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ABSTRACT

Time-stamped data is fast and constantly growing and it contains significant information thanks to the quick devel-
opment of management platforms and systems based on the Internet and cutting-edge information communication
technologies. Mining the time series data including time series prediction has many practical applications. Many
new techniques were developed for use with various types of time series data in the prediction problem. Among
those, this work suggests a unique strategy to enhance predicting quality on time-series datasets that the time-
cycle matters by fusing deep learning methods with fuzzy theory. In order to increase forecasting accuracy on such
type of time-series data, this study proposes integrating deep learning approaches with fuzzy logic. Particularly, it
combines the long short-term memory network with the complex fuzzy set theory to create an innovative complex
fuzzy long short-term memory model (CFLSTM). The proposed model adds a meaningful representation of the
time cycle element thanks to a complex fuzzy set to advance the deep learning long short-term memory (LSTM)
technique to have greater power for processing time series data. Experiments on standard common data sets and
real-world data sets published in the UCI Machine Learning Repository demonstrated the proposed model’s utility
compared to other well-known forecasting models. The results of the comparisons supported the applicability of
our proposed strategy for forecasting time series data.
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1 Introduction

Time-stamped data arises in many areas of real-life applications such as weather, engineering,
finance, technology, economics, etc. Various techniques in statistics and machine learning are applied
to analyze time-related data or time series data in different domains, including forecasting [1–4],
classification [5,6], anomaly detection [7,8], decision making [9,10] and clustering [11–13]. Time series
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forecasting is an attractive field of research among them. The most frequent issue in this discipline is
forecasting data values based on their historical values. In solving the time-stamped, time-series data,
many studies are concerned with the influence and relevant factors, and numerous approaches have
been proposed in recent decades.

In literature, several different traditional approaches have been used for the time series forecasting
problem. Statistical analysis models such as multi-linear regression are well-known, and among the
others Integrated Moving Average (ARIMA) method is commonly used to predict the trend of data
variables [14–16]. This model is used regularly to forecast time series that are trend stationary, and it
is not ideal for non-stationary or weak stationary data. Besides statistical methods, various machine
learning (ML) techniques are also used to predict time series problems [17–19]. The statistical methods
for forecasting problems often rely on several strict assumptions, such as stationarity, that are not
always satisfied in practice. The property of time series is often nonlinear and complex, making it
difficult for these methods to capture the actual dynamics. Therefore, some sophisticated ML models
have been introduced to address this challenge, but they are also difficult to train and interpret. As a
result, no single way can guarantee to build a reliable and robust time-series forecasting model.

Recently, the deep-learning technique was considered as a game-changing method in various chal-
lenging prediction problems, including time series forecasting [20–22]. This technique is appropriate
to deal with the nature of time series, such as noisy, chaotic, and complex features. Among deep-
learning techniques, the long short-term memory (LSTM) is a remarkable framework with time-series
data [20]. This is because LSTMs can process and remember elements in time series data and predict
dependencies between data efficiently. Instead of remembering historical and immutable information,
the LSTM model can determine the context to predict multivariate time series data. Beside LSTM,
other studies of deep learning (DL) models using combination strategy that integrates attention
based Spatial-Temporal with original DL algorithms to handle time-stamped data, such as Attention
based Spatial-Temporal Graph Convolutional Networks (ASTGCN) [23], or attention-based spatial-
temporal graph neural networks (ASTGNN) [24]. Each approach has different advantages and
disadvantages. Focus on fusing deep learning techniques with fuzzy theory, LSTM would be better
to extend with complex fuzzy sets thanks to its natures and simplicity, and therefore in the scope of
this study LSTM is a focus point.

In literature, variant models of LSTM were developed for different time series prediction prob-
lems. Bandara et al. [25] proposed LSTM-multiseasonal-Net (LSTM-MSNet) that improved the
prediction performance by extracting multiple seasonal patterns. Huang et al. [2] proposed a wind
speed estimating model due to the combination of LSTM and genetic algorithm (GA). Furthermore,
Abbassimehr et al. [26] offered a technique for predicting time series data, that is, a hybrid model
combined two deep learning ways: LSTM and multi-head attention. To combine fuzzy theory with the
LSTM model, Tran et al. [27] developed an LSTM-based model named multivariate fuzzy LSTM (MF-
LSTM) for cloud proactive auto scaling systems that combine different techniques. The researchers
used fuzzification techniques to reduce the fluctuation in the input data, and they also used a variable
selection method based on the correlation metrics to select a suitable input. In the main phase, they
used an LSTM network to predict tasks on multivariate time series data. a prediction model created by
Safari et al. [28] that combines LSTM with Interval Type-2 Fuzzy, this model named DIT2FLSTM,
was utilized during casting the COVID-19 incidence. The suggested DIT2FLSTM model makes it
possible to predict challenging real-world issues like the COVID-19 pandemic by combining the
fuzzification technique and LSTM. Langeroudi et al. [29] also proposed a fuzzy LSTM architecture
to solve the high-order vagueness. This study proved the potential of fuzzy LSTM in predicting time-
series problems. The authors evaluated their approach on several real-world data sets, including the
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Mackey-Glass (MG), the Sunspot, and the English Premier League datasets. Experiments showed that
Deep Fuzzy LSTM could perform top on all these data sets.

