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ABSTRACT

Laboratory safety is a critical area of broad societal concern, particularly in the detection of abnormal actions.
To enhance the efficiency and accuracy of detecting such actions, this paper introduces a novel method called
TubeRAPT (Tubelet Transformer based on Adapter and Prefix Training Module). This method primarily comprises
three key components: the TubeR network, an adaptive clustering attention mechanism, and a prefix training
module. These components work in synergy to address the challenge of knowledge preservation in models pre-
trained on large datasets while maintaining training efficiency. The TubeR network serves as the backbone for
spatio-temporal feature extraction, while the adaptive clustering attention mechanism refines the focus on relevant
information. The prefix training module facilitates efficient fine-tuning and knowledge transfer. Experimental
results demonstrate the effectiveness of TubeRAPT, achieving a 68.44% mean Average Precision (mAP) on the
CLA (Crazy Lab Activity) small-scale dataset, marking a significant improvement of 1.53% over the previous TubeR
method. This research not only showcases the potential applications of TubeRAPT in the field of abnormal action
detection but also offers innovative ideas and technical support for the future development of laboratory safety
monitoring technologies. The proposed method has implications for improving safety management systems in
various laboratory environments, potentially reducing accidents and enhancing overall workplace safety.
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1 Introduction

Laboratory safety has always been a focal point of widespread societal concern, with the
safety of individual actions serving as a core element in ensuring laboratory safety. As technology
advances, detecting abnormal actions within laboratories has gradually become an essential method
for enhancing lab safety management. How to efficiently identify and monitor the various abnormal
actions occurring in the laboratory is a key problem in the detection of abnormal actions in the
laboratory. Traditional methods rely on lab managers to conduct behavioral monitoring through
direct observation or by using surveillance equipment, which are insufficient for effective detection
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of abnormal actions on a continuous and extensive basis. Therefore, there is an urgent need to develop
an automated and real-time method for detecting abnormal actions to strengthen laboratory safety
management.

Among these laboratory abnormal actions, some similar actions are difficult to distinguish. For
example, drinking water and smelling reagents are highly similar actions; except for the difference in
the object held and the distance from the mouth, other motions are nearly identical, as illustrated
in Fig. 1. Effective detection of abnormal laboratory actions requires precise differentiation of these
similar actions. Models pre-trained on large datasets possess knowledge about similar actions, but how
to retain this knowledge in training for laboratory abnormal action detection tasks on smaller datasets
requires further research.

Drink Water

T T+1 T+2 T+3

Smell Reagent

Figure 1: Comparative diagram of similar actions
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Additionally, when large-scale pre-trained models are fully fine-tuned for downstream tasks, they
face two major challenges: one is the potential degradation of the pre-trained model parameters;
the other is the increasing size of pre-trained models, which makes it difficult for researchers to
manage the training burden. In light of this, parameter-efficient fine-tuning techniques have been
developed. Currently, these techniques are mainly focused on classification models in visual tasks,
with relatively less research on more complex tasks like detection. The high cost of data acquisition and
comprehensive fine-tuning on small datasets can lead to degradation of pre-trained model parameters
and impair their generalization ability [1]. In response to this issue, this paper proposes a parameter-
efficient fine-tuning technique for the detection of abnormal laboratory actions, aimed at addressing
these challenges.

2 Related Work

This section provides an overview of methods for detecting abnormal actions and techniques for
parameter-efficient fine-tuning.

2.1 Abnormal Action Detection Methods

Abnormal action detection methods have been extensively researched and developed across
various domains, particularly in intelligent security, video surveillance, healthcare, and action analysis
in specific environments. Traditional action detection methods are mostly limited to detecting local
actions and often fall short in terms of detection efficiency and accuracy [2,3]. The emergence of
deep learning methods offers new options for the task of abnormal action detection. These advanced
technologies utilize big data and robust computational power to learn complex patterns, thereby
improving the accuracy and efficiency of detection. From the perspective of learning strategies,
abnormal action detection methods are mainly divided into supervised and unsupervised learning
approaches.

Supervised learning methods rely on pre-labeled data, where these annotations are crucial for
the model to learn and understand what constitutes “normal” and “abnormal” actions. Literature
[4] introduced a video abnormal action detection method based on motion examples, which uses
human skeleton and optical flow information to protect privacy while effectively detecting abnormal
events. This method incorporates a support set containing diverse motion examples from a large-scale
human action database, to deconstruct roughly defined abnormalities. By employing a non-maximum
suppression strategy, it adaptively emphasizes the relevance of abnormal pairs, enhancing detection
accuracy. Literature [5] introduced a novel framework called DeepSegmenter, aimed at detecting
unedited abnormal actions in natural driving videos. This method addresses the issue by combining
activity segmentation and classification within a unified framework, overcoming the limitations of
traditional methods.

