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ABSTRACT

Cloud Datacenter Network (CDN) providers usually have the option to scale their network structures to allow
for far more resource capacities, though such scaling options may come with exponential costs that contradict
their utility objectives. Yet, besides the cost of the physical assets and network resources, such scaling may also
impose more loads on the electricity power grids to feed the added nodes with the required energy to run and cool,
which comes with extra costs too. Thus, those CDN providers who utilize their resources better can certainly afford
their services at lower price-units when compared to others who simply choose the scaling solutions. Resource
utilization is a quite challenging process; indeed, clients of CDNs usually tend to exaggerate their true resource
requirements when they lease their resources. Service providers are committed to their clients with Service Level
Agreements (SLAs). Therefore, any amendment to the resource allocations needs to be approved by the clients first.
In this work, we propose deploying a Stackelberg leadership framework to formulate a negotiation game between
the cloud service providers and their client tenants. Through this, the providers seek to retrieve those leased unused
resources from their clients. Cooperation is not expected from the clients, and they may ask high price units to
return their extra resources to the provider’s premises. Hence, to motivate cooperation in such a non-cooperative
game, as an extension to the Vickery auctions, we developed an incentive-compatible pricing model for the returned
resources. Moreover, we also proposed building a behavior belief function that shapes the way of negotiation and
compensation for each client. Compared to other benchmark models, the assessment results show that our proposed
models provide for timely negotiation schemes, allowing for better resource utilization rates, higher utilities, and
grid-friend CDNs.
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1 Introduction

Nowadays, the era of computing and digital telecommunication systems has changed almost
every aspect of our lives, starting with education, business sectors, medical applications, and many
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other service examples that we may find everywhere. For organizations, to afford such services, the
option of retaining physical network infrastructures and what is required of powerful computing and
processing stations have phased out. The theme of cloud computing has proved to allow for a sufficient
alternative that provides adequate virtual environments to host such sorts of services in an efficient,
reliable, and cost-competitive way. Cloud-based Datacenter Networks (CDNs) are built with nodes
allowing massive processing power and ultimate network capacities. However, service applications that
are hosted on such data center networks are increasing every day, and so are the resource requirements
of the hosting data center nodes and their associated networked traffic.

In CDNs, the providers are required to guarantee their continuous service availability and
reliability. To do so, such cloud providers employ well-engineered resource management schemes that
map their data center resources in efficient ways. Usually, Service Level Agreements (SLAs) that shape
commitments of reliability, service availability, classes, and price units cover such service provision
processes. To accommodate the rapid increase in the number of new services and their associated
resource requirements, providers of CDNs need to adapt by expanding their resource fabrics to allow
for far more capacities at both, nodes and network links. This option may help accommodate the
required increase of resources; however, it also conveys other challenges. Indeed, such an option may
add greater administrative overhead and higher service price units. Furthermore, expanding the scale
of a data center may require major changes to the whole infrastructure of the data center, not to
mention what it imposes on higher requirements of energy for such network nodes to run and cool.

Besides the other traditional resource management problems, the research work today is required
to tackle the issue of power and energy consumption of such CDNs [1]. The number of computing
devices that are connected to the power grids is increasing rapidly; what is more, the diffusion of other
power-hungry devices like electric vehicles represents a non-stationary sort of energy consumer that
adds sudden consumption hikes to the power grids. Such unexpected hikes may compromise the power
grids’ stability; therefore, besides the traditional objectives of resource utilization, the need today is to
consider the energy consumption rates of the employed machines in such data center networks [2].

Services of the CDNs are provided with commitments to predefined SLAs that dictate the resource
amounts to be allocated, and their assigned price units to be paid. Virtual Network Clients (VNCs)
lease their required resources in the form of Virtual Machines (VMs) from cloud providers, these VMs
vary in their computing and processing power based on the services they are leased to run. Therefore,
VNCs requests of VMs vary according to their services and required specifications. Statistics show that
the VNCs tend to lease extra resources compared to their real VM requirements [3], the real usage rates
are mostly around 20% of the leased amounts of resources. Although the CDNs are paid for such leased
but unused resources, still, in the terminology of resource management, this leads to low resource
utilization rates as the resources are reserved but not used. For CDN providers, any commitments
to new VNCs should consider the resource availability at their premises. Providers of CDNs are
always motivated to expand their engagement in leasing their resources, which helps in maximizing
their revenue and attaining higher reputations and market publicity. Accordingly, providers may
expand their data center networks by adding more server racks and necessary networking resources to
accommodate new VNC allocation requests in new hosting spaces. This may allow for new resource
capacities indeed, however, such expansion approaches come with new costs to be counted, and also
require more energy to run and cool these new racks and the other related network components. Such
networks with huge energy consumption rates may represent heavy-loaded zones on the power grids,
which may further lead to power failures and service disruptions. It is worth highlighting that such
additions of server racks to the existing data center networks may necessitate major updates to the
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whole network infrastructure, which may also impose further physical changes with higher costs that
exceed those of the newly added components and the anticipated revenue rates.

2 Problem Statement

Resource utilization plays an important role in delivering energy-friend data center network
fabrics with competing service price units and satisfying SLA commitments. In the literature, the
proposals of resource management and clients’ mapping models in cloud-based networks are many,
each with different methodology and management objectives. VM migration and the other techniques
of resource adjustments and resource arbitration may help in accommodating new leasing requests
of VNCs using the existing data center resources without incurring further costs [4,5], however,
such complex techniques may result in service disruptions that violate the Quality of Service (QoS)
commitments govern by the SLAs. QoS violations may require the cloud providers to pay the hosted
VNCs compensation costs that exceed the anticipated revenue to be collected from the new VNCs
leasing requests.

In [6], we proposed an allocation model that suppresses resource request exaggeration, in that
work; the CDN providers motivate leasing fewer resources by adopting a non-linear pricing scheme [7]
for their data center networks’ resources. Therefore, for the clients, the more resource units they lease,
the higher price-units they would expect to pay, and so, this may affect their anticipated utilities and
profit objectives. In this work, we are extending our work of [6] and [8] by proposing another resource
allocation methodology that helps mitigate the effects of VNCs’ tendency of resource exaggeration,
through which, we developed a negotiation model that allows for a reallocation scheme for those
leased but unused resources. CDN providers can increase their utilities by accepting more VNC leasing
requests; however, such new requests could be satisfied by increasing the availability of the existing
resources in their networks without the need to upgrade their topologies to other ones with more new
resources. Such upgrades may require major changes to their assets and their related configurations.
Through this model, providers of CDN can retrieve their leased but unused resources from the existing
VNCs and reallocate them to other new VNCs. This would provide the resources to the new VNCs
with lower price units, increase the reputation of the leasing CDNs provider, avoid any SLA violations,
and decrease the need for further energy consumption rates from the power grids.

In [9], the authors proposed a negotiation model that helps avoid resource underutilization at
the service tenants’ side of cloud service networks. In their work, they proposed a set of negotiation
strategies between the service providers and their service tenants to return the leased but unused
resources to the provider’s premises. In one strategy, they proposed a kind of greedy pricing model
that slightly increases the provider’s offered price units at each negotiation round. The objective of
such a strategy is merely to return the extra resources at the lowest possible prices, regardless of the
tenants’ utility objectives or the time spent in negotiation rounds. The outcome of the strategy will be
a compensation price unit that is the same for all service tenants, such as a price unit that conserves the
provider’s utility function and maximizes its profit objectives. In another strategy of the same work,
but with different price units being offered, the authors proposed considering the mean and standard
deviation metrics to show how the increments in the offered price units at the previous negotiation
rounds could affect the number of negotiation rounds in the coming sessions. This may reduce the
number of negotiation rounds with maybe bigger jumps in the offered price-units indeed, though; it
cannot motivate the cooperation of the tenants to accept the providers’ offered price-units instead of
waiting for the next rounds. From the perspective of the service tenants, those we called the VNCs,
retaining unused resources might be an option that may cover their future needs or any unexpected
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changes in the service requirements. However, offering them reasonable return price units might be
convincing as this may allow for higher utilities being earned by reducing the prices they pay for their
chosen service resources. Moreover, we need to keep in mind that the whole resource retrieval process
was originally motivated to satisfy the new VNCs resource allocation requests, such a process that
needs to be processed in a fast manner with no long delays. Hence, the process of price-unit offerings
and its negotiation rounds need to be timely. Therefore, we believe that besides the need to make it
fast by reducing the number of negotiation rounds, such a process needs to be incentive-compatible
for both, service providers and their tenants.

