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ABSTRACT

In this paper, a feature interactive bi-temporal change detection network (FIBTNet) is designed to solve the problem
of pseudo change in remote sensing image building change detection. The network improves the accuracy of change
detection through bi-temporal feature interaction. FIBTNet designs a bi-temporal feature exchange architecture
(EXA) and a bi-temporal difference extraction architecture (DFA). EXA improves the feature exchange ability of
the model encoding process through multiple space, channel or hybrid feature exchange methods, while DFA uses
the change residual (CR) module to improve the ability of the model decoding process to extract different features
at multiple scales. Additionally, at the junction of encoder and decoder, channel exchange is combined with the
CR module to achieve an adaptive channel exchange, which further improves the decision-making performance
of model feature fusion. Experimental results on the LEVIR-CD and S2Looking datasets demonstrate that iCDNet
achieves superior F1 scores, Intersection over Union (IoU), and Recall compared to mainstream building change
detection models, confirming its effectiveness and superiority in the field of remote sensing image change detection.
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1 Introduction

Remote sensing change detection technology has broad applications in natural resource manage-
ment, land change surveys, and many other scenarios. It is deeply integrated into human economic
production and social life [1]. Early change detection methods generally used machine learning
methods that manually extracted features. Ozcan et al. [2] detected buildings in satellite images
through decision tree classifiers and morphological operations. They also identified building changes
in bi-temporal images. Feng et al. [3] used multiband temporal texture and one-class random forest
(OCRF) to detect changes in urban built-up areas. They improved change detection accuracy by
combining spectral and temporal texture features. Li et al. [4] effectively detected building damage in
the Dujiangyan urban area after the Wenchuan earthquake using one-class support vector machines
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(OCSFMs) combined with spectral and spatial features through object-level multitemporal classifi-
cation. Traditional machine learning methods rely on manual feature extraction, which is limited by
data quality and feature selection.

In recent years, deep learning has developed rapidly and has attracted the attention of many
scholars. Deep learning has shown significant performance improvements in remote sensing image
building change detection due to its ability to automatically learn features, better model generalization,
and robustness to noise and outliers. Among them, convolutional neural networks (CNNs) have
been extensively studied in building change detection because they can mine deeper and more robust
abstract image features [5–7]. Currently, Siamese network structures have been widely studied for
the characteristics of bi-temporal remote sensing image change detection. FC-Siam-Conc and FC-
Siam-Diff are two fully convolutional Siamese network architectures with skip connections [8]. To
better extract feature information from remote sensing images, backbones such as VGG-16 [6,9,10],
ResNet [11,12], and attention mechanisms [6], Chen et al. [12–14] have been continuously applied,
further enhancing the performance of these algorithms. In addition, the method of using dense skip
connections between the encoder and decoder has been proposed and applied, extracting clearly
defined change areas on season-varying bi-temporal remote sensing images in the CDD dataset [14].
Furthermore, a multitude of studies have revealed that the interaction between homologous and het-
erologous features significantly influences the model’s ultimate performance [11,15,16]. Fang et al. [11]
introduced a feature exchange mechanism on the basis of a Siamese neural network, mutually learning
the spatial and channel features of bi-temporal images, achieving better change detection performance.

However, the extraction of building change information from remote sensing images based on
these methods still faces the challenge of pseudo changes caused by changes in imaging conditions
such as seasons, weather, shadows, and sensor attitudes [17–20]. This paper introduces the feature
interactive bi-temporal change detection network (FIBTNet, Fig. 1), a new approach to mitigate the
adverse effects of pseudo changes in change detection. Here are the specific contributions:

(1) Base on bi-temporal Siamese encoder-decoder structure, we’ve introduced the feature interac-
tion mechanism. Bi-temporal feature interaction layers are integrated into both the encoding
and decoding processes. During the encoding process, a bi-temporal feature exchange archi-
tecture (EXA) is crafted with various feature exchange methods that focus on spatial, channel,
or a mix of both dimensions, and we’ve optimized the EXA’s structure for best performance.

(2) In the decoding process, multiple improved change residual (CR) modules constitute a bi-
temporal difference extraction architecture (DFA), where the elementwise difference branch
of the CR module applies a spatial attention mechanism to enhance the module’s ability to
extract semantic differences in bi-temporal features. Additionally, at the junction of encoder
and decoder, channel exchange is combined with the CR module to achieve an adaptive channel
exchange, further enhancing the performance of FIBTNet.

