies. While
[47] obtained high accuracy rates in both binary and multi-class classifications, our work emphasizes
minimizing latency and energy consumption while maintaining a reasonable level of accuracy. Even
though [18] achieved slightly higher accuracy for binary classification within an edge-fog-cloud
framework, it is noteworthy that our proposed work takes into account the false alarm rate (FAR),
which is measured at 0.38 for binary classification. Our scope is to develop a centralized architecture
that aims to be lightweight and energy-efficient, distinguishing our scheme from existing approaches
that may not prioritize energy efficiency. Despite the goal of being energy-efficient, our scheme has
not compromised on accuracy. While the computational process may require more time and energy
compared to some previous studies, we have successfully achieved a balance between efficiency and
accuracy. Our approach maintains a high level of accuracy while remaining lightweight and suitable
for resource-constrained environments. Through our experiments and evaluation, we have achieved
a significant reduction in false positives, indicating a more accurate identification of genuine security
threats while minimizing unnecessary alerts.

Table 4: Comparison of the proposed system with papers in literature review

IDS Dataset Epochs Accuracy FAR Architecture

[10] CIDDS-001 10 99.92%
multi-class

0.09 Centralized

[11] NSL-KDD 50 96.5%
multi-class

1.29 Centralized

[18] CICIoT2023 10 99.36%
binary-class

– Distributed

[19] NSL-KDD 100 96.07%
binary-class

7.03 Distributed

[45] TON/IIoT 300 98.02%
multi-class

– Distributed

[46] NSL-KDD 100 98.91%
multi-class

– Distributed

[47] CICIoT2023 – 99.99%
binary-class

100 records
misclassified

–

99.96%
multi-class

41 records
misclassified

(Continued)
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Table 4 (continued)

IDS Dataset Epochs Accuracy FAR Architecture

Proposed
model

CICIoT2023 20 99.10%
binary-class

0.38
binary-class

Centralized

NSL-KDD 92.92%
multi-class

0.10 multi-class

99.22%
NSL-KDD

0.32
NSL-KDD

KDD-99 99.94%
KDD-99

0.12 KDD-99

Second, the comparison with previous studies that proposed lightweight IDSs [12,14–17] reveals
various methodologies developed to create efficient systems for resource-constrained environments.
The authors in Reference [17] focus on reducing the size of features and data points required for
abnormality detection, thereby lowering computational complexity. They address system overhead
in terms of CPU and memory usage, with their model utilizing a constant 3.4% CPU and a range of
1.5% to 2.9% memory overhead. Papers [15,16] proposed IDS nodes and simulated their performance
using OMNET++. In terms of lightweight IDSs, the studies primarily focus on energy consumption
and latency. The authors in [16] investigated the performance of Raspberry Pi and Orange Pi used in
different layers of the fog computing (FC) system, recording parameters to simulate the system using
OMNET++. Papers [12,14] employed methodologies similar to our study, testing model performance
on the Raspberry Pi. These papers address energy consumption and CPU time usage concerning the
number of nodes and grams. Table 5 compares our proposed model with previous studies in terms
of energy consumption, detection latency, and accuracy. Our model outperforms [16] in accuracy for
the NSL-KDD and KDD-99 datasets and achieves higher accuracy rates for binary classifications
on the CICIoT2023 dataset. The energy consumption varies slightly depending on the classification
task and dataset used. Although Reference [16] reported marginally lower detection latency, our
proposed model’s detection times remain reasonably low, ensuring timely identification of intrusions.
The maximum latency is approximately 8 s for prediction, with energy consumption at 6 watts. In
conclusion, the proposed CNN-LSTM model is accurate, energy-efficient, and lightweight.

Table 5: Comparison of proposed model with lightweight IDS

IDS Algorithm Dataset Accuracy Energy
consumption

Latency of
detection

[16] ANN KDD-99 98.8% 2.45 w 6.07 s
NSL-KDD 96.7% 6.27 s

(Continued)



4724 CMC, 2024, vol.80, no.3

Table 5 (continued)

IDS Algorithm Dataset Accuracy Energy
consumption

Latency of
detection

Proposed
model

CNN-LSTM CICIoT2023 99.10% binary 6.04 w binary 6.76 s binary

NSL-KDD 92.92% multi 6.12 w multi 8.23 s multi
99.22% NSL 6.02 w NSL 8.11 s NSL

KDD-99 99.94%
KDD-99

6.00 w KDD 7.52 s KDD

6 Conclusion and Future work

This work focused on developing a lightweight Intrusion Detection System (IDS) for IoT
systems in fog computing environments. By leveraging hybrid machine learning models, specifically
Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) networks, and
utilizing the CICIoT2023 dataset, we aimed to create an energy-efficient, accurate IDS suitable for
resource-constrained environments.

The proposed model was evaluated using multiple datasets, including NSL-KDD, KDD-99,
and CICIoT2023, for both binary and multi-class classification tasks. The results demonstrated
significant improvements in accuracy and latency with each iteration, highlighting the robustness and
effectiveness of our approach. The KDD-99 dataset produced the highest accuracy results, while the
CICIoT2023 dataset showed the lowest false alarm rates for multi-class classification.

The proposed model was implemented on a Raspberry Pi, simulating a fog node to test its
practicality in resource-limited settings. The findings indicated that the model maintained high
accuracy and low latency, even on such low-power devices, with the maximum power consumption
recorded during the data preprocessing step for the multi-class CICIoT2023 dataset.

The limitation of this work is that the performance and energy efficiency of the developed light
machine learning models are influenced by the specific hardware platform used. Additionally, the
complexity and size of a dataset can significantly impact the time and computational resources needed
for feature selection algorithms, making it challenging to balance faster execution with effective feature
identification.

Future work could extend the evaluation to different fog computing scenarios, assessing scalability
to handle a large number of IoT devices, and considering variations in network architectures,
and traffic volumes. We recommend performing further experiments focusing on CPU and power
consumption rates to refine the model’s efficiency.
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