Existing studies show that the combination of LSTM and fuzzy theory would generate better
prediction performance on time-series data. However, real-life time series data has changed so fast,
and nowadays it is often complex and diverse, and that time series data is commonly cyclical and
uncertain also. This fact creates a new challenge that traditional models can only handle part of it,
which leads to inaccurate predictions and poor performance in many cases. A few studies have been
conducted to address this time–cycle issue.

As is widely known, the idea of fuzzy sets (FS) and it extension are a mathematical instrument that
can represent uncertainty and vagueness in data [9]. However, traditional fuzzy sets cannot indicate
incomplete awareness of data or its alterations at a particular time. This limitation may be problematic
when presenting complicated data sets where confusion and unpredictability exist and modify in
different periods. To overcome this restriction, Ramot et al. [30] presented an idea of complex fuzzy
sets (CFS) as an expansion of traditional FSs. CFSs allow for the representation of partial ignorance
and changes in data over time. This makes them a more powerful tool for dealing with uncertainty and
vagueness in complex data sets. The distinguishing features of CFSs are complex-valued membership
functions containing amplitude and phase elements. Wavelike properties can be represented by CFSs
that FSs cannot.

The theory of CFS has led to the development of new models for prediction problems and
forecasting time-related datasets in real life, such as Selvachandran et al. [31,32] proposed Mamdani
Complex Fuzzy Inference System (CFIS) model. Utilizing CFS, a complex neuro-fuzzy autoregressive
integrated moving average presented by Li et al. [33] for predicting the time-series problem. The
introduced method combines a modification of the complex neuro-fuzzy system (CNFS) and the
ARIMA model to form a new prediction model named CNFS-ARIMA. The CNFS-ARIMA model
addressed the nonlinear relationship between output thanks to the characteristics of CFS and
ARIMA.

In the way that combines CFS and deep learning models, Yazdanbakhsh et al.’s investigations
[34,35] introduced several CFS and neuro-fuzzy combinations. A Fast Adaptive Neuro-CFIS (FANC-
FIS), a variant of the Adaptive Neuro-CFIS (ANCFIS), was created for quick training. They examined
and demonstrated how well the suggested algorithms performed on univariate and multivariate
problems. An adaptive spatial CFIS was presented by Giang et al. [36] to identify variations in the
data of remote-sensing cloud photos. In comparison to the current most advanced models, the model
outperformed them in both terms of speed as well as precision.

In general, combining deep learning models and fuzzy theories could result in better time series
prediction models [13]. Because of their advantage, the LSTM model and CFS theory are of interest
in creating a new model for temporal-related forecasting, as shown by the theories and techniques
mentioned above. This is what motivates us to complete this study that use CFS to represent cyclical
input data in a good shape, and this type of data will be processed efficiently in the new design LSTM
network. Following are some of the critical contributions made within the context of this work:

(1) Developed a general model of complex fuzzy LSTM for predicting issues involving time
theoretically.

(2) Proposed a unique CFLSTM architecture that uses a complex fuzzy LSTM unit to account
for the effects of the cycle-time factor on time-series information.
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(3) Proved the advantage of the proposed CFLSTM model by comparing its performance with
the previously latest developments models based on CFS and other related, including LSTM [37],
Fuzzy LSTM [26], ANCFIS [34], on real-world and UCI datasets: an actual monitoring data set
of precipitation index in Vietnam, daily temperature index in Melbourne-Australia, and Seoul bike
sharing demand from UCI.

The remaining contents are separated into the following sections: Section 2 of the proposal
includes background information. The complex fuzzy LSTM model in temporal related forecasting
problems is explained explicitly in Section 3. The proposal’s empirical findings and the related
forecasting models are evaluated and contrasted in Section 4. The finalizing Section 5 of the paper
includes the summary and discussion.

2 Preliminaries
2.1 Complex Fuzzy Set

In 2002, as an expansion of FS theory and fuzzy logic, Ramot et al. [30] presented the definition
of CFSs. The CFSs are promising for problems whose meaning changes over time because the “phase”
of CFS can represent a changing context, such as a temporal, time-cycle or seasonal factor.

A complex fuzzy membership function μA (x) that has as its range the complex unit circle defines
a CFS as follows:

μM (x) = pM (x) ejωM (x), j = √−1 (1)

where PM (x) is the amplitude and ωM (x) the phase of the CFS, PM (x) ∈ [0, 1] and ωM (x) ∈ [0, 2π ] .

2.2 Complex Fuzzy Membership Function

A mathematical tool known as a complex fuzzy membership function (CFMF) can transform
a crisp input into a fuzzy output in complex fuzzy spaces. Sinusoidal and Gaussian membership
functions are two of the most common types of CFM functions.