Finally, this paper also conducted extensive experimental evaluation of FIBTNet on multiple
building change detection benchmark datasets and compared it with other advanced methods (Fig. 2).
The experimental results show that FIBTNet has achieved significant performance improvement in the
building change detection task, validating the effectiveness and superiority of our algorithm.
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Figure 1: FIBTNet Architecture Diagram (1) Green squares denote feature exchange methods. ‘N’
denotes no exchange operation, ‘Mix’ denotes a mix exchange operation, and ‘C’ denotes a channel
exchange operation. (2) Purple squares denote CR modules. (3) Arrows with multiplication symbols
indicate two times upsampling. (4) Convn×n denotes convolution operations with a n × n kernel. (5)
The subtraction symbol indicates element-wise difference and taking the absolute value, while the
addition symbol indicates element-wise summation. (6) The dashed line indicates that the data is being
upsampled by a factor of two using bilinear interpolation. (7) df 1, df 2, and d represent the outputs of
the bi-temporal decoder and the CR module, respectively
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Figure 2: Model performance comparison in the LEVIR-CD dataset. The X-axis represents the
floating point operations (FLOPs)

2 Related Work
2.1 Deep Learning for Bi-Temporal Change Detection

In the task of remote sensing image change detection, the architecture of deep learning models
for bi-temporal change detection typically consists of two parts: the encoder and the decoder. These
methods can be mainly categorized as direct-classification structure, post-classification structure, and
Siamese structure. The direct-classification structure [13,14], also known as the two-channel structure,
focuses more on the decoder. It first fuses bi-temporal data into a single image and then inputs it
into a semantic segmentation algorithm to generate a change detection mask. During the fusion
process, various data preprocessing operations can be employed, with the most commonly used being
concatenation and change analysis methods. This requires the original images to be strictly spatially
aligned and may ignore the independence of features from the two temporal phases, leading to the loss
of key channel information.

In contrast, the post-classification structure [5,15,16] generates semantic segmentation results
for each temporal phase and calculates the difference, focusing more on encoding features of each
temporal phase. However, this method overly relies on the accuracy of the encoder and requires
strict spatial alignment of the original images. Siamese networks (using Siamese structure) consist of
two structurally identical neural sub-networks forming a coupled structure. These networks process
bi-temporal imagery by inputting the images into two separate neural networks that share the
same structure and weight parameters. Through weight sharing, the sub-networks extract equivalent
features. Currently, Siamese networks are one of the most widely used methods for such tasks. Many
researchers have improved upon the initial Siamese structure to enhance performance, designing
numerous models with higher accuracy by incorporating techniques such as spatial attention [7,9,12],
channel attention [9,13,14] or self-attention mechanisms [18,21], etc. Building on the research in
Siamese networks, this paper proposes a novel Siamese network for the extraction of building change
information from remote sensing VHR (very high resolution) imagery.

2.2 Feature Interaction

Feature interaction is a crucial component in multimodal algorithms, enhancing the richness of
information in feature maps from different modalities by fusing the information between them [16]. It
often employs co-attention mechanisms or cross attention to learn mutual information from different
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branches [22–25]. There is also feature interaction achieved through information exchange between
features, which is a lightweight and effective method. The earliest to perform information exchange
was Channel-Exchanging-Network (CEN) [15], which attempted to exchange channel feature maps of
different modalities before multimodal feature fusion, allowing important information to be shared
across modalities.

In the field of remote sensing image change detection, feature interaction methods have been
applied widely [6,11,13,26–28]. Fang et al. [11] specifically constructed spatial exchange and channel
exchange for the Siamese network encoder, enabling the sharing of change features between two
phases of remote sensing data, and allowing the model to better detect changes between the two
remote sensing images. Zhang et al. [26] allowed the model to capture correlations in the data more
comprehensively by performing feature exchange and mixing along spatial, channel, and amplitude
dimensions, and further optimized model performance by fusing information from two branches.
Jiang et al. [6] embedded CR modules layer by layer in the bi-temporal decoding process to achieve
multi-scale feature fusion, adapting to building changes of different resolutions and sizes. Yao et al. [13]
and others introduced a Squeeze-and-Excitation (SE) channel attention mechanism [29] to the CR
module, enhancing the sharing and communication of image information at different scales, and
effectively improving the precision of building change detection by assigning higher weights to
important features. These methods all contribute to the improvement of remote sensing change
detection model performance.

However, there is still room for improvement in the aforementioned methods. For instance,
Fang’s approach only employs spatial or channel exchange in certain neural network layers, which
limits the capacity for model information exchange. Yao’s method solely utilizes channel attention
mechanisms, failing to optimize the semantic extraction process in the elementwise difference branch.
Incorporating spatial attention mechanisms could effectively enhance feature extraction for tasks that
focus on spatial variations. Additionally, the methods of Jiang et al. [6,13] overlook the potential
for information exchange during the initial stages of feature fusion, which could further enhance the
model’s capabilities.

3 Methods
3.1 FIBTNet and FIBTEngine

We introduce a feature interactive bi-temporal change detection engine (FIBTEngine), which
is the baseline model for the feature interactive bi-temporal change detection network (FIBTNet).
FIBTEngine is designed with a bi-temporal encoder-decoder structure. The encoder uses ResNet as
the backbone, and the decoder is composed of upsampling and double convolution. Each layer in
the decoder concatenates the features from the corresponding layer in the encoder. On the basis of
FIBTEngine, FIBTNet introduced the feature interaction mechanism. In the encoding process of
FIBTNet, a bi-temporal feature exchange architecture (EXA) is made up of multiple spatial, channel,
or mixed feature exchange methods. In the decoding process, a bi-temporal difference extraction
architecture (DFA) is composed of multiple improved change residual (CR) modules. The architecture
diagram of the FIBTNet model is shown in Fig. 1.