Accordingly, in this work, we are presenting AMAD, an Adaptive Mapping Approach for data
center processing and network resources for energy-efficient CDNs. In AMAD, through a negotiation
process with the existing VNCs, those leased but unused resources could be returned to the CDN
providers’ premises so they can use them to serve other new VNCs. The negotiation process is done
periodically according to the dynamic resource requirements a CDN provider may find needed to
satisfy the new leasing requests of new VNCs. In this way, the existing VNCs will be compensated
for the resources they return, and accordingly satisfied, as they will be paying less for their running
services. So do the CDN providers, they will be able to offer their hosting services to new VNCs using
the existing resource expenditures without incurring further higher costs for the upgrades. What is
more, with AMAD, such a resource management scheme allows for green and energy-friend CDNs
that consume less energy rates for the number of clients and services they provide.

For such a negotiation-based resource retrieval process, in AMAD, we chose to employ a modified
version of the Stackelberg Leadership model [10] to create a kind of strategic game between the CDN’s
providers and their existing VNCs, being the two players of the game. In economics, Stackelberg
strategic games between two main entities, in which, the first entity (i.e., the leader) performs its move
first, and then the other (i.e., the followers) does their move next. It is therefore called leader-follower
games. In the terminology of game theory, these two entities (i.e., the leader and the followers) are
called players, and they both compete to maximize their utilities. Accordingly, the leader is the CDN
provider, which we denote as the first player, while the followers, which we denote as the second player,
are the set of VNCs who have extra-unused resources to return. Running such a game is periodic
so it periodically retrieves what the CDN may need to satisfy the new VNCs leasing requirements.
Among the rules that we set for this resource-retrieval game are the following: neither the leader nor
the followers should have prior knowledge of the opponent’s action (i.e., the price-unit) that is willing
to accept, though, the leader must have a committing power restricted by the model constraints to be
discussed in the coming sections.

Therefore, in AMAD, the leader initiates the resource-retrieval game by revealing its offered price
unit with no information about the amount of required resources. After that, the followers respond
by either accepting the offer or not (i.e., waiting for higher offers in the next negotiation rounds), for
those who accept, and have only one chance to do so, they declare the amount of resources they intend
to return. The offered price-unit revealed by the leader is defined according to one of the following
two strategies:

• The leader starts the negotiation game by allowing the followers to wait for a price unit that
matches their desired objectives; however, it sets the final price unit to be paid to all the followers
according to the highest price (FHP) that is accepted by any of the followers participating in
the current retrieval game. This motivates the follower VNCs to accept early offered price units
and not wait for further negotiation rounds, as this may lead to them being excluded from the
retrieval game.
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• The leader sets each follower’s final price unit individually according to a belief function.
Such a function is proposed to build a history of the follower’s previous bidding behavior and
negotiation tendency. Based on that, the model accepts/declines the follower’s requests to wait
for the next negotiation rounds. This strategy may help motivate better bidding behavior (i.e.,
accepting reasonable price units being offered) and reduce the number of negotiation rounds,
which means faster processing for the new resource mapping requests of new VNCs.

Different from other proposals in the literature, the followers’ cooperation in such resource-
retrieval games is motivated through mechanisms that guarantee no utility losses for both parties of the
game, neither the leader nor the followers. For the leader player, the CDN provider, its utility objective
is to retrieve the extra-unused resources from the existing VNCs and use them to serve other requests
of new VNCs. For such an objective to be satisfied, the retrieval price units need to be reasonable, and
not exceed price thresholds being set according to its revenue goals and original costs already paid for
the running resources. It also needs to be timely with no lengthy negotiation rounds. For the followers,
those leasing VNCs with extra-unused resources, their utility is to satisfy their required services and
reduce the cost receipts associated with such services. Therefore, for the followers, returning the extra-
unused resources by any price could be considered profitable, though; the strategies followed in our
model AMAD guarantee reasonable prices being offered for such resources from the CDN providers.
Through such a framework, we can create a pool of unused resources that can be used to fulfill part of
the new service requests without imposing any burdens of any structural upgrades that would certainly
come with higher costs and higher power consumption rates.

2.1 Contribution

Hence, through the proposed model AMAD, our contribution can be summarized in developing
a grid-friend resource management model for CDNs that allows for:

• Efficient resource utilization; where the network processing and computing resources are allo-
cated in a well-engineered manner that guarantees both, higher utilization and client satisfaction
rates.

• Green data center networks; given that any scale or further expansion plans for the datacenter
nodes or network resources are only allowed after verifying the true usage and resource
availability. Hence, limiting the need for structural updates or upgrades. This helps in reducing
the number of physical machines in the data center to the least appropriate, and therefore, less
power consumption by the data center to run and cool.

• Incentive-compatible resource retrieval; in the sense that the proposed resource retrieval model
provides for strategies that serve the best options for both, followers and leaders. Indeed,
bounding the price units to predefined thresholds that consider the interests of both parties
in the game provides for an equilibrium framework in such a non-cooperative environment.

• Timely resource-retrieval model; which is achieved by motivating the cooperation of both
parties, the CDN providers and their VNCs, to offer reasonable price units that encourage
retrieval requests with less number of negotiation rounds.

• Behavior-based negotiation model; employs a belief function to record the history of the player
in terms of its negotiation behavior in the previous resource retrieval rounds to give an insight
into its pricing tendency.
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2.2 Paper Organization

The rest of this paper is organized as follows: Section 3 presents related work from the literature.
We discuss our proposed model in Section 4, its definitions, and mathematical modeling in Sections 4.1
and 4.3. Section 4.5 presents the benchmark model, and then the numerical results are presented and
discussed in Section 5. Finally, Section 6 concludes this paper.

3 Related Work

Resource utilization in cloud-based service networks greatly affects the energy usage of such
environments and the computing nodes they run. Green computing is emerging as an important
criterion to consider when managing such networks. Indeed, the rising environmental concerns [11],
besides the rapid increase in energy costs make such criteria emerging more than ever. This includes
the infrastructures of CDNs and what follows of resource allocation processes, monitoring, and any
future scaling and expansion plans. Migration of VMs has been proposed in many works in the
literature to minimize the need to run new physical machines, which claim to help in reducing energy
requirements. This may help, though, the migration process itself may impose other problems that
contradict the SLAs [12,13]. Indeed, keeping up the commitments that are guaranteed by the SLAs
is quite challenging in such migration scenarios. Not to mention other management objectives such
as load balancing [14], network performance, service delays, and others. Optimal scheduling and
VM migrations models proved to be NP-hard, though; metaheuristic models could deliver efficient
allocation models. The authors of [15] modeled the resource allocation problem using an improved
Grey Wolf Optimization chaotic binary model, to allow for load-balanced network fabrics and low
traffic volumes. In [16], the authors proposed a metaheuristic workflow-scheduling model for VMs in
green cloud computing platforms, with the goals of enhancing throughput while reducing costs and
energy consumption [17]. Studies the problem of VM mappings and migration processes over physical
machines from the perspective of energy efficiency using a decentralized auction-based management
model. Such proposals are great, they present efficient models that ease the VM migration processes
and provide for load-balanced networks. However, to allow for real resource utilization and reduce the
energy consumption rates, we believe that VM migration might be an option to deploy only when we
make sure that the allowed resources at the hosting cloud servers are truly utilized (i.e., fully used by
their leasing clients), otherwise, deploying other management options might be more efficient. Those
hosting cloud servers where resources are reserved but not efficiently used are considered candidate
assets that could be considered to host other new clients before deciding to migrate a VM from one
place to another or scale the data center fabric to spawn unnecessary new server racks which would
impose both, further costs and energy requirements.