Sinusoidal membership functions: First introduced by Chen et al. in [38], sinusoidal CFMF over
the unit disc codomain is defined as:

rA (θ) = d sin (a θ + b) + c; θ = x; ω (x) = θ (2)

where the amplitude and the phase of the CFMF are determined by r (θ) and ω (x); The frequency,
phase shift, shifts the wave vertically, and the sine wave’s amplitude is altered by the settings a, b, c, d,
respectively. The coordinates of μA (θ) = z = x + iy are calculated by the following equations:

x = r cos (θ) ; y = r sin (θ) (3)

The amplitude of a complex fuzzy membership function must be between 0 and 1. This means
that the parameters need to meet the requirements listed below: |d| + |c| ≤ 1 and 0 ≤ d ≤ c ≤ 1.

Gaussian membership functions: There are four ways to define Gaussian membership functions in
complex fuzzy spaces for a unit squared or a unit disc codomain. These four forms were proposed
in [39,40].
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(1) The first version is determined in the unit square codomain:

G1 (x, m, σ) = Re (G1 (x, m, σ)) + j Im (G1 (x, m, σ)) (4)

where Re(.) and Im(.) are, respectively, the real and imaginary factors in the CFMF.

Re (G1 (x, m, σ)) = e
[
−0.5( x−m

σ )
2
]

(5)

Im (G1 (x, m, σ)) = −e
[
−0.5( x−m

σ )
2
]
×( x−m

σ ) (6)

(2) In the unit disc codomain, the second variant is defined:

G2 (x.m, σ , λ) = rs (x, m, σ) ejωs(x,m,σ ,λ) (7)

where rs and ωs are the complex fuzzy grade’s amplitude and phase, respectively.

rs (x, m, σ) = e
[
−0.5( x−m

σ )
2
]

(8)

ωs (x, m, σ , λ) = −e
[
−0.5( x−m

σ )
2
]
×( x−m

σ )×λ

(9)

Hence, the parameters x ∈ U as above, m, σ , λ represent the mean, spread, and phase frequency
factors in CFS. The phase frequency factor is a parameter that can be adjusted to improve the fit of
the membership function to the data.

(3) The Gaussian CFMF is presented as G3 (x) = μ (x) = A (x) ejP(x) in the third format suggested
in [41], where the amplitude and phase are determined as follows:

A (x) = e
(

−
( x−cA

aP

)P
)
; P (x) = 2πe

(
−

( x−cA
aP

)P
)

(10)

(4) The following is the definition of a Gaussian CFMF for the real and imaginary parts of a CFS,
which is the fourth form of the Hata et al. proposal [42] for a Gaussian CFMF:

μR
A (xr) = e

[
− (xr−cr)2

wr

]
; μI

A (xi) = e

⎡
⎣−(xi−ci)

2

wi

⎤
⎦

(11)

where the Gaussian function’s center and width are represented by cr, wr for the real-valued component
xr and ci, wi for the imaginary component xi, respectively.

In complex fuzzy set theory, the four Gaussian shape membership functions differ primarily in
their parameters, which affect their shape and characteristics. The differences in these parameters allow
each Gaussian shape membership function to model different aspects of uncertainty or fuzziness in
data. In applications, the researcher has to analyze the data to determine the most suitable membership
function.
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2.3 The LSTM Model

Among deep-learning techniques, the LSTM architecture [37] is used widely for identifying and
predicting issues on time series data. As an advanced improvement on the recurrent neural network
(RNN), LSTM was developed to cope with a serious shortcoming in the back-propagating training
process, that is the vanishing gradient problem in the RNN. LSTM has the advantage of dealing with
long-term dependencies in modeling time-related problems, and therefore, it can improve the quality
of time series forecasting problems.

The LSTM contains one or more LSTM units similar to RNN memory cells’ structure to store
information over long periods. The detailed design of each unit is represented in Fig. 1. Each unit has
three nonlinear gates regulating data flow: the forget gate ft, input gate it, and output gate ot.

Figure 1: The structure of an LSTM unit

These gates take on different roles in the learning process and can improve training results. In
particular, the forget gate ft chooses to erase unnecessary information from the previous state, the
output gate ot specifies how the LSTM unit will respond, and the input gate it controls the method for
adding new input data.

The correlation throughout the data in the sequence of inputs is captured by the unit. Fig. 1
illustrates detail each unit in the LSTM.

In an LSTM unit, a chain of calculations is performed and lets the LSTM network learn long-
term. The calculations of ht and ct at the tth step of the learning process are presented below. Where
Ui and Wi are matrices present input and recurrent weights; bi is the bias; σ is a sigmoid activation
function, and C̃t is the candidate activation.