The specific implementation process of FIBTEngine is as follows:

Assuming that the remote sensing images of two time points can be denoted as t1, t2 ∈ R
H×W×C,

when input into the bi-temporal encoder EEX , we obtain two sets of feature maps denoted as f1 and
f2. The decoder DDF decodes the information of the change area in the decoding process through
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upsampling, double convolution, and feature concatenation operations. This process is shown in
Eq. (1):

FIBTEngine (f1, f2) = Abs (DDF (f1) − DDF (f2)) (1)

f1 and f2 can be represented as Eq. (2):

f1 = EEX (t1), f2 = EEX (t2) (2)

Finally, we perform pixel-level classification based on the decoding results for change detection.
The encoder and decoder of FIBTEngine can flexibly embed different feature interaction modules.
All the configuration schemes of the interactive layers in FIBTEngine define the final FIBTNet. The
overall process of FIBTEngine can be represented by the following Eq. (3):

Output = σ (F (DDF (EEX (t1)), DDF (EEX (t2)))) (3)

Output represents the change mask generated by FIBTEngine, and F denotes the fusion and
classification layers. When the Siamese decoder EEX outputs feature map groups f1 and f2, we denote
the fusion of the upsampling and double convolution feature decoding results of the two time points
as FDE and the fusion of the output results of the bi-temporal interactive difference decoding module
(DFA) as FDFA; then, F can be specifically represented as Eqs. (4)–(7):

F (f1, f2) = FDE + FDFA (4)

FDE = (|Classify (f1) − Classify (f2) |) · ASP (5)

FDFA = Classify
(∑n

i=1
xi

(
CR

(
f 1

i , f 2
i

)))
(6)

Output = σ (FDE + FDFA) (7)

Classify maps the feature map group to the category space. ASP is responsible for spatially
recalibrating the features. After n decoding layers, CR is the CR module for each layer, whose
outputs are summed and participate in the classification decision along with the output of FDE. In
the FIBTEngine, n is set to 4.

Deep convolution performs convolution operations on each input channel separately. The con-
volution kernel of each channel focuses on only the information of that channel, not all channels,
which helps reduce the number of parameters and mitigate overfitting. Pointwise convolution follows
deep convolution, combining the results of deep convolution to increase the feature map depth. This
step is similar to standard convolution operations but involves only 1 × 1 convolution kernels, so
the computational cost is relatively small. FIBTEngine replaces the convolution operations of double
convolution with depthwise separable convolution to reduce the risk of overfitting. For the loss
calculation of the model, FIBTEngine adopts cross-entropy (CE) loss. The formula for calculating
the CE loss is shown in Eq. (8):

CE
(
y, ŷ

) = −
∑N

i=1

∑C

j=1
yij log

(
ŷij

)
(8)

where N represents the number of samples, C represents the number of categories, yij indicates the
true label of the ith sample belonging to the jth category, and ŷij indicates the probability of the model
predicting that the ith sample belongs to the jth category.
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3.2 Bi-Temporal Feature Exchange Architecture

The bi-temporal feature exchange architecture (EXA) is designed to exchange and encode bi-
temporal features. Fang et al. [11] proposed spatial exchange and channel exchange modules for
efficiently addressing pseudo changes at different time points and embedded one spatial exchange and
two-channel exchanges in the 2nd, 3rd, and 4th downsampling layers of ResNet, respectively. Based
on the above research, this paper embeds Mix change in Layer 3 and channel exchange in Layer 4 in
ResNet downsampling, as shown in Fig. 1.

In EXA, the Mix exchange method is used, which adopts a feature exchange mechanism in the
encoding stage that can collaborate with each other in the same layer, i.e., it allows Spatial exchange
and Channel exchange to be embedded in the same layer. Specifically, the Spatial exchange method
exchanges the features of remote sensing images of two time phases along the spatial dimension, based
on which the Channel exchange method exchanges the features again along the channel dimension,
with a step size of 1 between the exchanged pixels in the feature exchange, as shown in Fig. 3.

Figure 3: The processes of mixed exchange when the exchange stride is 1

3.3 Bi-Temporal Difference Extraction Architecture

The bi-temporal difference extraction architecture (DFA) is a new architecture adopted by
FIBTNet in the decoding process, aiming to enhance the perception of difference features in the
decoding process. DFA consists of multiple CR modules, which, together with upsampling and double
convolution, form the decoding process. Each CR module at each layer is mainly responsible for
producing differential decoding results, which are then added to the results from the previous CR
module. The final outcome is integrated and classified with the feature maps output by the bi-temporal
decoder, as depicted in the overall figure (Fig. 1).

Each CR module can be divided into two branches, namely, the elementwise concatenation branch
and the elementwise difference branch, which are weighted by Squeeze-and-Excitation (SE) channel
attention and spatial attention, respectively. The structure of CR module proposed in this paper is
shown in Fig. 4.