Unsupervised learning methods do not require any prior annotation information. They identify
abnormalities by analyzing the intrinsic structure and patterns within the data itself, enabling them
to autonomously complete detection tasks. Literature [6] proposed an abnormal action detection
method that uses a pre-trained, domain-agnostic skeletal feature extractor, which is robust against
skeletal errors and does not require direct observation of abnormal samples or training. This method
is an unsupervised detection approach, capable of deriving anomaly scores without using abnormal
samples, thereby detecting abnormal human actions in videos. Literature [7] introduced an attention-
based residual autoencoder for video anomaly detection. This method effectively utilizes spatial
and temporal information in video data by combining spatial and temporal branches, employing
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deep convolutional neural networks as encoders, and a multi-stage channel attention mechanism
for unsupervised learning. Temporal shift methods are used to capture temporal features, while the
channel attention module extracts contextual dependencies. This model significantly improves the
accuracy and efficiency of video anomaly detection by leveraging adversarial learning and attention
mechanisms.

Current abnormal action detection methods are primarily limited to classifying actions into broad
categories of normal and abnormal, without finer differentiation of anomaly types, and these methods
do not effectively utilize temporal information. In contrast, laboratory safety managers urgently need
a method that can provide fine-grained categories of abnormal actions to more accurately identify and
respond to potential risks. Therefore, researching a detection method that can annotate both temporal
and spatial information and provide detailed categories of abnormal actions is particularly important.
From a technical implementation perspective, these action detection methods are mainly divided into
two types: one based on action tubes, and the other based on keyframes.

Action tube-based action detection methods first detect the target boxes of human actors in
each frame, then use tracking and linking algorithms to connect these target boxes according to
the subject of the action, forming a series of action tubes, which are then input into classifiers for
action recognition. Literature [8], building on the dual-stream network and the R-CNN network
[9], used the Viterbi algorithm to link target boxes with high confidence and overlap, using the
dual-stream network as a feature extractor and SVM as the classifier, successfully introducing deep
learning methods into action detection and refining the content and evaluation methods of action
detection. Consistent with the evolution from R-CNN to Faster R-CNN [10], literature [11] replaced
the selective search algorithm of literature [8] with a Region Proposal Network (RPN), speeding up
the model‘s operational efficiency. Unlike dual-stream networks that separately process spatial and
temporal features, literature [12] proposed a unified framework, T-CNN, to process both spatial and
temporal features together, dividing the video into segments, directly producing action tubes from the
segments, connecting the tubes, and then recognizing actions.

Keyframe-based action detection methods process multiple video frames but only detect action
subjects in keyframes, extracting feature maps from multiple video frames, then mapping detected
action subject target boxes back to the feature maps of multiple video frames to obtain feature
maps of the action subjects, which are then used for action recognition. With the introduction of
the AVA dataset [13], keyframe-based methods have rapidly developed. Based on the AVA dataset,
literature [13] proposed an I3D dual-stream convolutional network. Multi-frame video frames and
optical flow frames are input into this network, using Faster R-CNN to detect keyframes, which
are then recognized after RPN and ROI Pooling. Optical flow calculation is time-consuming, and
researchers have been trying to eliminate usage of optical flow, allowing deep learning methods to
directly learn temporal information from video frames. Inspired by the rods and cones in human eyes,
literature [14] introduced a dual-stream network called SlowFast, which does not require usage of
optical flow, allowing the network to learn spatial information from slow frame rate video frames and
motion information from fast frame rate video frames. Since it does not require usage of optical flow,
SlowFast not only surpasses previous methods based on optical flow in terms of accuracy but also
improves in speed. Given that the AVA dataset contains a large amount of data on human and human
interaction actions, literature [15] proposed ACAR-Net, using a feature bank to model the actor-
context-actor relationships, then detecting actions, achieving the best results that year. Literature [16]
introduced a low-cost point-supervised temporal action detection method that generates pseudo-labels
through prototype learning and contrastive constraints, improving detection accuracy and reducing
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error accumulation. The keyframe-based action detection method is advantageous for fulfilling the
laboratory’s needs for anomaly detection while requiring minimal annotation effort for the dataset.

Whether based on action tubes or keyframes, action detection methods rely on the development
of target detection algorithms. Previous action detection methods were mainly based on Faster R-
CNN. Vision Transformer (ViT) is the first pure Transformer method to be applied in computer vision,
surpassing the effects of convolutional neural networks and becoming a new milestone [17,18]. As
Transformer models are increasingly applied in computer vision, current target detection methods
have seen the introduction of DETR [19], a completely end-to-end Transformer framework that does
not require post-processing for maximum suppression. TubeR [20] is similar to DETR, transforming
the action detection problem into a sequence to sequence problem, thereby easily achieving end-to-end
implementation.

2.2 Parameter-Efficient Fine-Tuning

As the size of pre-trained models continues to grow, the training costs associated with traditional
full-parameter fine-tuning methods have become increasingly prohibitive. To address this issue, the
technique of parameter-efficient fine-tuning (PEFT) has been proposed [1,21]. Initially applied in the
field of natural language processing, PEFT has recently expanded its application to computer vision,
demonstrating broad adaptability and efficiency.

The focus of parameter-efficient fine-tuning lies in freezing most of the pre-trained model’s param-
eters and training only a small portion, significantly reducing the hardware and time requirements
for model training. This process may or may not involve adding extra parameters to the pre-trained
model. PEFT techniques are mainly divided into additive methods and partial methods [21]. Additive
methods include Adapter Tuning [1,22–25], Prefix Tuning [26–28], and Prompt Tuning [29], while
partial methods include Specification Tuning [30] and Reparameter Tuning [31].