With an input sequence data x = (x1, x2, . . . , xt−1, xt) the hidden (output) state h = (h1, h2, . . . , ht−1,
ht) and the unit state c = (c1, c2, . . . , ct−1, ct). The first input value x1 is used by the first LSTM unit
to generate the first hidden state h1 and the first updated unit state c1. And then, at time step t, input
value xt and hidden state ht−1 are used by LSTM unit to calculate hidden state ht and the updated unit
state ct.
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The forget gate is a critical component of LSTMs that decides what information to keep and
discard. It removes irrelevant information from the unit’s internal state, allowing LSTM to obtain
long-term dependencies. The forget gate ft for a certain time step t can be calculated as follows:

ft = σ
(
Wf ,xxt + Wf ,hht−1 + bf

)
(12)

where σ ∈ [0, 1] is the sigmoid function, Wf ,x is the forget weight matrix, Wf ,h is the forget-hidden
weight matrix, and bf is the bias. The input gate it is a control gate that determines whether the
information is updated or supplemented to the memory unit. It is calculated using a sigmoid function
at time t, as shown as below:

it = σ
(
Wi,xxt + Wi,hht−1 + bi

)
(13)

where Wi,x and Wi,h are the weight matrix, and the input gate bias bi, respectively.

Then, the value of updating unit state ct at time step t is determined using the value of forget gate
ft and the value of input gate it. In which ft controls the amount of information retained or discarded
from the unit state ct−1 at time t − 1, the input controls the information inputs at the current time. The
candidate value c̃t−1 represents new potential information that needs to be added to the internal state
of the memory unit. The values Wc̃,x, and Wc̃,h correspond to the weight matrix and the bias vector of
the updated unit state. The value of c̃t−1 is defined as follows:

c̃t = tan h
(
Wc̃,xxt + Wc̃,hht−1 + bc̃

)
(14)

After that, the new memory unit state ct is calculated based on the previous memory unit state
and the Hadamard (◦) element-wise product, as follows:

ct = ft ◦ ct−1 + it ◦ c̃t (15)

Finally, the output gate ot and the hidden state ht to the next time step are defined as follows:

ot = σ
(
Wo,xxt + Wo,hht−1 + bo

)
ht = ot ◦ tan h (ct) (16)

3 Proposed Complex Fuzzy LSTM Model for Temporal-Related Forecasting Problems

This section of the paper proposes the use of a complex fuzzy LSTM model for temporal-related
forecasting problems, this includes some components: complex fuzzy LSTM for temporal-related
forecasting issues, components of complex fuzzy LSTM unit, and a complex fuzzy LSTM network
architecture that takes care of the effect of cycle time in the model.

3.1 Time-Series Forecasting Problem

In this proposal, we are concerned with the problems of time series forecasting. Formally, given
a series of time-stamped values X = {x1, x2, . . . , xT} where xT ∈ Rn, n is the variable dimension, our
objective is to forecast a number of future signals in a rolling method. We assume that {x1, x2, . . . , xT}
are available in order to forecast xT+δ, where δ is the desired horizon forward of the present timestamp.
Similarly, we suppose that X = {x1, x2, . . . , xT+1} are available in order to predict the value of
the next timestamp, xT+δ+1. Hence, the input matrix of the time series estimating issue is as XT =
{x1, x2, . . . , xT} ∈ Rx×T at timestamp T . The prediction horizon is typically determined by the particular
needs of the application, such as those for weather indices like precipitation, temperature, etc.; or the
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horizon of interest for traffic usage typically hours, while normal seconds or minutes forecast will be
useful for stock market data.

In forecasting with time series data, good handling of time-cycle variables will bring higher
forecasting efficiency in many cases. A time-cyclical variable is a variable whose change is influenced
by the time cycle, and is repetitive within a certain period of time. This type of data differs from other
trend of change by time, such as time-decay element, and therefore proper prediction models have to
be designed in the way to consider the temporal nature and characteristics of data like time-cycle.

3.2 Proposed Complex Fuzzy LSTM Model

This section presents a complex fuzzy LSTM model with complex fuzzy input data related to time
cycle factors. The complex fuzzy LSTM network (CFLSTM) is a deep learning framework that handles
complex fuzzy data pertaining to time cycle elements and long-term and short-term movements. In the
context of the proposed model, a time cyclical variable is well presented by a suitable complex fuzzy
number formation. The Formula (1) in Section 2.1 addresses how the time cycle element is presented in
phase of complex fuzzy. And then, this element is processed in gates of fuzzy LSTM by new proposed
operations introduced in next section. In general, a brief description of the CFLSTM net architecture is
shown in Fig. 2. And in the sections that follow, each component of the CFLSTM net will be discussed
in detail.

The input, hidden, and output layers are three basic components of the CFLSTM network. Below
is an explanation of each component’s specifics.

Input layer: This layer is responsible for preprocessing the input data set, which includes process-
ing, structuring, and dividing it for model learning and testing. Assume that at time t, the input vector
is processed with a time delay p represented by vector

{
xt−p, . . . , xt−2, xt−1

}
. Next, the vector is then

fuzzified using the fuzzy functions as in Section 2.2.