Elementwise concatenation branch is responsible for channel weighting of the concatenation
results of two time-phase feature maps, f1 and f2. Finally, they are compressed into a new feature
map through a convolution operation with a kernel size of 1 × 1. We reposition SE channel attention
before the convolution operation to ensure that the channel information covered by channel weighting
is richer. In the elementwise difference branch, the spatial attention mechanism is used to recalibrate
the difference information distributed in the spatial dimension. Ultimately, the processed results of
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both branches are added together to obtain the difference decoding result of the CR module. This can
be represented as Eq. (9):

OutputCR = ASP · Interactdiff (f1, f2) + ASE · Interactfuse (f1, f2) (9)

ASP represents spatial attention. ASE represents the SE channel attention. Interactdiff and Interactfuse

represent the operations of the elementwise difference and elementwise concatenation branches,
respectively, excluding the recalibration operation.

Figure 4: CR module architecture. The elementwise concatenation branch includes a SE channel
attention (top). The elementwise difference branch includes a spatial attention mechanism (bottom)

3.4 Encoding and Decoding Junction

Here, it should be especially elaborated that at the encoding and decoding junction, specifically
after the first CR module in the decoding process, a channel exchange module is integrated (Fig. 1).
This module, guided by the attention weights produced by the CR module. The attention weights
determine the channel positions to be exchanged, thereby improving the model’s focus on the
distinctive features of building changes (Fig. 5).

We believe that in the CR module, the channel attention of the elementwise concatenation branch
mainly focuses on feature information related to changes. Since this channel attention simultaneously
calibrates the channels of features from two time points, we further assume that for one of the time
points, the positive and negative weighting of the attention mechanism strengthens and weakens the
features of the changed and unchanged areas, respectively. The attention weighting from different time
points is unique. Therefore, taking the intersection of the areas of interest for the two time points is
equivalent to a voting process, which can enrich the model’s perspective on the diversity of changed
and unchanged areas. The above logic can be represented as Eq. (10):

Outputi =
{

True, A1
i ∧ A2

i

False, else (10)

A1
i and A1

i represent the binary values corresponding to the two time points’ channel attention
after binarization at the channel position. We use a threshold method for binarization and set the
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threshold to 0.5. Then, Outputi represents the processed binary value, which determines whether the
two time points need to exchange feature channels at the channel position i. The pseudocode for
channel exchange based on CR module channel attention is shown in Table 1.

Figure 5: Channel exchange with attention from the first CR module

Table 1: Pseudocode of channel exchange with attention from the first CR module

PyTorch-like code

import torch
import torch.nn as nn
class ChannelAttnExchange(nn.Module):

def __init__(self, threshold = 0.5):
super().__init__()
self.threshold = threshold

def forward(self, x1, x2, attn):
N, C, H, W = x1.shape

(Continued)
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Table 1 (continued)

PyTorch-like code

exchange_mask = attn > self.threshold
exchange_mask = exchange_mask.squeeze()
exchange_mask1, exchange_mask2 = torch.chunk(exchange_mask, 2, dim = 1)
exchange_mask = exchange_mask1 | exchange_mask2
out_x1, out_x2 = torch.zeros_like(x1), torch.zeros_like(x2)
out_x1[∼exchange_mask, ...] = x1[∼exchange_mask, ...]
out_x2[∼exchange_mask, ...] = x2[∼exchange_mask, ...]
out_x1[exchange_mask, ...] = x2[exchange_mask, ...]
out_x2[exchange_mask, ...] = x1[exchange_mask, ...]
return out_x1, out_x2

3.5 Other Model Details

3.5.1 Squeeze and Excitation

Squeeze-and-Excitation (SE) [29] can explicitly model the interchannel dependencies of con-
volutional feature maps, thereby enhancing the model’s expressive power. The core steps of SE in
modeling this relationship are divided into two parts: “squeeze” and “excitation”. The “squeeze”
operation abstracts and compresses the input features through global average pooling, obtaining
global information for each channel; the “excitation” operation then recalibrates the channels using a
small network consisting of two network layers (i.e., an encoding layer and a decoding layer) to obtain
the weights for each channel. The intensity of “excitation,” or the strength of channel compression,
can be controlled by the ratio parameter. Generally, the higher the intensity is, the better the accuracy;
however, the complexity of training time is also greater.

3.5.2 Spatial Attention Mechanism

The convolutional block attention module (CBAM) [30] is an attention mechanism that introduces
both channel and spatial attention to weight the feature channels and spatial dimension. The spatial
attention mechanism in this paper is inspired by CBAM and uses a convolutional kernel of size 7 to
assist pooling to generate spatial dimension attention weights.

3.5.3 Segmentation Head

The classification results output by the segmentation head of FIBTNet adopt two-channel direct
classification rather than probability maps after the interaction of bi-temporal features. Probability
maps require a binarization process, which can introduce unnecessary factors into the experiment,
such as traditional algorithms such as Otsu’s or thresholding methods. Two-channel classification does
not involve this process and can be directly used to calculate losses.