Stackelberg sequential games have been used in similar problems in the literature to draw a kind
of interaction strategy between the providers and their clients. In [18], the authors proposed an energy-
aware resource allocation model for virtual resource management in cellular networks, in their work;
the allocation model is built as a Stackelberg game but with the assumption of ideal network link
capacities. Moreover, the authors of [19] proposed deploying a Stackelberg-based model for load
balancing compared to a benchmark model with random and Flow Shop scheduling algorithms. Their
delivered results show better resource utilization and an enhanced throughput, with less number of
errors and failures. In this work, the objective is extended to allow for efficient and true utilization of
cloud resources in a way to deliver data center networks with less power consumption rates. Modeling
the resource negotiation problems through Stackelberg and other Game Theoretic strategies has also
been proposed in other works in the literature [20–22]. In such decision-making problems, strategies of
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game theory and mechanism design may help in building systematic allocation models. In this context
of resource management and allocation in CDNs, there are several research proposals in the literature
that we studied and reviewed. The goal of such proposals is mainly around enhancing the resource
allocation models while maintaining the clients’ satisfaction. The authors of [23] proposed a finite
extensive form game in a backward induction strategy for better resource allocation and utilization
rates compared to a benchmark model with a first fit allocation algorithm. In [24], the authors
proposed deploying a repetitive non-cooperative game for a resource allocation model with partial
information. Their model may allow for fast run times, lower violation rates for the SLAs, and higher
utilities to the providers. However, their pricing strategy was static rather than dynamic which does not
allow for considering the real-time updates in the network and the power grids’ loads. Another work
tackled the problem as a non-cooperative game to reach a Nash equilibrium in computational grids
through deploying a proportional scheme algorithm, the model of [25] provided for a kind of load-
balanced network. However, the balancing tasks are allocated according to the computing capacity of
the hosting machines with no regard to the true utilization and power consumption rates.

The use of auctions to set dynamic price units for resources is not new, compared to those
traditional inflexible pricing mechanisms, such dynamic mechanisms allow for competitive price
negotiation environments that could be utilized to manage the resource allocation process. In this
context, the authors of [26] proposed Bazaar-Extension, a negotiation model built on the CloudSim
framework to allow for direct cost negotiations between service providers and consumers. In the
Haizea resource management framework, the authors of [27] developed another model that tackles
the problem of dynamic monitoring for the leased VMs’ resources, to consider the utilization rates and
the dynamic changes in clients’ resource requirements. In terms of resource management, authors [28]
considered allowing cloud service providers to create a kind of cloud federation to pool their unused
resources. These resources are then allocated to the spot market clients. While this model may help
attain better resource utilization rates and provide revenue maximization for the federation, individual
service providers may find no incentive to participate in the federation’s pool of resources. Instead, they
may choose to lease their unused resources in their spot markets.

The authors of [29] studied the problem of resource allocation in cloud networks through a model
that combines genetic algorithms with state-action reward and state-action learning. In their model,
they investigated how to maximize the resource usage rates by choosing the appropriate set of activities.
The results of their proposal show satisfying resource utilization and load balancing rates. Few other
research proposals for resource management in data center networks suggest a third-party cloud
broker to negotiate [30] or collect the resource availability readings from several CDN providers and
match it with the received clients’ leasing requests. Such resource leasing or service provision services
are covered by SLAs that go through a management cycle that starts with the SLA creation state
which includes the discovery of the service provider, and may later evolve and adapt according to the
changing requirements of both parties after the first agreement [31]. Again, this helps in mapping the
received resource requests in a way that could be considered satisfying for both: providers and clients,
but not achieving the goal of efficient resource utilization and reduced energy requirements.

Different from the other models in the literature, our proposed model AMAD allows for a novel
negotiation model for resource retrieval between the cloud network providers and their clients. To the
best of our knowledge, our AMAD model is the first to employ a dynamic negotiation framework that
considers the electrical power consumption rates of the running machines besides their true resource
utilization rates. Moreover, AMAD also allows for a novel win-win resource retrieval model that
returns the unused-leased resources through a pricing mechanism that satisfies both: providers and
their clients. What is more, this proposed model combines the Stakelberg leader-follower strategy with
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a game-theoretic approach to incentivize timely resource retrievals. In addition, AMAD proposes
using a belief function that records the players’ retrieval behavior to motivate truthful resource
requirements in the end.

4 The AMAD Model

Resource utilization in such cloud-based networks can take place before and after the allocation
processes. Before the allocation, called the initial phase, CDN providers can utilize their resources
better by setting policies to discourage resource exaggeration and motivate the service clients to reveal
their true resource requirements instead. This can be done in many ways through various models. In
[6], we proposed a model that adopts the Vickrey Clarke Groves pricing mechanism to reduce such
exaggeration actions. Having the resources being allocated, the providers may still monitor the resource
usage of the leasing clients and accordingly find a way to utilize unused resources even if their clients
already lease them. However, once the allocation is set, call it the second phase, any amendments to
the allocation decisions need to respect the contracted QoS levels and its associated SLAs. Hence,
the utilization processes at this phase might differ compared to those of the first phase, as the leasing
clients need to approve any amendments. To do so, in this work, we propose AMAD, a negotiation
model between the providers and their clients to formulate a way to utilize the resources better while
keeping both parties satisfied.

4.1 Model Definitions

A CDN hosts several server machines with massive processing and computing power and these
server machines are interconnected through a set of network links. Therefore, in our model, using the
graph theory, we define the data center as a graph D that consists of a set of nodes S and edges L.
The server machines and what they allow for processing power and storage spaces are represented by
the graph nodes S. The communications between such nodes are carried out through the set of edges
L that represent the CDN’s links, which provide the required bandwidth capacities to interconnect
the data center nodes together, and to other networks. Each data center node s, s ∈ S, is equipped
with predefined physical resource capacities of processing power ρsk

and storage space ζsk
. The tenant

clients of the CDN are denoted as C, where each client c, c ∈ C, is leasing an amount of processing
and storage resources given by ρci and ζci , respectively. For each client ci, the leased node resources of
processing and storage come with the bandwidth resources lsk

required to get it interconnected with
other nodes and networks. Therefore, in this work, we assume that resource retrieval at the nodes’ side
would implicitly include the bandwidth resources required to reach the tackled nodes’ resources.

In AMAD, the resource retrieval process is modeled as a negotiation game between the CDN
providers and their tenant clients. Hence, resources are first allocated to the CDN clients after setting
the resource amount to be reserved, price units, and the corresponding lease times. Next, any later
resource reservation adjustments are done via a repeated leader-follower negotiation game framework,
through which, the CDN provider (i.e., the leader) initiates the resource negotiation game with its
clients (i.e., the followers) to retrieve those leased unused resources according to predefined policies.
In such a game, both players, the provider and the clients are assumed to be rational, and so they
both aim to maximize their utilities. Therefore, each leasing client ci aims to maximize its utility
function Uci defined in (1). This can be achieved by maximizing the difference between the gain Ici

it can attain from the services being created using the leased resources, and the aggregate cost paid for
the reserved resources calculated according to the reserved set of resource s

(
ρci .ζci

)
at the price-unit τci

while considering the electricity tariff-unit eci .
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Uci = max{Ici − (ρci + ζci)(τci + eci)} (1)

Accordingly, to satisfy the objective of (1), a client ci needs to lease its resources from a CDN
service provider that provides reliable services that maximize the gain Ici with the minimum summation
of costs that depends on the amounts of resources being reserved at a price unit τci and electricity-unit
of eci . As for the CDN provider PD, the utility function is presented in (2).

Up = max
∑

∀ci . c∈C
(ρu

ci
+ ζ u

ci
) (2)

To preserve the resource utilization objective, providers’ utility Up is built in a way that only
considers the utilized resources (ρu

ci
. ζ u

ci
) among those allocated to the leasing set of clients C. Hence,

for a CDN provider PD, it’s the truly utilized resources that are counted in the utility function, and
therefore, maximizing its utility would come through maximizing the utilization rates of its pool of
resources.