Adapter Tuning involves adding Adapter modules to the pre-trained model and training only
these modules. These Adapter modules are added to different locations in the Transformer network
depending on the downstream task and learning objectives. Literature [32] applied prompt and adapter
tuning to self-supervised encoder-decoder speech models, significantly improving performance on
sequence generation tasks like automatic speech recognition (ASR) and slot filling. Literature [33]
introduced the COMPACTER method, which fine-tunes large-scale pre-trained language models by
integrating low-rank hypercomplex adapter layers, achieving task performance comparable to or better
than full-parameter fine-tuning while maintaining a minimal number of trainable parameters.

Prefix Tuning adjusts the model by adding a short learnable prefix to each layer of the Transformer
network without changing the original model’s parameters. Direct optimization of prefix vectors
can lead to training instability, thus requiring other methods to generate prefix vectors to avoid
instability issues. Literature [34] addressed this problem by optimizing a multi-layer perceptron. VQT
[35] introduces a small number of learnable “query” tokens at each layer to aggregate intermediate
features of the Transformer base model, effectively used for linear probing, achieving parameter and
memory-efficient transfer learning. EFFT [36] fine-tunes the pre-trained visual Transformer model in
a parameter-efficient manner, primarily addressing internal and inter-layer redundancy, and achieves
efficient information extraction while preserving the model’s intermediate features.
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Prompt Tuning is a simplified form of Prefix Tuning and an improvement over hard prompts,
employing a soft prompt approach. Similar to Prefix Tuning in purpose, soft prompts are carefully
optimized to adapt to downstream tasks. During the entire training process, other network parameters
are frozen, only adjusting these prompts, thus exemplifying a method of task-adaptive network fine-
tuning [37,38].

The partial methods in parameter-efficient fine-tuning aim to train only a small portion of the
network’s parameters without changing the internal structure of the model, to adapt to specific
downstream tasks. Specification Tuning [30] focuses on directly fine-tuning a small subset of key
parameters in the pre-trained model, adapting to downstream tasks through this refined adjustment.
Reparameter Tuning [31] introduces new learnable parameters during the training phase and integrates
these parameters into the original model during the inference phase through a technique known as
reparameterization. These two partial methods provide a strategy for efficiently leveraging pre-trained
models for rapid adaptation to downstream tasks while minimizing the demand for computational
resources, opening new avenues for the flexible application of large-scale pre-trained models.

Overall, parameter-efficient fine-tuning techniques offer an effective and resource-saving solution
for adapting large-scale pre-trained models. The advantages of this technology are significant,
including a substantial reduction in computational resources and storage space required, effectively
preventing catastrophic forgetting. Moreover, parameter-efficient fine-tuning enhances parameter
sharing and can compete with traditional full-parameter fine-tuning methods without sacrificing
performance, particularly evident when the network adapts to downstream tasks with smaller data
scales.

3 The Proposed Method

In this section, we introduce our proposed TubeRAPT. Section 3.1 introduces TubeRAPT, and
Section 3.2 discusses the training methods for TubeRAPT.

3.1 Introduction of TubeRAPT

Inspired by literature [20], this paper proposes an end-to-end method for laboratory abnormal
action detection, named Tubelet Transformer based on Adapter and Prefix Training module, abbrevi-
ated as TubeRAPT. As shown in Fig. 2, TubeRAPT primarily consists of three components: feature
extraction, a Transformer, and target box generation along with category prediction. A distinctive
feature of the TubeRAPT network is the use of the Adapter and Prefix Training module (APT module)
along with an adaptive clustering attention mechanism, aimed at enhancing the network’s performance
and efficiency.

Feature extraction encodes each video segment through a convolutional neural network, obtaining
feature representations for each frame to be used in subsequent time-series modeling and classification.
In this paper, the CSN network [39] is used as the feature extractor. This network includes a
regularization function, which, while achieving lower accuracy on the training set, delivers higher
accuracy on the test set.
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Figure 2: The architecture of TubeRAPT

The Transformer consists of several attention layers and feedforward neural network layers. It
encodes and models the frame sequences, capturing long-term dependencies and contextual infor-
mation within the time series. The data processing involves the TubeRAPT network feeding video
segments of Tin frames into the Backbone network to extract video features Fb, shaped as TbWH ×
C, which after adding 3D positional encoding, are inputted into the Transformer and transformed
into action tube features Ftub, shaped as To × N × C. Here, Tb and C represent the time dimension
and feature dimension, respectively, W and H are the feature width and height, To is the output time
dimension, and N is the number of actions. Action tubes are three-dimensional structures spanning
multiple frames in the video sequence, used to represent the spatial and temporal continuity of an
action.

The design for target box generation and category prediction draws from literature [20]. Action
tube features Ftub are processed by the regression head to determine the locations of actions and exclude
queries where no action exists, while the classification head determines the category of each query. The
classification head can be formalized as:

AH (Ftub, Fb) = Linear (LN (CA (poolt (Ftub) , LN (SA (Fb))) + poolt (Ftub))) (1)

where LN represents Layer Normalization, and poolt refers to Temp Pooling, which is actually a fully
connected layer that reduces the dimensions of Ftub from To × N × C to N × C. N represents the
number of action tubes, indicating the upper limit of detected human figures. The regression head
includes two FFNs, i.e., feedforward neural networks, where FFN1 is responsible for predicting target
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boxes, and FFN2 maps the features output by the Transformer to scores or probabilities for each
target box.