CFLSTM hidden layer and training model: Building the LSTM network architecture and training
the model using the training data are the responsibilities of the hidden layer. In Sections 3.3, 3.4 we
introduce the basic CFLSTM hidden layer in the network architecture, in which one node of hidden
layer employs a CFLSTM unit. Section 3.3 presents a proposal of a unique CFLSTM unit architecture
that extends the classical LSTM unit to process complex fuzzy input data, and to account for the effects
of cycle time on time-series information. The detail of the CFLSTM unit includes active function and
operations of gates is presented in the same section.

The input to this hidden layer is a set of complex fuzzy value vectors, and the loss function utilized
during model learning is the MSE function. This study trains the model settings using the Adam
optimization approach. Meanwhile, the complex fuzzy LSTM network’s details are being learned using
the backpropagation through time (BPTT) algorithm.

Output layer: The proposed LSTM’s output layer defuzzes the hidden layer output from the hidden
layer in order to anticipate the data. Either complicated defuzzification routines or a linear layer can
be used to execute the defuzzification process. If a linear layer is utilized, the hidden layer’s complex
values’ real and imaginary values are aggregated together to generate a real value. The final predicted
true value result is produced by processing the inverse data with the earlier encoders.
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Figure 2: Proposed CFLSTM architecture

3.3 CFLSTM Unit

As mentioned above, the hidden layer in the CFLSTM architecture includes CFLSTM units, and
the detail of the proposed CFLSTM unit is represented in Fig. 3. In this section, the complex fuzzy
values of the variables are used in μt (V , z) = μt,Re (V)+ jμt,Im (z) form for the next calculations. Where
μt,Re (V) and μt,Im (z) represent the real and imaginary parts of complex fuzzy numbers, respectively.
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Figure 3: The structure of a complex fuzzy LSTM unit

At the time t, the input value xt is fuzzified to complex fuzzy values using one of the CFMF in
Section 2.2.

The gates of the CFLSTM unit are calculated according to the formula as follows:

Input gate at time t is calculated according to the Formula (17):

μi
t,Re = σ

(
Re

{
μW

i,x (V , z) + μW
i,h (V , z) μh

t−1 (V , z) + μb
i (V , z)

})
; (17)

μi
t,Im = σ

(
Im

{
μW

i,x (V , z) + μW
i,h (V , z) μh

t−1 (V , z) + μb
i (V , z)

})
;

The forget gate is calculated according to the Formula (18)

μf
t,Re = σ

(
Re

{
μW

f ,x (V , z) + μW
f ,h (V , z) μh

t−1 (V , z) + μb
f (V , z)

})
;

μf
t,Im = σ

(
Im

{
μW

f ,x (V , z) + μW
f ,h (V , z) μh

t−1 (V , z) + μb
f (V , z)

})
; (18)

The candidate value μc̃
t represents new potential information that needs to be added to the internal

state of the memory unit. The values μW
c̃,x, μW

c̃,h and μW
c̃ are corresponding to weight matrix and the bias

vector of the updated unit state. The value of μc̃
t is defined as follows:

μc̃
t,Re = tan h

(
Re

{
μW

c̃,x (V , z) + μW
c̃,h (V , z) μh

t−1 (V , z) + μb
c̃ (V , z)

})
;

μc̃
t,Im = tan h

(
Im

{
μW

c̃,x (V , z) + μW
c̃,h (V , z) μh

t−1 (V , z) + μc̃
f (V , z)

})
; (19)

After that, the new memory unit state μc
t is calculated based the previous memory unit state and

the Hadamard (◦) element-wise product, as follows:
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μc
t,Re = μf

t,Re ◦ μc
t−1,Re + μi

t,Re ◦ μc̃
t,Re;

μc
t,Im = μf

t,Im ◦ μc
t−1,Im + μi

t,Im ◦ μc̃
t,Im; (20)

The output gate μo
t is defined as follows:

μo
t,Re = tan h

(
Re

{
μW

o,x (V , z) μx
t (V , z) + μW

o,h (V , z) μh
t−1 (V , z)

} + μb
o (V , z)

)
;

μo
t,Im = tan h

(
Im

{
μW

o,x (V , z) μx
t (V , z) + μW

o,h (V , z) μh
t−1 (V , z)

} + μb
o (V , z)

)
; (21)

Finally, the hidden state μh
t to next time step is defined as follows:

μh
t,Re = μo

t,Re ◦ tan h
(
μc

t,Re

)
;

μh
t,Im = μo

t,Im ◦ tan h
(
μc

t,Im

)
; (22)

where σ and tan h are activation functions of complex numbers. Some activation functions of complex
numbers are given in Table 1.