4.2 The Resource-Retrieval Mechanism

Having the processing and storage resources being allocated to the leasing set of clients C, ρa
ci

and ζ a
ci
, as demonstrated in Fig. 1, the provider needs to keep monitoring the real utilization rates of

the allocated processing and storage resources to each client c, ρu
ci

and ζ u
ci
, respectively. For any new

resource allocation requests received by the provider PD from new clients, it checks for the available
but unleased resources ρv

sk
and ζ v

sk
at its premises first, if it suffices, the new allocations may proceed

without the need for any retrieval processes. Otherwise, it runs the resource-retrieval mechanism to
help attain what is required from those allocated unused extra resources, ρr

ci
and ζ r

ci
, that are already

leased to the existing leasing clients.

Figure 1: AMAD’s model demonstration
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For each physical node s, s ∈ S, of the CDN, the provider PD uses the formulas defined in Eqs. (3)
and (4) to keep its pool’s resource availability information up to date.

ρv
sk

=
(∑

∀s∈S
ρsk

−
∑

∀c∈C
ρci

)
(3)

ζ v
sk

=
(∑

∀s∈S
ζsk

−
∑

∀c∈C
ζci

)
(4)

Yet, for the true resource availability, ρr
ci

and ζ r
ci
, those rates that reflect the real usage among

the allocated resources at the clients’ reserve-box side, the model uses Eqs. (5) and (6) to keep such
availability rates up to date.

ρr
ci

=
(∑

ci
ρa

ci
−

∑
ci
ρu

ci

)
(5)

ζ r
ci

=
(∑

ci
ζ a

ci
−

∑
ci
ζ u

ci

)
(6)

Accordingly, if the true available resources at the provider’s premises, ρr
sk

and ζ r
sk

defined in Eqs. (7)
and (8), can’t cover the resource requirements of the new leasing requests ρn

sk
and ζ n

sk
of the new clients

Cn, then the provider PD needs to start the resource-retrieval negotiation process to motivate those
clients who have extra leased unused resources to return.

ρr
sk

= ρv
sk

+
∑

∀c∈C
ρr

ci
(7)

ζ r
sk

= ζ v
sk

+
∑

∀c∈C
ζ r

ci
(8)

The utilization ratios, ρu′
ci

and ζ u′
ci

, for all existing clients in C are calculated as shown in Eqs. (9)
and (10) to mark the target clients to be contacted by Cx. So, the clients with utilization ratios below
80% are asked to retrieve part of their extra unused resources while being offered a compensation
price-unit τ r

ci
. In AMAD, we proposed two different strategies to shape the way of negotiating such

retrieval price units.

ρu′
ci

=
∑

ci
ρa

ci
− ∑

ci
ρu

ci∑
ci
ρa

ci

(9)

ζ u′
ci

=
∑

ci
ζ a

ci
− ∑

ci
ζ u

ci∑
ci
ζ a

ci

(10)

4.3 Model Constraints

In AMAD, we set the following constraints to keep the resource-retrieval model motivated and
maintain the utility objectives of both: providers and clients.

4.3.1 Multiple Participation Is Not Allowed

In each resource-retrieval game, Ny, the price-unit negotiation process may take several rounds.
In the expression Ny, N refers to a new negotiation session, with the reference y. A client in Cx has
only one chance to participate in the retrieval game, no matter how long the negotiation rounds last.
This is to motivate the clients to reveal their intentions earlier, accept the early offered price units,
and participate with the extra resources they have. To verify that, in our proposed model AMAD, we
introduced a binary variable named Nci

y for each candidate client ci at the resource retrieval game Ny,
such that:



CMC, 2024, vol.80, no.3 4587

Nci
y =

{
1 if client ci returned resources at any round r of game Ny

0 otherwise
(11)

This is restricted by the following condition to guarantee only one participation per client ci, so
multiple participations are not allowed:∑

∀r∈Ny
Nci

y ≤ 1 ; Nci
y ∈ [0.1] (12)

4.3.2 Offered Price-Units Threshold

To motivate leasing reasonable resource amounts from the beginning, and reduce the motivations
of requirement exaggeration, in AMAD, we constrained the provider’s offered price-units for resource
retrieval with a threshold point that considers the original leasing price-units τci , and the leasing price-
unit for the new clients τcn as well. Accordingly, the offered price-unit τ ∗

x is bounded as follows:

τ ∗
x ≤ τci ; ∀

(
ρa

ci
. ζ a

ci

)
. ci ∈ C (13)

τ ∗
x ≤ τcn ; ∀ (

ρn
cn

. ζ n
cn

)
. cn ∈ Cn (14)

4.4 AMAD Strategies

In AMAD, we proposed two different strategies to shape the way of negotiating such retrieval
price units. The main goal of both strategies is to motivate the leasing clients’ cooperation with their
providers to help them utilize their network resources better. In parallel, such strategies need to be
incentive-compatible for both parties, clients and providers. Hence, besides the resource utilization
objective, the return price units need also to be satisfying while being constrained to revenue and time
objectives. As mentioned in the previous section, the process of choosing those clients that are targeted
by the negotiation process Cx is dynamic and dependent on their utilization ratios ρu

ci
and ζ u

ci
. Hence,

those with extra resources being leased but not used at their reserve box and who satisfy the 80%
condition at the current round are contacted, others are not.

4.4.1 Further-Highest Price Strategy (FHPS)

The negotiation game starts with the CDN provider PD (i.e., player 1) initiating the resource
retrieval call Ny. y ∈ Y , for all those clients in Cx (i.e., player 2) satisfying the utilization ratio threshold
at time t. In-game N, each player in Cx has only one chance to participate in the retrieval process,
and therefore, once it finds an acceptable return price-unit being offered by PD, it announces its
acceptance with the number of resource units to release. A breakdown of the FHPS model is presented
in Algorithm 1, accordingly, the negotiation rounds continue as long as the required amounts of
resources, ρn

sk
and ζ n

sk
, are not yet retrieved. Once retrieved, to set the final price-unit to be paid for

the retrieving clients, the provider proceeds with one further negotiation round Ny+1 pretending a need
for more resources and records the next acceptable price-unit τ ∗

cx
. This price-unit, which we call the

further-highest, is now paid for all those clients who accepted the previous calls, but not the current
clients which will be excluded.

Algorithm 1: The FHPS algorithm: further-highest price strategy for resource retrieval
1: input: At time t, CDN provider PD checks the status of its data center nodes S, through which, it:
2: reads: (1) The real-time processing power availability at its nodes ρs

v
k;

3: (2) The real-time storage space availability at its nodes ζ s
v

k;
(Continued)
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Algorithm 1 (continued)
4: (3) The resource requirements of the new clients’ requests Cn to be hosted, ρs

n
k and

ζ s
n

k;
5: (4) The real-time utilization rates of the leased resource, ρc

u
i and ζ c

u
i, by each client

ci.
6: updates Cx: it appends each leasing client ci with either ρc

u
i or ζ u

ci ≤ 80% to list Cx;
7: if the CDN’s node’s availability of ρv

sk ≥ ρs
n

k and ζ v
sk ≥ ζ s

n
k, then:

8: allocate ρc
n

n and ζ c
n

n to each new client cn of the set of clients Cn.
9: else;
10: find: (1) the required processing power ρs

d
k = ρs

n
k − ρs

v
k to retrieve from Cx;

11: (2) the required storage space ζ s
dk = ζ s

n
k − ζ s

v
k to retrieve from Cx;

12: start the first round r the resource-retrieval game Ny with the clients in Cx, so it:
13: (1) sends the retrieval request to all clients in Cx, with Ny

ci = 0;
14: (2) reveals the offered price unit τN∗y to compensate resource-unit retrievals;
15: (3) collects the retrieved resources from the retrieving clients ci ∈ Cx;
16: update ρs

v
k, ζ s

v
k, and Cx;

17: while ρs
v

k ≤ ρs
d

k or ζ s
v

k ≤ ζ s
d

k, and Cx /= ϕ, do;
18: (1) resend a new resource-retrieval request again to the updated Cx;
19: (2) start a new negotiation round with a higher price unit being offered τ N

∗
y++;

20: (3) wait for new retrievals;
21: (4) return to line 16;
22: else;
23: (1) resend one further resource-retrieval request again;
24: (2) start a new negotiation round with a new price unit being offered τ N

∗
y++;

25: (3) if the offered price unit is accepted, skip to line 27;
26: else, return to 24;
27: (4) set the same compensation price unit for all as τ c

∗
x;

28: allocate ρc
a

n and ζ c
a

n to each new client cn of the set of clients Cn;
29: compensate the retrieving clients of Cx with price unit = τ ∗

cx;
30: output: updated readings of ρs

uk, ζ s
uk and Cx;

With FHPS, even non-cooperative clients are expected to show more cooperative behavior with
the CDN provider at the early stages of the negotiation rounds. Indeed, to avoid being excluded from
the retrieval game, they will tend to accept early provider offers. Such clients would be motivated by
expecting higher price units to be paid by the provider if they accept early offered ones. This would
promote their willingness to accept lower price units (i.e., early offers), and accordingly, retrieve the
required resources with less number of negotiation rounds and price units.