3.1.1 Attention

As shown in Fig. 2, TubeRAPT employs self-attention, cross-attention, and clustering attention.
In the Transformer network, Self-Attention and Cross-Attention are crucial operations. The formulas
for Self-Attention are shown in Eqs. (2) and (3):

SA (F) = softmax
((

σ s
q (F) × σ s

k (F)
T
)
/
√

C
)

× σ s
v (F) (2)

σ s
i (∗) = Linears

i (∗) , i ∈ {q, k, v} (3)

where F is the token sequence input to Self-Attention, and Linear refers to a linear mapping, achieved
through a single fully connected layer. Cross-Attention is utilized in the decoder of the Transformer,
where it decodes action tube features from the encoder output memory features, Fen, and the action
tube queue features, Fq, as illustrated in Eqs. (4) and (5):

CA
(
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) = softmax
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T
)
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√

C
)
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σ c
i (∗) = Linearc
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Inspired by literature [40], this paper employs Adaptive Clustering Attention (ACA) in place
of the self-attention layers in the encoder to enhance the computational speed of self-attention.
ACA is an attention mechanism for Transformer models that uses a small number of prototypes to
represent queries and computes the attention mapping only between prototypes and keys. The number
of prototypes is automatically determined based on the distribution of the queries, and finally, the
attention output is broadcasted to the queries represented by the prototypes. The aim of this method
is to reduce computational complexity and improve the scalability of the model.

Using ACA involves the following steps: first, the attention between queries and keys is calculated
using a multi-head attention mechanism. Then, the values are weighted by the attention map to
produce the weighted output features. Through the adaptive clustering approach, the attention output
is estimated by calculating the attention mapping between the prototypes and the keys, updating the
features of the prototypes. This estimation method reduces computational complexity compared to
methods that compute attention precisely.

3.1.2 Adapter and Prefix Training Module

Inspired by the work of [41], this paper introduces a parameter-efficient fine-tuning technique
module for abnormal action detection, termed the Adapter and Prefix Training (APT) module, while
the TubeR network utilizing the APT module is referred to as the TubeRAPT network. This module
consists of two parts: Adapter and Prefix, as illustrated in Fig. 3.

As depicted in Fig. 3a, the Adapter part of the APT module is formalized as shown in Eq. (6).

Xo = GELU
(
Xi · Wup

) · WDown (6)

where X i ∈ R
N×d represents the input of the Adapter module. After being multiplied with the

weight parameters W up ∈ R
d×d1 for dimensionality expansion, it undergoes activation with the GELU

activation function, and then is multiplied with the weight parameters W down ∈R
d1×d to reduce it back to

its original dimensionality. X o ∈ R
N×d represents the output of the Adapter module. Here, N denotes
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the number of tokens in the Transformer of the TubeRAPT network, and d represents the feature
dimension of tokens, which is 256 in this paper.
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Figure 3: The architecture of APT. (a) Adapter structure, (b) Prefix structure

As shown in Fig. 3b, this represents the portion of the Prefix structure in this paper, formalized
as shown in Eq. (7).

Po = Tanh
(
Pe · ẆUp

) · ẆDown, e, o ∈ {K, V} (7)

where Pe ∈ R
n×d represents the parameters of the Embedding, Ẇup ∈ R

d×d2 denotes the weight
parameters providing dimensionality expansion, and ẆDown ∈ R

d2×d represents the weight parameters
for dimensionality reduction. During this process, it undergoes activation with the Tanh activation
function. Po denotes the prefix vector. ‘n’ represents the number of keys and values provided by the
prefix vector. The tokens of the key-value pairs output by the Prefix FFN are concatenated with the
original key-value pairs and finally inputted into the multi-head attention module.

When prefix vectors are added to the input sequence, they undergo the same linear mapping
and self-attention computation process described above. This means that the prefix vectors not only
provide additional contextual information but also influence the way the entire sequence is processed
through the workflow of the self-attention mechanism. In this way, prefix vectors can manipulate
attention distributions internally in the model, thereby guiding the model to generate more accurate
outputs tailored to specific tasks.

Fig. 2 depicts the structure of the encoder and decoder of the TubeRAPT network, including the
position and addition method of the APT module. Similar to TubeR, TubeRAPT has L layers of
encoder and L layers of decoder. The boxes labeled with “Adapter” in Fig. 2 indicate the positions
where the Adapter module is added, while the blue “P” represents the positions where prefix vectors
are added. Assuming the size of the input tokens to the Transformer is (1, d), the total input of the
Transformer is (N, d), where N is the number of tokens and d is the dimensionality of tokens. To
maintain token dimensions unchanged during computation, the input dimension of the Adapter is d,
the hidden dimension is d1, and the output dimension remains d. The Prefix FFN outputs n vectors
of size (1, d), which are then concatenated with the key-value pairs of the attention layer.