Table 1: Some active function for complex value

Name Activation function

AND, OR, SUM, PRODUCT-ReLU [43] f (z) =⎧⎪⎪⎪⎨
⎪⎪⎪⎩

zr + izi if Re (z) and Im (z) > 0
zr + izi if Re (z) or Im (z) > 0
zr + izi if Re (z) + Im (z) > 0
zr + izi if Re (z) ◦ Im (z) > 0

Complex cardioid function [44] f (z) = 1
2

z (1 + cos (ϕz))

Complex tangent sigmoidal function [45] f (z) = tan h (z) = ez − e−z

ez + e−z

Complex valued exponential function [46] f (z) = exp (z)

Complex valued ReLU function [47] f (z) =
{

1, if ϕz ∈ [0, π/2]
0, otherwise

Split-ReLU function [48] f (z) = RELU (Re (z) + i ∗ sgm (Im (z)))

Split-sigmoidal function [49] f (z) = sgm (Re (z) + i ∗ sgm (Im (z)))

Split-sigmoidal tanh function [50] f (z) = tan h (zr)

1 − (zr − 3) e−zr
+ i

tan h (zi)

1 − (zi − 3) e−zi

Split-step function [51] f (z) = step (Re (z)) + i ∗ step (Im (z))

Split-tanh function [49,52] f (z) = tan h (Re (z)) + i ∗ tan h (Im (z))
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3.4 CFLSTM Architecture Detail

Classical LSTM architectures often do not care about the time period problem in network
architecture. In many practical problems, the state of a unit at time kΔt has a strong impact on the
forecast results at time t, where k is the number of cycles and Δt is a period of time. Therefore, in this
section, we present an architecture that is concerned with the time period of the CFLSTM network.
The CFLSTM architecture for the time period is shown in Fig. 4.

Figure 4: CFLSTM architecture with period

A CFLSTM unit at time t takes as input the aggregated unit state and hidden state from previous
times, with a period of Δt. The aggregated unit and hidden state are estimated by the formula as
follows:
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The aggregated unit state with window size Δw at kth period is calculated as shown in the
Formula (23).

μc
k,

∑
	w ,Re = 1

	w

∑
∀wi∈	w

Re
{
μc

t−(k∗	t±wi)
(V , z)

}
;

μc
k,

∑
	w ,Im = 1

	w

∑
∀wi∈	w

Im
{
μc

t−(k∗	t±wi)
(V , z)

}
; (23)

And the aggregated hidden state with window size Δw at kth period is calculated as shown in
Formula (24).

μh
k,

∑
	w ,Re = 1

	w

∑
∀wi∈	w

Re
{
μh

t−(k∗	t±wi)
(V , z)

}
;

μh
k,

∑
	w ,Im = 1

	w

∑
∀wi∈	w

Im
{
μh

t−(k∗	t±wi)
(V , z)

}
; (24)

Then, the previous aggregated unit state by period k is calculated by the Formula (25).

μc∑
	t,Re = 1

k

k∑
i=0

σ
(
μc

k,
∑

	w ,Re

)
;

μc∑
	t,Im = 1

k

k∑
i=0

σ
(
μc

k,
∑

	w ,Im

)
; (25)

The previous aggregated hidden state by period k is calculated by the Formula (26).

μh∑
	t,Re = 1

k

k∑
i=0

σ
(
μh

k,
∑

	w ,Re

)
;

μh∑
	t,Im = 1

k

k∑
i=0

σ
(
μh

k,
∑

	w ,Im

)
; (26)

The next gates of the CFLSTM unit at time t are calculated by using the previous aggregated unit
state μc∑

Δt and aggregated hidden state μh∑
Δt by period k and window size Δw as a previous state to

compute the gates.

The CFLSTM architecture is an extension of the traditional LSTM architecture. When k = 0 and
Δw = 1, the CFLSTM architecture reverts to the conventional LSTM architecture.

3.5 Time Complexity of a CFLSTM

Briefly, assuming the input size is D, the hidden state size is H, window size Δw, length of
the time series is N, and number of CFLSTM cells is M, based on Formulas (17)–(19), the time
complexity of each gate in the CFLSTM unit is O

(
2D.H + 2H2 + 2H

)
and then single CFLSTM

has time complexity O
(
8H.D + 8H2 + 16H + Δw

)
. Meanwhile, the time complexity of conventional

is O
(
4D.H + 4H2 + 12H

)
. Assume that the training process stops in N number of iterations (number
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of epochs), its time complexity is N.O
(
L.M

(
8H.D + 8H2 + 16H + Δw

))
, where L is the input time

series, and M is the number of CFLSTM cells.

4 Results of Experiments and Application

The experimental comparison of the proposed model is covered in this section, along with datasets,
evaluative measurements, and comparison models. Three comparison scenarios are used to show the
efficacy and advantages of the proposed model compared to other models: the model developed using a
complex fuzzy set (ANCFIS) and the model developed using only machine learning algorithms (LSTM
and Fuzzy LSTM).

4.1 Experimental Datasets and Evaluative Metrics

The study used three datasets—one set of precipitation monitoring data observed by month, one
set of temperature data observed by day, and one set of standard UCI data about car sharing in Seoul
collected hourly—to illustrate the benefits of the proposed model in forecasting time series datasets.
The datasets’ specifics are as follows:

(1) The World Bank’s published precipitation dataset. From 1901 through 2021, this data was
observed over a 12-month period. Due to their varied geographical locations, the precipitation data
from three provinces in Vietnam—Hanoi, Thua Thien-Hue, and Ho Chi Minh—were chosen to
evaluate the proposed model’s relationship to meteorological parameters, including time series and
cycles. With data on precipitation for three provinces—Ha Noi, Thua Thien Hue, and Ho Chi Minh,
and one third of data series are selected to display in Fig. 5 to better present data characteristic in
visualization.