4 Experiments

To verify the effectiveness of the proposed FIBTNet, we conducted experimental evaluations on
public datasets (Fig. 8) and compared them with mainstream change detection methods (Tables 3
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and 4). Unless otherwise specified, the default backbone for FIBTNet is ResNet18, the ratio parameter
for SE channel attention is set to 16, and FDAF is disabled.

4.1 Datasets

We conducted experiments on the following two benchmark datasets:

(1) LEVIR-CD [12]: LEVIR-CD is a large-scale aerial image dataset for detecting changes in
buildings that contains 637 high-resolution VHR (0.5 m/pixel) image pairs. Each image pair
is 1024 × 1024 pixels in size. The period of the image pairs ranges from 5 months to 6 years.
The bitemporal images in LEVIR-CD are from 20 different regions that sit in several cities
in Texas of the US, including Austin, Lakeway, Bee Cave, Buda, Kyle, Manor, Pflugervilletx,
Dripping Springs, etc. All images in the LEVIR-CD dataset were obtained from Google Earth
(GE). The ratio of the training, validation, and testing sets is 7:1:2. Significant seasonal and
illumination changes were introduced into the dataset.

(2) S2Looking [17]: S2Looking contains 5000 VHR image pairs (0.5–0.8 m/pixel). Each image pair
is 1024 × 1024 pixels in size. The data acquisition covers a wide range of locations with varying
large off-nadir angles; the annotated subjects are mostly rural buildings throughout the world.
All images were obtained from satellites such as GaoFen (GF), SuperView (SV), and BeiJing-2
(BJ-2). The ratio of the training, validation, and testing sets is 7:1:2.

General Information of the two benchmark datasets is summarized in Table 2 and Examples of
annotated samples are displayed in Fig. 6.

Table 2: General Information of the two benchmark datasets used for experiments

Dataset Time span Challenge Pairs Size Resolution

LEVIR-CD 5–14 years
Seasonal changes

637 1024 × 1024 0.5 m
Illumination changes

S2Looking 5 years
Viewing angles

5000 1024 × 1024 0.5–0.8 mIllumination changes
Complex rural images

Image 1 Image 1

Image 2 Image 2

Ground 
Truth

Ground 
Truth

Update Decline No change Update Decline No change
LEVIR-CD S2Looking

Figure 6: Examples of annotated samples. The chronological order is from Image 1 to Image 2
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4.2 Experimental Environment

All experiments were conducted on a workstation equipped with an NVIDIA A40 graphics card
with 48 GB of memory, and the batch size was set to 8. The experimental environment was built
using Cuda 12.0, Python 3.9, and PyTorch 2.2.2. Common data augmentations for temporal data
were applied, including (1) random flipping, (2) random cropping, and (3) photometric distortion.
During the training phase, we used the AdamW optimizer with the weight decay set to 0.05 and an
initial learning rate of 0.001. Considering the difficulty of the two benchmark datasets, we allocated
40k and 80k training iterations for the LEVIR-CD and S2Looking datasets, respectively.

4.3 Comparative Experiments

We compared our method with other advanced change detection methods (Tables 3 and 4),
covering both CNN and transformer algorithm architectures:

Table 3: Comparison of FIBTEngine and FIBTNet with other mainstream SOTA models in two
datasets. The recorded values include F1, IoU and recall. Bolded text indicates the highest precision.
The “∗” symbol represents the re-implemented results. Color convention: best, and 2nd-best for
comparison models

Method LEVIR-CD S2Looking

F1 IoU Recall F1 IoU Recall

FC-EF 83.40 71.53 80.17 7.65 N/A 8.95
FC-Siam-Diff 86.31 75.92 83.31 13.54 N/A 18.52
FC-Siam-Conc 83.69 71.96 76.77 13.19 N/A 15.76
DTCDSCN 87.67 78.05 86.83 57.27 N/A 49.16
STANet 87.26 77.40 91.00 57.27 15.88∗ 56.49
IFN 88.13 78.77 82.93 64.13 46.64∗ 61.95
SNUNet 88.16 78.83 87.17 63.19 42.66∗ 56.34
BIT-CD 89.31 80.68 89.37 63.76 42.96∗ 55.56
ChangeFormer 90.40 82.48 88.80 63.39 48.81∗ 56.13
ChangeMamba 90.46∗ 82.59∗ 89.36∗ 56.73∗ 39.60∗ 50.13∗
FIBTEngine 91.09 83.63 88.25 62.86 45.84 54.08
FIBTNet 91.96 85.12 90.64 68.60 52.21 61.36

FC-EF, FC-Siam-Conc, and FC-Siam-Diff [8]: FC-EF is based on the UNet model, which directly
fuses two images. FC-Siam-Conc and FC-Siam-Diff are Siamese network extensions of FC-EF that
process image pairs through connection and difference methods, respectively.
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Table 4: Comparison of FIBTEngine and FIBTNet with other mainstream SOTA models. The
recorded values include the parameters (Param), the floating point of operations (FLOPs) and
backbone. The input has a resize of 256 × 256 × 3 to calculate the FLOPs. The “∗” symbol represents
the results calculated in this paper