(1) Encoder: In the encoder of TubeRAPT, the Adapter of the APT module is parallel to the FFN
layer, while the prefix vectors P1

K and P1
V of the APT module are concatenated with the keys and values

of the ACA layer, and the APT module is added to all L layers of the encoder.
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(2) Decoder: In the decoder of TubeRAPT, the Adapter of the APT module remains parallel to
the FFN layer. The APT module has four prefix vectors in the decoder. The first part of the decoder
performs self-attention operations on the encoder queries, then conducts cross-attention with the
output memory matrix of the last layer of the encoder. The prefix vectors P2

K and P2
V of the APT

module are concatenated with the keys and values of the self-attention layer, while P3
K and P3

V are
concatenated with the keys and values calculated by the memory matrix of the cross-attention layer.

3.2 The Training Method of TubeRAPT

As shown in Fig. 4, similar to other methods that utilize parameter-efficient fine-tuning, the
TubeRAPT network proposed in this paper also uses the TubeR model, which was pre-trained on
a pre-training dataset. It then freezes all parameters of the TubeR model and adds the Adapter and
Prefix Training (APT) module, training only the parameters of the APT module on the target dataset.
Compared to traditional full fine-tuning methods, this parameter-efficient fine-tuning approach
effectively leverages the knowledge learned from the pre-training dataset, thereby achieving better
performance on the target task. The TubeRAPT network is characterized by its use of the rich rep-
resentations learned by the TubeR model on a large-scale pre-training dataset. These representations
are preserved through the freezing of parameters, and the model is then fine-tuned on a specific target
dataset, allowing it to better adapt to new tasks.

TubeR

APT

TubeR

TubeR

Our Efficient TuningFull Finetuning

Trained

Frozen

Pre-train Model

Figure 4: Comparison between full finetuing and our efficient tuning

4 Experiments

Section 4.1 introduces the CLA dataset, Section 4.2 describes the experimental setup, and
Section 4.3 presents the experimental results and analysis. The experimental environment used in
this study consisted of an Intel(R) Xeon(R) Gold 6330 and RTX 3090.

4.1 CLA Dataset

This paper uses the Crazy Lab Activity dataset, abbreviated as CLA, for relevant experiments.
The CLA dataset is annotated in the format of the AVA dataset [13]. It is a dataset designed for
studying and detecting abnormal actions in laboratory environments. The data for this dataset were
collected using cameras inside a laboratory, aiming to record and analyze video data of different
actions under laboratory conditions. The dataset includes 46 laboratory video segments, comprising
29 training videos and 17 test videos, with a training to testing ratio of 1.7:1. Each video segment is 15
min long, with a resolution of 1920 × 1080, and both the training and test sets include footage from
three different angles. The CLA dataset encompasses 12 types of abnormal actions observed in the
lab, including: Sleep, Eat Something, Drink Water, Sit and Play with Mobile Phone, Walk and Play
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with Mobile Phone, Smell Reagent, Aspirate the Pipette with Mouth, Blow Out the Alcohol Lamp
with Mouth, Smoke, Run, Throw Something, and Jump, corresponding to parts (a) to (l) in Fig. 5.

(a) Sleep (b) Eat Something (c) Drink Water 

(d) Sit and Play with Mobile Phone (e) Walk and Play with Mobile Phone (f) Smell Reagent

(g) Aspirate the Pipette with Mouth (h) Blow Out the Alcohol Lamp with Mouth (i) Smoke

(j) Run (k) Throw Something (l) Jump

Figure 5: Twelve types of abnormal actions in the CLA dataset. (a) Sleep, (b) Eat Something, (c) Drink
Water, (d) Sit and Play with Mobile Phone, (e) Walk and Play with Mobile Phone, (f) Smell Reagent,
(g) Aspirate the Pipette with Mouth, (h) Blow Out the Alcohol Lamp with Mouth, (i) Smoke, (j) Run,
(k) Throw Something, (l) Jump

The CLA dataset was filmed entirely within the laboratory of Kerric (Guangdong) Laboratory
Equipment Research and Manufacture Co., Ltd. (Foshan, China). The laboratory covers an area of
108 square meters and contains nine tables, each with a width of 75 centimeters and a length of 360
centimeters, as shown in Fig. 6. The cameras are represented in Fig. 6 as two overlapping squares,
marked with a ‘C’. This paper features two scenes within the laboratory, referred to as Scene A and
Scene B. Each scene has three positions, with at most one person conducting experiments at each
position. Scene A is captured by three cameras from three different angles, while Scene B is captured
by two cameras from the left and right sides, with each camera placed as high as possible. This design
aims to maximize coverage of the laboratory scene and capture as many angles and perspectives
as possible.
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The dataset discussed in this paper involves two laboratory scenes, each containing at least two
people, ensuring the complexity of the dataset. The dataset involves four different individuals, dressed
in two types of clothing: regular attire and personal protective equipment (PPE). The PPE attire
includes a white coat, plastic gloves, and protective eyewear. Scenes A and B, along with corresponding
views and different attire, are illustrated in Fig. 7. In Scene A, View 3 and in Scene B, View 1 feature
regular attire, while Views 1 and 2 in Scene A, and View 2 in Scene B feature PPE attire.