4.4.2 Belief Function-Based Strategy (BFBS)

To motivate timely negotiation rounds, in AMAD, we proposed building a kind of behavior-based
score for each client participating in the resource-retrieval games, through which, the provider may
adapt its negotiation policy with each client according to its negotiation history in the previous retrieval
games. Hence, those clients who have a repetitive tendency to stall their retrievals, and wait for higher
price units are flagged with a score that reflects such behavior. Accordingly, in BFBS, the model records
the behavioral history of each client calculated as presented in Eq. (15) which considers the number of
accepted offers RA to the total number of negotiation rounds the client participated in, RT .
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βci = R
A

R
T . ; βci ∈ [0.1] (15)

Referenced to the value of βci , the CDN provider may motivate the cooperation of its clients by
adapting their offered price units as presented in Eq. (16). Hence, the client players will receive different
price-unit offers according to their previous history of negotiation. Those who showed cooperative
behavior (i.e., accepting offers in relatively short negotiation rounds) are rewarded by receiving new
offers with higher price units τ�

Ny
, compared to others who showed non-cooperative behavior with a

lengthy number of negotiation rounds. Those non-cooperative clients would only receive a relatively
small increase in the offered price units depending on their belief scores given by βci .

τ
ci
Ny =

{
τ�

Ny
if ci′s belief score βci ≥ 90%

τ�
Ny

.βci
2 otherwise

(16)

Based on that, and according to the belief score each client accumulates as defined in (15), the
model calculates the price units to offer. Being a value that is dependent on the clients’ retrieval history,
each client would expect different compensation price units that are higher for cooperative clients (i.e.,
who showed a tendency to accept early retrieval offers) and lower for those with less cooperation
history (i.e., those who showed a tendency to wait for further negotiation rounds). In this way, the
model pushes the behavior of the clients to a better level of cooperation.

Indeed, having the return price-unit τ
ci
Ny linked to the client’s belief value βci would incentivize early

retrievals. True, as those who accept early retrieval offers would accumulate higher belief values which
would result in higher compensation offers. The integration of the retrieval process with such belief-
dependent compensation price units allows for a win-win retrieval model that satisfies its resource
utilization attempts in timely negotiation rounds.

Therefore, as shown in Eq. (16), clients with a belief score that is 90% or more are rewarded by
receiving new offered price units (full value of τ�

Ny
) that are higher if compared to what is offered to

others with lower belief scores.The compensation price-unit for any client with a βci value that is less
than 90% is calculated in a direct relationship with the accumulative belief values they built in the
previous negotiation games. A detailed representation of the BFBS is presented in Algorithm 2.

Algorithm 2: The BFBS algorithm: belief function-based strategy for resource retrieval
1: input: at each resource allocation time t, if the PD node’s availability ρs

vk < ρs
nk or ζ s

vk < ζ s
nk:

2: find: (1) the required processing power ρs
d

k = ρs
n

k - ρs
v

k to retrieve from Cx;
3: (2) the required storage space ζ s

dk = ζ s
n

k - ζ s
v

k to retrieve from Cx;
4: (3) the accumulative belief score βci, for each ci in Cx;
5: start the resource-retrieval game Ny with the first negotiation round r by:
6: (1) sending resource retrieval requests to all clients in Cx with Ny

ci = 0;
7: (2) announcing the offered price-unit τ N

∗
y to compensate resource-unit retrievals;

8: (3) collecting the returned resources from the retrieving clients ci ∈ Cx;
9: update the availability records (ρs

v
k, ζ s

v
k), and the set Cx;

10: while ρs
v

k is still < ρs
d

k or ζ s
v

k is still < ζ s
d

k, and Cx =/ ϕ, do;
11: (1) resend a new resource-retrieval request again to the updated Cx;
12: (2) for 16 each ci ∈ Cx, based on the belief dependent price unit formula;

(Continued)
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Algorithm 2 (continued)
13: (1) offer a new, belief-dependent, price-unit τ N

ciy;
14: (2) wait for return decision;
15: (3) update the belief-score βci;
16: (3) return to line 10;
17: else;
18: allocate ρc

a
n and ζ c

a
n to each new client cn of the set of clients Cn;

19: compensate each retrieving client a “βci dependent” price-unit = τ N
ciy;

20: output: updated readings of ρs
uk, ζ s

uk, and βci;

4.5 Benchmark Model

Resource utilization strategies that deploy such negotiation methodologies are many, though, each
has its objectives with different outcomes to deliver. As a benchmark strategy, we chose to consider a
model that shares part of the objectives our model has. In [9], the authors proposed a model that
emulates the behavior of a CDN provider that aims to retrieve the unused leased resources while
satisfying the client’s preferences and time concerns, and not being sensitive to the risk of its utility.
Consequently, for those leased unused resources, the resource-retrieval process starts by offering a
return price-unit that is lower than that paid by the clients at the time they leased their resources.
Clients who seek higher-priced units have the option to wait for better offers in the coming negotiation
rounds. With no implicit threats of being deprived of participating in the resource return game, the
leasing clients will not be motivated to return their unused resources by low-price units as long as they
can attain higher ones with a kind of tolerance waiting for the next negotiation rounds. Indeed, such
a strategy helps the clients collect higher utilities, while it is less for their providers. What is more,
with the absence of motivations for early returns, such negotiation rounds might be lengthy, taking
respectively long time to finish.

As long as the negotiation strategy allows return price units that may equal those paid by the
leasing clients at the time they leased their resources, they will never be motivated to return their unused
resources earlier, instead, they will always tend to wait for higher offers to be released. An efficient
resource utilization model needs to suppress any motivation for resource exaggeration. However, such
a strategy can not help suppress clients’ exaggeration, indeed, knowing that any extra unused resources
could be returned with the same price-units paid at the lease time holds no risk for the client. Instead,
they would always keep asking for more resources to reserve for any unexpected needs or requirements,
and then simply return it once found unnecessary at the same price-unit.

5 Simulation and Numerical Results

To assess the proposed resource retrieval model, in this section, we are presenting part of the
simulation results obtained from the test-bench environment being developed. In which, we assumed
have five CDNs, each coming with different CPU and storage resource availability profiles. Based
on the dynamic resource availability readings, a CDN can serve both current and new VNCs. In the
simulated experiments, for each CDN, we assumed having 30 different VNC profiles with varying
resource requirements asking for resources to lease from the assigned CDNs’ providers. Not only in
their resource requirements, have VNCs also varied in the time their leasing requests are submitted to
the CDNs’ providers.
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In Fig. 2, the model records its resource availability in the providers’ pool of resources. The model
uses a monitoring module that dynamically reads the resource utilization rates of CPU resources being
leased to the current VNCs. With the real utilization rates of these leased resources in the current
VNCs, the CDN providers will attempt to fulfill new VNCs’ leasing requests using the proposed
AMAD resource retrieval models. They will then compare the results with those of the benchmark
model, as shown in Fig. 3.

Figure 2: CPU resource availability of 5 CDNs after leasing its resources to VNCs

Figure 3: Utilization readings of the CPU resource units leased to 5 VNCs
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As for the storage resource units, Figs. 4 and 5 show the reading of both resource availability and
the utilization rates for the VNCs’ leased resources.