Method Param (M) FLOPs (G) Backbone

FC-EF 1.35 3.24∗ –
FC-Siam-Diff 1.54 4.39∗ –
FC-Siam-Conc 1.35 4.99∗ –
DTCDSCN 41.07 7.21 SE-Res34
STANet 16.93 6.58 ResNet18
IFN 35.99∗ 78.98∗ VGG16
SNUNet 12.03 27.44 –
BIT-CD 3.55 33.89 ResNet18
ChangeFormer 3.85∗ 2.45∗ MiT-b0
ChangeMamba 75.23∗ 23.53∗ VMamba-Base
FIBTEngine 11.74∗ 5.85∗ ResNet18
FIBTNet 13.26∗ 6.40∗ ResNet18

DTCDSCN [7]: A dual-task constrained deep Siamese convolutional network model (DTCD-
SCN) was proposed for building change detection in remote sensing images. The model combines a
change detection network and a semantic segmentation network, optimizing feature representation
through a dual attention module (DAM) and addressing the sample imbalance problem with an
improved change detection loss (CDL).

STANet [12]: A neural network (STANet) based on spatial-temporal attention mechanisms
for remote sensing image change detection that introduced a new large-scale dataset, LEVIR-CD.
Through a self-attention module, STANet can capture spatial-temporal dependencies, improving the
accuracy and robustness of change detection.

IFN [9]: A deeply supervised image fusion network (IFN) for detecting changes in high-resolution
remote sensing images from different times. The IFN uses a two-stream architecture to extract features
and attention modules to improve feature fusion, with deep supervision enhancing the training process.

SNUNet [14]: A densely connected Siamese network for high-resolution remote sensing image
change detection that improves localization accuracy and computational efficiency through compact
information transfer between the encoder and decoder and an ensemble channel attention module
(ECAM).

BIT-CD [18]: An efficient remote sensing image change detection method based on transformers
that represents images as a small number of semantic tokens and using a transformer encoder to model
the context in a compact token-based spatiotemporal domain and significantly improves the accuracy
and efficiency of change detection.

ChangeFormer [21]: A novel transformer-based Siamese network for change detection in remote
sensing images. It combines a hierarchical transformer encoder with an MLP decoder to efficiently
capture multi-scale details, achieving improved performance over existing convolutional network-
based approaches.
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ChangeMamba [31]: A remote sensing change detection framework using the Mamba architecture
for binary, semantic, and building damage detection tasks. It shows improved performance and
robustness over CNN and Transformer models.

Table 3 and Fig. 7 clearly demonstrates that our proposed FIBTNet performs well across various
metrics. In the LEVIR-CD dataset, FIBTNet achieved the highest scores in terms of F1, IoU, and
Recall, reaching 91.96, 85.12, and 90.64, respectively, which indicates that FIBTNet has a high level of
accuracy, intersection-over-union, and detection sensitivity in change detection tasks. Particularly, the
performance of IoU and Recall is especially remarkable, suggesting that FIBTNet not only excels in
accurately predicting change areas but also maintains a high precision while minimizing the omission
of real changes. In the S2Looking dataset, FIBTNet’s F1, IoU, and Recall are 68.60, 52.21, and
61.36, respectively, also ranking the best among all models. This further confirms the comprehensive
performance of FIBTNet in change detection tasks. Fig. 7 provides a more intuitive view of the
differences between various comparison models. To enhance clarity, we have employed a diverse
palette of colors to delineate the various outcomes: correct predictions are highlighted in green, missed
detections in red, and false positives in blue. A meticulous analysis reveals that our model, underpinned
by FIBTNet, outperforms other comparative approaches in several key areas. Specifically:

Image 1Image 2 Ground
Truth

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 7: Visualization results of different methods on the LEVIR-CD (I) and S2Looking (II) test
sets. (a) IFN. (b) BIT-CD. (c) ChangeFormer. (d) ChangeMamba. (e) FC-Siam-Diff. (f) STANet. (g)
SNUNet. (h) Ours. Color convention: correct predictions, missed detections, and false positives

(1) Precision in Dense Changes: Our model exhibits exceptional precision in forecasting dense
changes, as exemplified in the first row of Fig. 7 (the test data file is named “test_30”). For



CMC, 2024, vol.80, no.3 4635

instance, while some methods may overlook or erroneously flag changes in residential buildings
due to the intricacies of the scene, our FIBTNet model consistently provides a more thorough
and precise detection outcome.

(2) Mitigation of False Positives: The model excels in curtailing false positives, as demonstrated in
the second row of Fig. 7 (the test data file is “test_76”). This proficiency stems from the model’s
capacity to discern spurious changes and reduce its susceptibility to such anomalies. For
example, in Fig. 7a, many traditional methods mistakenly identify areas with altered roof paint
color as instances of building alterations. Conversely, our FIBTNet model and ChangeFormer
adeptly discern these inaccuracies.