The distribution of training and testing sets, along with the label distribution across various
categories in the dataset, is illustrated in Fig. 8. Overall, the data is relatively balanced, with no
significant long-tail effect. The least frequent action observed is blowing out an alcohol lamp, while
the most frequent action is sitting and using a cellphone.
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Perspective 1 Perspective 2 Perspective 3

Scene A

Scene B

Perspective 1 Perspective 2

Figure 7: Schematic diagram of perspectives corresponding to different scenes

Figure 8: CLA dataset distribution

As shown in Fig. 9, the widths of the bounding boxes for human targets in this dataset mostly
range from 100 to 300, while the heights mostly range from 200 to 600, indicating that most bounding
boxes are vertically oriented rectangles. The areas of the bounding boxes are primarily concentrated
between 20,000 and 180,000, corresponding to dimensions roughly between 100 × 200 to 300 × 600.
The largest bounding box measures 766 × 926.
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Figure 9: Distribution chart of bounding box width, height, size, and area frequency. (a) Frequency
distribution of width and height, (b) Frequency distribution of area

4.2 Experiment Settings

The experiments in this paper utilized the AdamW optimizer for parameter optimization, with
an initial learning rate set at 0.0001 and a weight decay coefficient also set at 0.0001. The batch
size used was 6, and the number of epochs was 20. During the training phase, data augmentation
strategies were employed, including random horizontal flipping, random cropping, and color jittering.
Specifically, the video frame size after random cropping was 256 × 455. In the testing phase, the
class confidence threshold was set at 0.8, with the video frame’s shorter side always scaled to 256
pixels. This paper reports frame-mAP@IoU = 0.5 following [13] using a single, center-crop inference
protocol. Additionally, TubeRAPT was initialized using the pre-trained weights of TubeR [20] and
further trained the APT module. The number of layers L in the encoder and decoder was set to 6, the
intermediate dimension d1 of the Adapter was set to 512, the number of prefix vectors n was 30, and
the intermediate dimension d2 of the Prefix FFN was set to 800. After the training of the APT module
was completed, the adaptive clustering attention was then added to the network.

4.3 Results and Analysis

In this section, the paper will discuss the experimental results and analysis of TubeRAPT on the
CLA dataset.

4.3.1 Ablation Study

To further analyze the specific contributions of the APT (Adapter and Prefix Training) module
and ACA (Adaptive Clustering Attention) to the performance of the TubeRAPT network, this study
designed a series of ablation experiments. In these experiments, the paper independently and jointly
trained the Adapter and Prefix parts and assessed their individual and combined impacts on the
performance of the TubeRAPT network. Subsequently, the ACA was integrated directly without
training to evaluate its impact on the performance of the TubeRAPT network. As shown in Table 1,
even though the proportion of trained parameters in the Adapter is relatively small, its contribution
to the overall mAP was still very significant, achieving an increase of 0.28%. This indicates that
in the TubeRAPT network, the Adapter plays an important role in enhancing model performance,
despite having relatively fewer training parameters. This may be because the Adapter module can
better capture the correlations between data, thereby enhancing the network’s generalization and
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representational capabilities. Furthermore, the paper found that combining the Adapter and Prefix
into the APT module results in better overall performance than training the two components
separately. This suggests a synergistic effect between Adapter and Prefix, where the combined APT
module can more effectively boost network performance and yield better results.

Table 1: Table of ablation study results for the APT module

Model Pre-train Parameter Train ratio mAP

TubeR+Adapter AVA v2.2 93.61 M 3.48% 51.28
TubeR+Prefix AVA v2.2 105.27 M 16.37% 51.00
TubeRAPT AVA v2.2 108.42 M 19.83% 51.33

As shown in Table 2, integrating ACA into the TubeR method resulted in a slight decrease of
0.02% in its mAP metric, whereas combining ACA with TubeRAPT improved the performance slightly
by 0.01% over the original TubeRAPT network. This result could be attributed to the enhancement
provided by the APT module, allowing ACA to more effectively focus on key queries, thus enabling
the model’s encoder to better concentrate on capturing important information.

Table 2: Table of ablation study results for adaptive clustering attention

Model Pre-train ACA mAP

TubeR AVA v2.2 × 66.91
TubeR AVA v2.2 √ 66.89
TubeRAPT CLA × 68.43
TubeRAPT CLA √ 68.44

Based on the above experimental results, we can conclude that in the TubeRAPT network, the
Adapter component contributes the most to performance, with a certain synergy existing between it
and the Prefix component. The combined APT module plays a crucial role in improving network
performance. Meanwhile, the impact of ACA on the performance of the TubeRAPT network is
relatively limited. This study provides important guidance and insights for understanding the structure
of the TubeRAPT network.

4.3.2 Determine the Position of the Adapter

As shown in Fig. 10, this paper experimented with two different methods of adding adapters.

In the parallel structure, as shown in Fig. 10a, adapters are added to the network in parallel. This
means that the data is separately inputted into both the adapter and the FFN network, and then the
outputs of both are combined for the next step of computation. In contrast, in the serial structure,
as shown in Fig. 10b, the output of the FFN serves as the input to the adapter, and then a series of
subsequent computations are performed together in the original network.
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Figure 10: Schematic diagram for parallel and serial structures. (a) Parallel structure, (b) Serial
structure

It is worth noting that, as shown in Table 3, there is no significant performance gap between the
parallel and serial structures. This could be because in the serial structure, both the Adapter module
and the FFN adopt a residual connection design. This means that the output of the Adapter is added
to the input of the FFN through a residual connection, which helps to avoid information loss and
error accumulation, resulting in comparable performance between the serial and parallel structures
for the Adapter.