Figure 4: Five CDNs storage resource availability after leasing resources to 5 VNCs

Figure 5: Utilization readings of the storage resource units leased to five VNCs

For CDN providers, the price-unit of the leased resources changes concerning both: the data center
network structure, and the corresponding electrical energy consumption rates. Therefore, with more
resources being required, the price-unit is expected to rise as this may require upgrades to the current
data center network’s structure to allow for higher resource capacities. So do the energy consumption
rates, it increases in a direct relationship with network and server devices to run. Table 1 lists the
resource price units being followed in the experiments we run in this work.



CMC, 2024, vol.80, no.3 4593

Table 1: CPU and storage resource price-units according to capacity being required at the CDN

Resource units
leased to VNCs

0–250 251–500 501–625 626–750 751–875 876–100 1001–
1125

CPU unit $0.8 $0.8 $1.0 $1.2 $1.4 $1.6 $2.0
Storage unit $0.4 $0.4 $0.5 $0.6 $0.7 $0.8 $1.0
Electricity unit $[0.0–

0.25]
$[0.251–
0. 50]

$[0.51–
0.625]

$[0.626–
0.75]

$[0.76–
0.875]

$[0.876–
1.00]

$[1.01–
1.125]

If we consider the allocation map of the CPU resources of the first CDN at 8 different consecutive
time units, (t0, t1, t2,...,t7), the values presented in Table 2 could be considered as an example of the
resource readings (leased, utilized, unused) and their corresponding price-units.

Table 2: Accumulative CPU resource units being leased at the first CDN over time-slots t0 to t7

Reading time slot t0 t1 t2 t3 t4 t5 t6 t7

Accumulative
leased resources ρa

sk

150 units 275 units 435 units 500 units 610 units 750 units 875 units 1020 units

Resource price-unit
τci

$0.8 $0.8 $0.8 $0.8 $1.0 $1.2 $1.4 $1.6

Electricity
price-unit eci

$0.15 $0.275 $0.435 $0.50 $0.61 $0.75 $0.875 $1.02

Total price-unit $0.95 $1.075 $1.235 $1.30 $1.610 $1.950 $2.275 $2.62
Accumulative
utilized leased
resources ρu

ci

60 units 110 units 174 units 200 units 244 units 300 units 350 units 408 units

Potential resource
price-unit τci∗

$0.8 $0.8 $0.8 $0.8 $0.8 $0.8 $0.8 $0.8

Potential electricity
price-unit eci∗

$0.06 $0.11 $0.174 $0.20 $0.244 $0.30 $0.35 $0.408

Potential total
price-unit ∗

$0.86 $0.91 $0.974 $1.0 $1.044 $1.10 $1.15 $1.208

Note: ∗ These values show what the CDN provider could offer if the resource leasing behavior considers the true resource requirements from
the beginning.

Before serving any new leasing request from those requests received at the time slot t, and before
running any of the proposed resource utilization models, CDN providers may check their monitoring
records to check the true resource availability and its corresponding price-unit τ ci. Energy-wise,
referring to the readings in the table, we can notice the relation between price-unit hikes and the energy
consumption rates. Compared to the reading in rows 2 to 4 of Table 2, the reading of rows 6 to 8 shows
the price units a CDN provider could offer if the VNCs’ resource leasing behavior considers the true
resource needs from the beginning. Analyzing the readings reveals an average reduction of 40% in the
electricity price units. This would be an optimal allocation scenario if prevailed. However, part of the
VNCs would still tend to exaggerate their true requirements, and consequently, we propose the models
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of FHPS and BFBS to tackle such issues and motivate a resource retrieval framework that could serve
all, resource tenants and providers.

5.1 VNCs’ Price-Unit

For VNCs, maximizing the utility function defined in (1) mainly comes through (1) reducing the
amounts of resources being leased, and (2) reducing their corresponding resource and electricity price
units, τ ci and eci, respectively. Therefore, compared to the utilization-oblivious and the benchmark
resource management models, our proposals in AMAD, the FHPS, and BFBS models, are expected
to motivate (1) resource utilization better and accordingly (2) allow for lower price units. Unlike
the utilization oblivious model, with the FHPS resource monitoring and retrieval algorithm being
deployed, those exaggerating VNCs would have the chance to return their leased but unused resources
to their CDN provider’s pool of resources. Hence, according to the FHPS algorithm, the compensation
price unit for the returned resources is calculated according to the further highest price unit being found
through the resource-retrieval game. Such a compensation algorithm of FHPS allows for resource
return chances, though, its offered return price units are bounded with thresholds that are always less
than the original price-unit paid at the leasing process. This allows for better utilization of those leased
unused resources that come with price units that motivate truthful resource reveals at the next leasing
sessions. In BFBS, the compensation methodology is different; it links the return price units to the
negotiation belief records of the negotiated VNCs. Consequently, those VNCs with belief records that
are equal to or above 90% would expect to receive higher compensation price units compared to others
whose compensations are calculated concerning their belief records (i.e., being < 90%) as presented in
(16). BFBS allows for resource return chances that help in better resource utilization, however, it links
the return price units to the VNCs historical behavior records being developed which motivates better
negotiation behavior by the VNCs.

In the benchmark model, the negotiation process emulates the behavior of CDN providers that
have tolerance to long negotiation rounds, which increases the VNCs’ utilities but not their ones.
Accordingly, it allows longer rounds, and so, the compensation price units are defined in a way that
does not motivate any better behavior in the coming resource leasing requests. With more negotiation
rounds, the offered return price units could reach those paid earlier in the initial leasing process.
Indeed, with no threat of price unit losses, a VNC would never be motivated to lease its true resource
requirements! What is left unused could be returned with the same price units. On the contrary, such a
policy would motivate resource exaggeration instead, absolutely, as long as a VNC has the chance to
return what it finds extra at the same leasing prices, it would always ask for more resources to guarantee
its service requirements first, and then return the extra ones later.

Fig. 6 shows the resultant price units for the utilized resources (i.e., those resources a VNC would
expect to pay with the FHPS and BFBS models compared to the utilization-oblivious and benchmark
models. With the benchmark model, the CDN provider’s return policy sets no limit on the number
of negotiation rounds. Hence, for patient VNCs, this allows for return price-units that could be equal
to the original leasing price-units, and so for VNCs, this means no losses to worry about, leading to
VNCs’ utilities that are mostly the highest compared to the three other models. When reading the
figure, the results indicate that few VNCs (those with IDs: 1, 4, 3, 7, and 11) accepted early offers
with return price-units that are less than what they paid before at the lease time, and so, their resultant
resource price-units are higher compared to other VNCs with other utilization models in the game.
However, as we discussed before, such a policy can never help in motivating truthful leasing requests
that contradict the resource utilization goal of the work. However, our proposed FHPS and BFBS
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models allow for low price-units that are very close to those of the benchmark ones, while maintaining
the truthful resource leasing behavior motivated.

Figure 6: The VNCs price-unit with the different resource allocation models

It is worth highlighting that the resulting price-unit for the VNCs (id: 10 & 29) are the same for
the three models of FHPF, BFBS, and the benchmark as those two VNCs show no cooperation with
the system and did not return any of their unused resources, and therefore, their price-unit stayed the
same. However, their price units are still less than those found with the utilization-oblivious model; as
the cooperation of the other VNCs in the system helped in reducing the leasing price units for all from
the beginning.

5.2 Number of Negotiation Rounds

CDNs’ providers expect to receive new resource allocation requests at any moment, though;
such resource requests might be bounded with time-window frames for the resource allocations to
be processed. Therefore, relying on such resource-retrieval models to retrieve unused resources in a
way to satisfy the new resource requests needs to be timely with time limits to meet, otherwise, such
retrieval efforts may lose their intended efficiency. Accordingly, to assess the behavior of the examined
models in this context, Fig. 7 shows the negotiation behavior of the proposed models of AMAD, both
FHPS and BFBS, compared to that of the benchmark model.