Figure 5: The one-third series of the precipitation dataset at Vietnam
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(2) Daily minimum temperature in Melbourne, Australia dataset. This dataset contains 3650
observations of the daily min/max temperature in Melbourne, Australia, from 1981–1990, min = 0
and max = 26.3. Fig. 6 shows temperature data for Melbourne, Australia in the first one-third sub-set
of original data.

Figure 6: The one-third series of the temperature dataset at Melbourne, Australia

(3) A typical UCI time series database is the demand for bike sharing in Seoul. The dataset provides
an hourly rental bicycle count for the Seoul Bike Sharing System. It has 8760 observations spread out
throughout 24 h from 01 December to 30 November 2017. The first one-third sub-set of the original
dataset for bike sharing in Seoul is shown in Fig. 7. The sub-set is selected to better present data
characteristics in visualization.

Figure 7: The one-third series of the Seoul bike sharing demand dataset

Evaluation methods and metrics: The study compares the model that was proposed to LSTM [37],
Fuzzy LSTM [29], and ANCFIS [34] on the three metrics of Root Mean Squared Error (RMSE);
Mean Absolute Error (MAE) and Symmetric Mean Absolute Percentage Error (SMAPE), which are
designed to empirically demonstrate the efficiency of the proposed model:

MAE =
n∑

i=1

∣∣ŷi − yi

∣∣
n

; (27)

RMSE =
√√√√ n∑

i=1

(
ŷi − yi

)2

n
; (28)
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SMAPE =
∑n

i=1

∣∣ŷi − yi

∣∣(∣∣ŷi

∣∣ + |yi|
)
/2

n
; (29)

In this instance, ŷi is the value that the model predicts, and yi is the actual value that was seen.

4.2 Experimental Results

Experimental environment: The experimental process was conducted on computers with the
following specifications: Intel(R) Core(TM) i9-9900K CPU @ 3.60 GHz; 16 GB RAM; Python
language and PyTorch library were used to install and run the experiments.

Experimental process: For each dataset, the data was splitted into training dataset and testing
dataset randomly. The proposed model was trained on training set with the parameters presented in
Table 2. After building a model, it was used to test on the testing set and report the result. This process
is repeated 10 times, and the value of error metrics is average of 10 testing times.

The CFLSTM model’s parameters is setted as follows:

Table 2: CFLSTM’s parameters

Hyper-parameters Selection

Number of hidden layers 2
Learning rate α 0.0003
Drop-out rate 0.2
Number of epochs 1000
Loss function Mean square error
Optimizer Adam
Train dataset size 80%
Test dataset size 20%

Experimental results: After our test was complete, the following results were obtained: In Fig. 8,
which depicts the learning process, the loss function values for each dataset are displayed.

The Fig. 8 shows that with the learning rate setted at 0.0003 and other parameters presented in
Table 2, the models convergence reach after 600 epochs. After epoch 600, the loss values reduce very
slowly.

According to the period parameters k = 1, 2, 3, Table 3 and Figs. 9–11 display the results of the
predictions made by CFLSTM for each dataset: Precipitation Vietnam, Melbourne Temperature, and
Seoul Bike Sharing.
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Figure 8: Training process of proposed models for different data series

Table 3: Results of CFLSTM’s predictions for each dataset

Datasets Measures k = 0 k = 1 k = 2 k = 3

Precipitation
Vietnam

Ha Noi RMSE 55.54119 54.53238 51.08568 50.17249
MAE 39.86766 38.27763 36.44691 36.68034
SMAPE 0.44218 0.39069 0.40039 0.41190

Thua
Thien-Hue

RMSE 148.38610 142.63864 140.42633 139.52343
MAE 72.60480 71.39602 70.67319 69.91987
SMAPE 0.36406 0.35800 0.35079 0.33728

Ho Chi
Minh

RMSE 27.30804 26.29993 25.66004 24.59530
MAE 18.58608 18.33788 17.26411 17.20737
SMAPE 0.27826 0.24166 0.22824 0.25304

Melbourne temperature RMSE 3.00107 2.90478 2.86416 2.84992
MAE 2.32587 2.30149 2.22733 2.21234
SMAPE 0.22280 0.22069 0.21519 0.21299

Seoul bike sharing RMSE 336.13122 309.38563 325.55516 375.72686
MAE 248.54358 237.19841 248.30109 286.41880
SMAPE 0.59788 0.57801 0.59053 0.64283
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Figure 9: CFLSTM’s results for the precipitation Vietnam dataset

Figure 10: CFLSTM’s results for the Melbourne temperature dataset

The result in Table 3 suggests that the models usually give better results when k > 0, and for
different data series, the best found k parameter is different. For the dataset of Seoul bike sharing the
optimal result reached at k = 1, and the optimal result reached at k > 1 for other datasets.
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Figure 11: CFLSTM’s results for the Seoul bike sharing dataset

Results of algorithm performance metrics were estimated by average values of 10 times running
the test. Note that the results depicted in Figs. 9–11 are the best case in all testing times, that present
the loss and the trend of prediction performance.