Table 3: Table of results for different structures

Structure mAP

Parallel structure 51.33
Serial structure 51.33

Therefore, whether in parallel or serial structures, the Adapter module can effectively improve
network performance, and there is no significant difference between them. This finding suggests that
when choosing how to add adapters, the specific situation and requirements can dictate which method
to use. Additionally, the use of serial addition can enhance performance through residual connections,
providing important guidance for further adjustments and improvements in Adapter design. Given the
convenience of implementation in code and with no significant performance differences, this study opts
for the parallel structure as the method for adding adapters to the APT module.

4.3.3 Setting ACA Iterations

As shown in Table 4, the computation time of ACA increases with the number of rounds, with a
significant rapid growth observed between 32 and 40 rounds.

The rounds represent a hyperparameter used to adjust the adaptive clustering attention. Specifi-
cally, rounds refer to the number of independent hash tables. Each hash table has a unique set of hash
functions that map input vectors to a fixed number of hash values, thereby partitioning the space into
multiple cells. The same hash value implies that vectors fall into the same cell, thus the value of rounds
affects the number of generated clustering clusters and the precision of space partitioning.
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Table 4: Comparison table of computation time between adaptive clustering attention and self-
attention

Types of attention Iterations Time

Self-attention — 0.10137367248535156
Adaptive clustering attention 8 0.06808781623840332
Adaptive clustering attention 16 0.0687859058380127
Adaptive clustering attention 32 0.06969904899597168
Adaptive clustering attention 40 0.07232546806335449

As shown in Table 5, the mAP values demonstrate an increasing trend when the number of rounds
for ACA ranges from 8 to 32, peaking at 68.44. However, when the number of rounds increases to 40,
the mAP drops to 68.35, falling short of the performance of TubeRAPT without integrated ACA.
This may be due to the higher number of rounds causing query over-concentration, leading to partial
information loss.

Table 5: Results table for adaptive clustering attention vs. self-attention

Model Iterations ACA mAP

TubeRAPT — × 68.43
TubeRAPT 8 √ 66.05
TubeRAPT 16 √ 68.36
TubeRAPT 32 √ 68.44
TubeRAPT 40 √ 68.35

In this study, setting the number of rounds to 32 yielded the best results. This configuration not
only improved the time efficiency of self-attention computation by 31.25% but also had minimal
impact on performance. Under the condition of 32 rounds, the TubeRAPT network achieved a good
balance between performance and speed. These results highlight the crucial role of ACA in the
TubeRAPT network.

4.3.4 Model Comparison

As shown in Table 6, the TubeRAPT network, using the same pre-trained weights, achieves 76.7%
performance of the TubeR network with only 19.83% of the parameters trained. Furthermore, when
utilizing TubeR weights pre-trained with CLA, the performance of the TubeRAPT network without
ACA even surpasses the original TubeR network by 1.52%. This result underscores the remark-
able performance of the TubeRAPT network in terms of effectiveness and superiority, especially
in the application of pre-trained weights. The inference speed of the TubeR method is 364.23 FPS,
while the inference speed of TubeRAPT is relatively lower at 269.34 FPS. However, TubeRAPT still
meets the requirements for real-time performance.
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Table 6: Horizontal comparison table of model performance

Model Pre-train Parameter Train ratio ACA mAP

TubeR AVA v2.2 90.46 M 100% × 66.91
TubeRAPT AVA v2.2 108.42 M 19.83% × 51.33
TubeRAPT CLA 108.42 M 19.83% × 68.43
TubeRAPT CLA 108.42 M 19.83% √ 68.44

More notably, when the APT module is combined with ACA, not only does it enhance processing
speed, but it also achieves a slight performance increase, reaching the highest performance of 68.44%
in our comparative experiments, as shown in Table 6. This finding highlights the significant potential
of combining the APT module with ACA, indicating that performance improvement is not limited
to faster speeds but also includes subtle performance enhancements. This is particularly crucial in
practical applications, especially when dealing with large-scale datasets, where even slight performance
improvements could lead to significant overall benefits.

Table 7 illustrates the performance comparison of our method with recent outstanding action
detection models such as ACRN [42], Slow-only [14], SlowFast [14], VideoMAE [43], and TubeR [20].
It can be observed from Table 7 that our method achieves the highest mAP, and TubeRAPT also
exhibits a significant advantage in terms of parameter count compared to other networks.

Table 7: Vertical comparison table of model performance

Model Backbone Pre-train Parameter mAP

ACRN Res-50 Kinetics-400 92.08 M 31.18
Slow-only Res-50 Kinetics-400 31.66 M 34.72
SlowFast Res-50 Kinetics-400 33.67 M 37.39
VideoMAE ViT-Base Kinetics-400 86.24 M 38.13
TubeR CSN-50 Kinetics-400 74.45 M 63.55
TubeR CSN-152 AVA v2.2 90.46 M 66.91
TubeRAPT CSN-152 CLA 108.42 M 68.44

4.3.5 Visualization

As shown in Fig. 11, the current abnormal action captured in the video frame is sniffing chemicals.
Both TubeR and TubeRAPT accurately identify the human body positions, but TubeR shows a
deviation in class prediction for the abnormal action, incorrectly classifying it as drinking water action,
which bears similarity to the sniffing chemicals action in appearance, as shown in Fig. 11a.