The figure shows how the number of negotiation rounds is affected by the return price-unit policies
of the three models. To retrieve 500 CPU resource units, the results show that FHPS was the most
motivating model, followed by BFBS, and then lastly, the benchmark model. This can be justified by
the pricing model being considered by the FHPS model. Through this, it (1) motivates early resource
returns by allowing higher price units according to the next coming negotiation rounds while (2)
depriving those VNCs who delayed their acceptance decisions of return offers after collecting the
required amounts of resources of the running round (which is kept anonymous from VNCs).
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Figure 7: CDN provider’s number of negotiation rounds for resource-retrieval

In BFBS, early resource returns are motivated by the belief function being proposed to record the
VNC’s negotiation behavior, which has a direct impact on the offered price units. So, early returns
are incentivized, knowing that the higher belief record (i.e., fast return decisions), a VNC accumulates
is the higher price-units it would expect. With the absence of return price-unit limits or cooperation
records, according to the benchmark model, a VNC would not be motivated to return its unused
resources earlier; on the contrary, it would prefer to defer it for later rounds to achieve higher return
units.

5.3 Electricity Price-Unit

In a CDN, the consumed electrical energy is dependent on the number of computing and network
machines it runs. Structures of CDNs vary, and so do their energy requirements to run and cool.
In AMAD, the goal of resource utilization intersects with the energy consumption concerns. A
management model that delivers better resource utilization rates serves all: CDN providers, VNCs,
and the environment. Indeed, besides serving the utility objectives of both providers and their clients,
it allows for green computing zones that run with lower energy rates. Moreover, a management model
that motivates truthful reveals about the true resource requirements and encourages better utilization
of the cloud network resources would certainly help the cloud service providers avoid those early
updates on their data center structures. Traditionally, a big part of the data center machines might
be running consuming electrical energy but not truly utilized. True, those resources are reserved by
VNCs but not used. Not only a waste of resources but also the problem may extend when the cloud
providers go with expansion plans that are built according to false usage requirements. This does not
only mean new assets and structural upgrades costs to be paid, but more electrical consumption to
consider which means higher energy bills and loads to the power grids. In this context, the results in
Fig. 8 show how AMAD proposed models of FHPS and BFBS could help in reducing the electrical
energy requirements of such data center networks when compared to other resource allocation and
management models. The results are presented in terms of the electrical price units paid by the clients
for their leased resources (calculated as a ratio of the accumulative CDN resources being leased at
any moment), which reflects how AMAD models allow for lower price units indicating the utilization
rates it achieved through the motivation policies being employed. Besides, it allows for a higher level
of stability to the power grids, which otherwise might be compromised affecting other consumers in
their homes and business sectors.
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Figure 8: Price-units for the electrical energy being consumed by the datacenter network

5.4 CDN Providers’ Utility

For providers, the utility function presented in (2) considers the utilities collected from the
resources being utilized, those used by the leasing VNCs, and through the resource-retrieval models
being deployed. Comparing the accumulative utilities of the studied models of FHPS, BFBS, and the
benchmark one came with the results depicted in Figs. 9 and 10. The results show that both FHPS
and BFBS models returned close accumulative utilities, though this is done faster with the FHPS (less
number of negotiation rounds) as presented in Fig. 9. On the contrary, the accumulated utilities are
54% less for the benchmark model with almost twice the number of negotiation rounds compared to
FHPS. This is due to the motivated return policy being deployed in both FHPS and the BFBS that
encourages the VNCs’ truthful reveals for their true resource requirements at the initial of the resource
allocation stages. Even if extra or unused resources exist, the proposed models motivate early resource
returns that are rewarded by competing return price units.

Figure 9: Providers’ utilities from the retrieved resources
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Figure 10: CDN provider’s utility from the whole resources being allocated

6 Conclusions

CDNs have emerged as a promising alternative to those physical network platforms, through
which, service providers offer cost-effective themes of services that host almost all technical aspects
that we use every day. Resources of these cloud-based networks are offered to the clients in the form
of services that are paid based on predefined tariffs. Such tariffs are defined in advance according
to the amount of resources being reserved based on the client’s resource requirements. Such CDNs
are equipped with massive amounts of resources, though they still have limits. Therefore, managers
need to allocate their resources in an efficient and well-engineered manner to keep their networks as
healthy and agile as possible. Today, there are many cloud service providers in the market, and so do the
services they offer. However, those who offer reliable service forms in competing tariffs compete better
and gain a higher market share and reputation. Marketwise, to keep the offered price units competing,
CDN providers need to utilize their resources better to avoid unnecessary updates on the structures of
their data center networks. Such updates that may require major amendments to the existing parts of
the network fabrics could increase the service costs on the providers’ side, which makes it hard for them
to maintain their competing offered price unit. At the same time, any scale on the network size would
come with more power requirements. Indeed, those new servers and what follows of new network and
computing devices would consume more electrical energy to run and cool which may also increase the
service costs from the providers’ perspective. Therefore, this work presents a resource-retrieval model
that seeks to retrieve those leased but unused resources from the VNCs. A retrieval model that follows
the Stackelberg negotiation strategy of repeated leader-follower game. For such retrieval processes to
be timely and to keep the clients’ cooperation motivated, both FHPS and BFBS models are proposed.
Compared to the benchmark model, results show that both FHPS and BFBS can help in attaining
better resource utilization rates, competing price units, higher utilities for the CDN providers, and
timely negotiation rounds.

Acknowledgement: The authors would like to acknowledge the resources and research facilities allowed
by the departments of Computer Engineering and Information Technology at their institutions. The



CMC, 2024, vol.80, no.3 4599

authors also extend their acknowledgments to the editors and their reviewers for their efforts and
valuable feedback and suggestions that contributed to making this work better.

Funding Statement: The Deanship of Scientific Research at Hashemite University partially funds this
work. The authors extend their appreciation to the Deanship of Scientific Research at the Northern
Border University, Arar, KSA for funding this research work through the project number “NBU-FFR-
2024-1580-08”.

Author Contributions: The authors confirm their contribution to the paper as follows: study conception
and design: Ahmad Nahar Quttoum; data collection: Ahmad Nahar Quttoum, and Muteb Alsham-
mari; analysis and interpretation of results: Ahmad Nahar Quttoum, and Muteb Alshammari; draft
manuscript preparation: Ahmad Nahar Quttoum. All authors reviewed the results and approved the
final version of the manuscript.

Availability of Data and Materials: The data presented in this study are available on request from the
corresponding author.

Ethics Approval: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest, and the funders had no role in
the design of the study; in the collection, analyses, or interpretation of data; in the writing of the
manuscript; or in the decision to publish the results.

References
[1] S. Zhang et al., “Toward green metaverse networking: Technologies, advancements, and future directions,”

IEEE Network, vol. 37, no. 5, pp. 223–232, Sep. 2023. doi: 10.1109/MNET.130.2200510.
[2] A. Katal, S. Dahiya, and T. Choudhury, “Energy efficiency in cloud computing data centers:

A survey on software technologies,” Cluster Comput., vol. 26, no. 3, pp. 1845–1875, 2023. doi:
10.1007/s10586-022-03713-0.

[3] M. Armbrust et al., “A view of cloud computing,” Commun. ACM, vol. 53, no. 4, pp. 50–58, 2010. doi:
10.1145/1721654.1721672.

[4] T. Miyazawa, M. Jibiki, V. P. Kafle, and H. Harai, “Autonomic resource arbitration and service-continuable
network function migration along service function chains,” presented at the IEEE/IFIP Netw. Oper.
Manage. Symp., Taipei, Taiwan, Apr. 23–27, 2018, pp. 1–9.

[5] J. Simao and L. Veiga, “Partial utility-driven scheduling for flexible SLA and pricing arbitration in clouds,”
IEEE Trans. Cloud Comput., vol. 4, no. 4, pp. 467–480, 2016. doi: 10.1109/TCC.2014.2372753.

[6] A. N. Quttoum, “AFAM: A fair allocation model for cloud-datacenter networks,” in Proc. of the 2017 Int.
Conf. on Cloud and Big Data Comput., London, UK, Sep. 17–19, 2017.

[7] W. K. Tan, D. M. Divakaran, and M. Gurusamy, “Uniform price auction for allocation of dynamic cloud
bandwidth,” in IEEE Int. Conf. on Commun. (ICC), Sydney, NSW, Australia, Jun. 10–14, 2014, pp. 2944–
2949.