(3) Recognition of Non-Semantic Changes: The FIBTNet model skillfully identifies and excludes
non-semantic changes induced by shifts in illumination or surface characteristics, as depicted
in the fifth row of Fig. 7 (the test data file is “1519”). The model’s accurate pinpointing of
non-semantic changes in buildings within Fig. 7 is a testament to the rich contextual insights
it acquires through spatial and channel exchanges, as well as their combined impact. This
nuanced comprehension enables a more precise portrayal of authentic semantic shifts, in
contrast to STANet, which displays an excessive level of sensitivity.

Figure 8: Visualization of training loss and validation metrics on LEVIR-CD

Additionally, in terms of model parameters and computational complexity, FIBTNet also shows
high efficiency with a parameter count of 13.26 M and FLOPs of 6.40 G (Table 4). Although its
parameter count and computational complexity are slightly higher than those of the FIBTEngine,
they remain within a reasonable range and are significantly better than some other models with larger
parameter counts and computational complexities, such as IFN and DTCDSCN.

In the experiment exploring advanced loss functions (Table 5), the performance of the FIBTNet
model was affected differently by the Focal loss and Dice loss. When using the Focal loss, the Recall
on the LEVIR-CD dataset slightly decreased to 90.30, indicating a slight reduction in the model’s
sensitivity to change detection. A higher Recall value means that the model is sensitive in capturing
actual changes, that is, it tries to miss as few changes as possible. The F1 score and the Intersection
over Union (IoU) value slightly decreased at the same time, to 91.71 and 84.69, respectively, indicating
that the overall accuracy and the IoU ratio have been slightly compromised. In the S2Looking dataset,
the Focal loss also decreased the Recall to 59.03, and the F1 score and IoU value were lower as well,
at 64.26 and 47.34, respectively.

When using the Dice loss, the F1 score and the IoU on the LEVIR-CD dataset reached their
highest, at 91.99 and 85.16, respectively, while the Recall also remained at a high level of 90.64, showing
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a good overall accuracy and IoU ratio. The F1 score is the harmonic mean of precision and recall,
reflecting the model’s accuracy comprehensively, and the IoU measures the ratio of the intersection
to the union of the predicted results and the actual results, which better reflects the model’s overall
accuracy. In the S2Looking dataset, the Dice loss did not improve the F1 score and IoU as previously
stated; instead, it resulted in a decrease in all three metrics compared to the default CE (Cross-Entropy)
Loss. The F1 score and IoU decreased to 63.72 and 46.75, respectively, and the Recall also dropped
to 55.97.

Table 5: The performance comparison of FIBTNet with more advanced loss functions

Loss function LEVIR-CD S2Looking

F1 IoU Recall F1 IoU Recall

CE Loss 91.96 85.12 90.64 68.60 52.21 61.36
Focal Loss 91.71 84.69 90.30 64.26 47.34 59.03
Dice Loss 91.99 85.16 90.64 63.72 46.75 55.97

The Focal loss consistently decreases Recall across both datasets. However, this leads to a decrease
in Recall, F1 and IoU, reflecting a trade-off in overall accuracy and precision. On the other hand,
Dice Loss maintains a balance of high F1 and IoU in the LEVIR-CD dataset, indicating a good
overall performance. In contrast, in the S2Looking dataset, Dice Loss does not improve performance
but rather results in lower scores across F1, IoU, and Recall compared to CE Loss, highlighting
the need to carefully consider the choice of loss function based on the dataset characteristics and
desired outcomes.

4.4 Ablation Experiments

We conducted ablation experiments based on LEVIR-CD to prove the points and assumptions
made in this paper. Fig. 9 visually demonstrates the differences between FIBTNet and the feature-
interaction-free FIBTEngine. In Fig. 9, we utilize the visualization of change detection results to
demonstrate the conclusions of the ablation study. Different colors represent different types of
outcomes: correct predictions are indicated in green, false positives in blue, and false negatives in red.
Upon observation, the FIBTNet exhibits the following advantages over the feature-interaction-free
FIBTEngine:

(1) FIBTNet is capable of generating more complete predictive results when dealing with large-
area changes, as shown in the second and fifth rows of Fig. 9. FIBTNet can decode features at
multiple scales, allowing for more accurate detection of large building change areas.

(2) FIBTNet has better discernment of pseudo-changes, reducing the areas of building changes
that are misidentified.

4.4.1 Position of Feature Exchange Mechanisms

This paper explores the location of mix exchange and channel exchange in different layers.
Literature [11] suggested using spatial exchange in the shallow layer of the network and using channel
exchange in the deep layer. In this paper, four configurations of mix exchange and channel exchange
are given, respectively, and experimental comparison is carried out.
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Image 1 Image 2 Ground
Truth

FIBT
Engine FIBTNet Image 1 Image 2 Ground

Truth
FIBT

Engine FIBTNet

LEVIR-CD S2Looking

Figure 9: Comparison of the inference results of FIBTNet and FIBTEngine on the LEVIR-CD and
S2Looking datasets. Color convention: correct predictions, missed detections, and false positives