In contrast, as depicted in Fig. 11b, TubeRAPT correctly predicts the abnormal actions of the
two individuals. For the target selected in the green box, its action closely resembles drinking water,
thus TubeRAPT assigns a high confidence of 0.13, which is significantly higher than the blue-boxed
target. This difference indicates the introduction of the APT module, enabling TubeRAPT to not only
accurately learn the correct classification of abnormal actions but also understand subtle similarities
between different actions.
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(a) Detection using TubeR (b) Detection using TubeRAPT

Drink Water: 0.986

Drink Water: 0.994

Smell Reagent: 0.014

Smell Reagent: 0.004

Smell Reagent: 0.997

Smell Reagent: 0.870

Drink Water: 0.003

Drink Water: 0.130

Figure 11: Detection results for TubeR and TubeRAPT. (a) Detection using TubeR, (b) Detection
using TubeRAPT

As shown in Fig. 12, the TubeRAPT network successfully detects 12 classes of abnormal actions.
Panels (a) to (c) display the detection results from viewpoint 1 of Scene A in the CLA dataset, while
(d) to (f) present the results from viewpoint 2 of the same scene, and (g) to (i) depict the results from
viewpoint 3 of Scene A. Panels (j) and (k) show the results from viewpoint 1 of Scene B, while (l)
illustrates the results from viewpoint 2 of Scene B. It is noteworthy that the action categories and
target box predictions in each subfigure are accurate. Fig. 12 fully demonstrates the outstanding
generalization ability of the TubeRAPT network, showcasing its strong adaptability to different scenes
and viewpoints.

(a) Sleep (b) Eat Something (c) Drink Water

(d) Sit and Play with Mobile Phone (e) Walk and Play with Mobile Phone (f) Smell Reagent

Figure 12: (Continued)
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(j) Run (k) Throw Something (l) Jump

(g) Aspirate the Pipette with Mouth (h) Blow Out the Alcohol Lamp with Mouth (i) Smoke

Figure 12: TubeRAPT prediction results display for the 12 types of abnormal actions. (a) Sleep, (b)
Eat Something, (c) Drink Water, (d) Sit and Play with Mobile Phone, (e) Walk and Play with Mobile
Phone, (f) Smell Reagent, (g) Aspirate the Pipette with Mouth, (h) Blow Out the Alcohol Lamp with
Mouth, (i) Smoke, (j) Run, (k) Throw Something, (l) Jump

As illustrated in Fig. 13, each query in the TubeRAPT network corresponds to a response in the
final layer decoder attention matrix, reflecting the focus of attention while processing input data. It
is evident from the decoder’s focus during the input data processing that it successfully identifies the
position of each person and accurately classifies their action. Specifically, the first query identifies
the action of throwing objects, the fourteenth query identifies the action of eating, and the fifteenth
query identifies the action of walking while using a mobile phone. This result fully demonstrates the
TubeRAPT network’s capability to accurately learn and comprehend video content. Further analysis
of the attention matrix reveals that the TubeRAPT network can predict accurate action categories
and target localization through its classification and regression heads. This not only further validates
the effectiveness and accuracy of the TubeRAPT network in detecting abnormal action tasks but also
demonstrates the network’s deep understanding of input data, enabling it to extract key information
and accurately classify and localize it.

Query: 1 Query: 14 Query: 15

Throw Something Eat Something Walk and Play with Mobile Phone

Figure 13: Heatmap of TubeRAPT query results
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These visualized results not only highlight the robust performance of the TubeRAPT network but
also enhance understanding of the network’s interpretability.

5 Conclusion

This paper proposes an innovative TubeRAPT network based on the TubeR method framework
and elaborates on the training strategies for the APT module and TubeRAPT network. The method
proposed in this paper not only detects abnormal acntion but also classifies it into 12 different types
of anomalies. Through ablation experiments, this study reveals the Adapter’s significantly greater con-
tribution compared to the prefix within the APT module and finds that their combination is superior
to their individual application. Additionally, minimal impact of ACA on the mAP performance of the
TubeRAPT network is observed. Furthermore, experimental explorations into different architectures
of the Adapter indicate that both serial and parallel architectures within the Adapter employ residual
connections, resulting in insignificant performance differences.

To enhance the processing speed of the TubeRAPT network, the ACA module is introduced.
Experimental findings suggest that when the hash round is set to 32, the TubeRAPT network achieves
the optimal balance between speed and performance. Under this configuration, TubeR’s performance
slightly decreases, while TubeRAPT’s performance marginally improves. Further horizontal compar-
ative experiments demonstrate a 1.53% performance improvement of the TubeRAPT network over
the TubeR network.

By introducing the APT module and ACA, the TubeRAPT network achieves significant improve-
ments in both performance and speed. These achievements not only provide new perspectives and
methods for anomaly detection in laboratory scenarios but also contribute valuable insights for further
improvements and optimizations of deep learning models.
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