[8] A. N. Quttoum, A. Alsarhan, and A. Mohammad, “ARAAC: A rational allocation approach in cloud data
center networks,” Future Internet, vol. 9, no. 3, 2017, Art. no. 50. doi: 10.3390/fi9030050.

[9] A. H. A. Muktadir, M. Jibiki, P. Martinez-Julia, and V. P. Kafle, “Repeated leader follower game for
managing cloud networks with limited resources,” IEEE Access, vol. 7, pp. 108174–108188, 2019. doi:
10.1109/ACCESS.2019.2933031.

[10] L. Tao and S. Sethi, “A review of dynamic Stackelberg game models,” Discrete Cont. Dyn. Syst. Ser. B, vol.
22, pp. 125–159, 2016.

https://doi.org/10.1109/MNET.130.2200510
https://doi.org/10.1007/s10586-022-03713-0
https://doi.org/10.1145/1721654.1721672
https://doi.org/10.1109/TCC.2014.2372753
https://doi.org/10.3390/fi9030050
https://doi.org/10.1109/ACCESS.2019.2933031


4600 CMC, 2024, vol.80, no.3

[11] D. Kumar and Z. Raza, “A PSO based VM resource scheduling model for cloud computing,” in IEEE Int.
Conf. Comput. Intell. Commun. Technol., Ghaziabad, India, 2015. doi: 10.1109/CICT.2015.35.

[12] S. K. Mondal, A. S. Sabyasachi, and J. K. Muppala, “On dependability, cost and security trade-off in cloud
data centres,” in IEEE 22nd Pacific Rim Int. Symp. on Dependable Comput. (PRDC), Christchurch, New
Zealand, Jan. 22–25, 2017, pp. 11–19.

[13] A. S. Sabyasachi and J. K. Muppala, “Cost-effective and energy-aware resource allocation in cloud data
centers,” Electronics, vol. 11, no. 21, 2022, Art. no. 3639. doi: 10.3390/electronics11213639.

[14] M. Xu, W. Tian, and R. Buyya, “A survey on load balancing algorithms for virtual machines placement
in cloud computing,” Concurrency and Comput. Pract. Experience, vol. 29, no. 12, 2017, Art. no. 238. doi:
10.1002/cpe.4123.

[15] A. Mohammadzadeh, M. Masdari, F. S. Gharehchopogh, and A. Jafrian, “Improved chaotic binary grey
wolf optimization algorithm for workflow scheduling in green cloud computing,” Springer J. Evol. Intell.,
vol. 14, no. 4, pp. 1997–2025, 2021. doi: 10.1007/s12065-020-00479-5.

[16] A. Mohammadzadeh, M. Masdari, F. S. Gharehchopogh, and A. Jafrian, “A hybrid multi-
objective metaheuristic optimization algorithm for scientific workflow scheduling,” Cluster Comput.,
vol. 24, no. 2, pp. 1479–1503, 2021. doi: 10.1007/s10586-020-03205-z.

[17] W. Wang, Y. Jiang, and W. Wu, “Multiagent-based resource allocation for energy minimization in cloud
computing systems,” IEEE Trans. Syst., Man, Cybern., Syst., vol. 47, no. 2, pp. 205–220, Feb. 2017.

[18] G. Liu, F. R. Yu, H. Ji, and V. C. Leung, “Virtual resource management in green cellular networks with
shared full-duplex relaying and wireless virtualization: A game-based approach,” IEEE Trans. Vehicular
Technol., vol. 65, no. 9, pp. 7529–7542, 2016. doi: 10.1109/TVT.2015.2497360.

[19] R. Swathy, B. Vinayagasundaram, G. Rajesh, A. Nayyar, M. Abouhawwash and M. Abu Elsoud, “Game
theoretical approach for load balancing using SGMLB model in cloud environment,” PLoS One, vol. 15,
no. 4, 2020, Art. no. e0231708. doi: 10.1371/journal.pone.0231708.

[20] Z. Ullah et al., “Negotiation-based combinatorial double auction mechanism in cloud computing,”
Comput. Mater. Continua, vol. 69, no. 2, 2021, Art. no. 21232140. doi: 10.32604/cmc.2021.015445.

[21] S. Deochake and D. Mukhopadhyay, “An agent-based cloud service negotiation in hybrid cloud comput-
ing,” in ICT Syst. Sustain. Adv. Intell. Syst. Comput., Springer, Singapore, vol. 1270, pp. 563–572, 2020.
doi: 10.1007/978-981-15-8289-9_55.

[22] A. Kannaki, V. Azhagu, and J. M. Gnanasekar, “A novel multi-agent approach to control service level
agreement violations in cloud computing,” TURCOMAT , vol. 12, no. 12, pp. 1432–1438, 2021.

[23] X. Xu and H. Yu, “A game theory approach to fair and efficient resource allocation in cloud computing,”
Math. Problems Eng., vol. 14, 2014, Art. no. 915878.

[24] A. Nezarat and G. Dastghaibifard, “Efficient Nash equilibrium resource allocation based on game theory
mechanism in cloud computing by using auction,” in Proc. of the 1st Int. Conf. on Next Gener. Comput.
Technol. (NGCT), Dehradun, India, Sep. 2015, pp. 1–5.

[25] R. Subrata and A. Y. Zomaya, “Game-theoretic approach for load balancing in computational grids,”
IEEE Trans. Parallel Distrib. Syst., vol. 19, no. 1, pp. 66–76, 2008.

[26] B. Pittl, W. Mach, and E. Schikuta, “A negotiation-based resource allocation model in IaaSMarkets,” in
IEEE/ACM 8th Int. Conf. on Utility and Cloud Comput. (UCC), Limassol, Cyprus, 2015, pp. 55–64.

[27] P. Chokhani and G. Somani, “Dynamic resource allocation using auto-negotiation in Haizea,” in Sixth Int.
Conf. on Contemp. Comput. (IC3), Noida, India, 2013, pp. 232–238.

[28] N. Samaan, “A novel economic sharing model in a federation of selfish cloud providers,” IEEE Trans.
Parallel Distrib. Syst., vol. 25, no. 1, pp. 12–21, Jan. 2014. doi: 10.1109/TPDS.2013.23.

[29] L. Wu, R. Ding, Z. Jia, and X. Li, “Cost-effective resource provisioning for real-time workflow cloud,
Complexity” Wiley, vol. 15, 2020, Art. no. 1467274. doi: 10.1155/2020/1467274.

https://doi.org/10.1109/CICT.2015.35
https://doi.org/10.3390/electronics11213639
https://doi.org/10.1002/cpe.4123
https://doi.org/10.1007/s12065-020-00479-5
https://doi.org/10.1007/s10586-020-03205-z
https://doi.org/10.1109/TVT.2015.2497360
https://doi.org/10.1371/journal.pone.0231708
https://doi.org/10.32604/cmc.2021.015445
https://doi.org/10.1007/978-981-15-8289-9_55
https://doi.org/10.1109/TPDS.2013.23
https://doi.org/10.1155/2020/1467274


CMC, 2024, vol.80, no.3 4601

[30] R. Rajavel and M. Thangarathanam, “Agent-based automated dynamic SLA negotiation framework in
the cloud using the stochastic optimization approach,” Appl. Soft Comput., vol. 101, 2021, Art. no. 107040.
doi: 10.1016/j.asoc.2020.107040.

[31] S. Mubeen, S. A. Asadollah, A. V. Papadopoulos, M. Ashjaei, H. Pei-Breivold and M. Behnam,
“Management of service level agreements for cloud services in IoT: A systematic mapping study,” IEEE
Access, vol. 6, pp. 30184–30207, 2018. doi: 10.1109/ACCESS.2017.2744677.

https://doi.org/10.1016/j.asoc.2020.107040
https://doi.org/10.1109/ACCESS.2017.2744677

	AMAD: Adaptive Mapping Approach for Datacenter Networks, an Energy-Friend Resource Allocation Framework via Repeated Leader Follower Game
	1 Introduction
	2 Problem Statement
	3 Related Work
	4 The AMAD Model
	5 Simulation and Numerical Results
	6 Conclusions
	References