Table 3 shows the MAE and RMSE and SMAPE results on three datasets: Precipitation Vietnam,
Melbourne temperature, and Seoul Bike Sharing. As shown in Table 3, the time period factor has
a strong impact on the forecast results, with MAE and RMSE gradually decreasing with k = 0,
1, 2, 3, respectively. This is especially pronounced for the Precipitation Vietnam and Melbourne
temperature datasets. Therefore, finding this parameter is one of the important tasks when using
proposed CFLSTM in applications.

4.3 Comparison and Analysis

By contrasting the outcomes of the proposed model with those of three other models-LSTM [37],
Fuzzy LSTM [29], and ANCFIS [34]-the benefits of the suggested CFLSTM model are shown in this
section.

Table 4 and Figs. 9–11 show the results of the models’ forecasting using three datasets that are
related to the temporal factors. As shown in Table 4, the CFLSTM model using k = 1 has significantly
lower MAE, RMSE and SMAPE values than the LSTM and Fuzzy LSTM models. Compared with the
ANCFIS neural network applying complex fuzzy theory, the proposed model also gives lower MAE,
MSE and SMAPE measure results on experimental datasets. This demonstrates that when forecasting
data relating to time factors, such as time series and time periods, the suggested CFLSTM model
outperforms conventional models like LSTM, Fuzzy LSTM, and ANCFIS.

Besides above advantage, as mentioned above the proposed CFLSTM is more time complexity
than the classical LSTM model. This is the trade off for handling time-cycle factor in manner of
complex fuzzy set and the extending operations of CFLSTM gates. However, the experiment with
datasets above show that this consuming time is till handleable with the hardware configuration
mentioned in Section 4.2. In cases of larger data set or real-time forecasting, the model would
require high computational resource and it need further experiment to make complete judgement.
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Furthermore, in practice there is the risk of overfitting in the training process and this effects the
accuracy of a designed model on new, unseen data. Users can apply some techniques in the training
process to avoid this risk, that includes setting of suitable drop-out rate and batch size.

Table 4: Forecast results of comparing methods on each dataset

Methods Measures Precipitation Vietnam Melbourne
temperature

Seoul bike
sharing

Ha Noi City Thua
Thien-Hue

Ho Chi Minh
City

T-CFSTM
(k = 1)

RMSE 54.53238 142.63864 26.29993 2.90478 309.38563
MAE 38.27763 71.39602 18.33788 2.30149 237.19841
SMAPE 0.39069 0.35800 0.24166 0.22069 0.57801

LSTM [37] RMSE 57.69700 153.02425 51.82998 3.35945 523.18836
MAE 43.47245 91.28456 41.37825 2.64853 410.28830
SMAPE 0.52611 0.54998 0.45152 0.25163 0.74959

FLSTM [29] RMSE 58.28889 147.1053 28.88405 3.20108 401.63979
MAE 41.62621 75.21264 20.01461 2.47963 305.01240
SMAPE 0.43653 0.38721 0.26999 0.23612 0.67567

ANCFIS
[34]

RMSE 58.47839 152.22568 30.42486 3.26981 594.23330
MAE 43.54247 80.22157 21.30286 2.53408 456.16684
SMAPE 0.47974 0.44134 0.27090 0.24316 0.84479

5 Conclusions

This study combines complex fuzzy theory with LSTM to create a CFLSTM neural network. In
the complex fuzzy LSTM neural network, we are interested in the period-time factor in the input data,
and use complex fuzzy process to better tackle these factors. The designed model could empower the
LSTM architecture in processing the time cycle factors. The proposed model has been experimentally
installed and verified through 03 data sets: precipitation monitoring data of three regions of Hanoi,
Hue, and Ho Chi Minh City from 1901–2021; daily temperature monitoring data from Melbourne-
Australia; and Seoul bike sharing demand data from UCI. The proposed model shows that the
prediction error through 2 indicators, MAE and RMSE, is smaller than that of the LSTM, Fuzzy
LSTM, and ANCFIS models. The forecast results of the proposed model give quantitative predictive
value. Rainfall closely follows the observed real trend for the time period datasets.

Experimental results indicate that the CFLSTM model demonstrates significant potential for
forecasting time series data, however it also has higher computational complexity than classical
LSTM. Furthermore, additional research is required to thoroughly evaluate the trade-off between
improved accuracy and increased consuming time. Consequently, future research efforts will focus on
advancing the mathematical operations underlying the CFLSTM operator and identifying efficient
computational strategies for handling large datasets.
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