The experimental results (Table 6) indicate that the embedding position of the mixed exchange in
the third layer provides the most significant FIBTNet improvement. Additionally, the performance
improvement performance improvement achieved by moving the mixed exchange to shallower or
deeper layers has certain characteristics. When the mixed exchange is embedded in the first layer,
the spatial exchange within the mixed exchange utilizes the highest spatial resolution to enhance
performance; however, the magnitude of this performance improvement is not substantial. To confirm
this idea, we attempted to embed the mixed exchange in the second layer, and there was no significant
performance loss. Conversely, when the mixed exchange is embedded in the last layer, where the
channel resolution is the highest, the performance gain is more pronounced, once again confirming
that the scale range adaptable to channel exchange is broader than that adaptable to spatial exchange.
Therefore, when the mixed exchange is moved to the shallower third layer, more scales are involved
in the channel exchange, which is sufficient to compensate for the performance loss of the spatial
exchange in the deeper network layers and further leverage the role of the channel exchange in the
feature exchange mechanism.

Table 6: Position of feature exchange methods. The letter ‘C’ indicates that a channel exchange is
embedded in that layer. The letter ‘S’ indicates that a spatial exchange is embedded in that layer. When
both spatial exchange and channel exchange are embedded within the same layer, the corresponding
layer is denoted as ‘Mix’. By default, the channel exchange at the junction of the encoding and decoding
processes includes attention from the CR module

Position of feature exchange methods F1

Layer 1 Layer 2 Layer 3 Layer 4

Mix 91.79
Mix C 91.88

Mix C C 91.67
Mix C C C 91.61
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4.4.2 General Configuration

We further designed ablation experiments to determine the significance of the mixed exchange of
EXA and the channel exchange with attention of DFA. Based on the experimental results (Table 7), we
found that the collaboration between the spatial exchange and the channel exchange, along with the
broader scale range of action of the channel exchange, can achieve a greater performance enhancement
for FIBTNet.

Table 7: General Configuration of ‘CA’ and ‘Mix’. ‘CA’ indicates whether the channel exchange from
the encoding process to the decoding process allows the attention from the CR module to participate.
‘Mix’ indicates whether spatial and channel exchange are simultaneously embedded in Layer 3

General
configuration

F1 Recall IoU

Mix CA

� 91.71 90.43 84.68
� 91.79 (+0.08) 90.36 84.83

� � 91.88 90.55 84.98

We also introduced SE channel attention from the CR module for the channel exchange at the
encoding and decoding junction. To verify the assumptions made in this paper about the significance
of this attention weight, we conducted ablation experiments on the introduction of this attention
weight to test the local cooperation effect between DFA and EXA, as well as the ability of the
CR module attention weight to increase channel exchange. The performance changes recorded
in the Table 7 indicate that introducing this attention mechanism improves the performance of
FIBTNet significantly.

4.4.3 DFA Configuration

DFA utilizes a combination of upsampling and double convolution to introduce CR modules
that span multiple scales, allowing the decoder to mine feature information across a broader range of
scales for change extraction. To confirm the ability of the CR module to enhance the scale diversity
of the FDAF, we conducted ablation experiments on the CR module while maintaining the FDAF.
The experimental results (Table 8) demonstrate that the CR module can improve the performance of
FIBTNet significantly when FDAF is present.

Table 8: Tests the gain effect of the CR module on FIBTNet while retaining the FDAF

DFA configuration F1 Recall IoU

CR

91.74 91.17 84.74
� 91.96 (+0.22) 90.63 85.12

Additionally, the DFA added a spatial attention mechanism to the elementwise difference branch
of each CR module to enhance FIBTNet’s understanding of difference features in the spatial
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dimension. The experimental results (Table 9) demonstrated that the spatial attention mechanism
improved the performance of the CR module significantly.

Table 9: Tests the gain effect of adding spatial attention to the elementwise difference branch of the
CR module

CRSP F1 Recall IoU

91.88 91.12 84.99
� 91.96 (+0.08) 90.64 85.12

5 Conclusion

Based on a bi-temporal Siamese encoder-decoder structure, this study introduces a novel feature
interactive bi-temporal change detection network (FIBTNet) by incorporating innovative bi-temporal
feature exchange architecture (EXA) and bi-temporal difference extraction architecture (DFA). Exper-
imental results demonstrate that FIBTNet has achieved significant performance improvements on
the LEVIR-CD and S2Looking benchmark datasets. Compared to other mainstream remote sensing
building change detection methods, FIBTNet has shown better performance in evaluation metrics such
as F1 score, IoU, and Recall, while also having lower computational requirements. Ablation studies
further confirm the effectiveness of the proposed network structure, especially the Mix exchange
configuration in EXA and the spatial attention mechanism in the CR module of DFA, both of which
play a key role in enhancing network performance. Additionally, the channel exchange with attention
mechanism at the encoding and decoding junction. By utilizing the SE Channel Attention within the
CR module to assign higher weights to important features, the precision of building change detection
has been effectively enhanced. This was clearly confirmed in the ablation study.

FIBTNet offers a new technical approach in the field of remote sensing building change detection,
and its innovative structure lays the foundation for further improving accuracy and efficiency. We
anticipate that FIBTNet will play a greater role in practical applications in the future and provide
valuable references for research in related fields.
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