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ABSTRACT

As neural radiance fields continue to advance in 3D content representation, the copyright issues surrounding 3D
models oriented towards implicit representation become increasingly pressing. In response to this challenge, this
paper treats the embedding and extraction of neural radiance field watermarks as inverse problems of image
transformations and proposes a scheme for protecting neural radiance field copyrights using invertible neural
network watermarking. Leveraging 2D image watermarking technology for 3D scene protection, the scheme
embeds watermarks within the training images of neural radiance fields through the forward process in invertible
neural networks and extracts them from images rendered by neural radiance fields through the reverse process,
thereby ensuring copyright protection for both the neural radiance fields and associated 3D scenes. However,
challenges such as information loss during rendering processes and deliberate tampering necessitate the design of
an image quality enhancement module to increase the scheme’s robustness. This module restores distorted images
through neural network processing before watermark extraction. Additionally, embedding watermarks in each
training image enables watermark information extraction from multiple viewpoints. Our proposed watermarking
method achieves a PSNR (Peak Signal-to-Noise Ratio) value exceeding 37 dB for images containing watermarks
and 22 dB for recovered watermarked images, as evaluated on the Lego, Hotdog, and Chair datasets, respectively.
These results demonstrate the efficacy of our scheme in enhancing copyright protection.
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1 Introduction

Implicit Neural Representation (INR), also known as coordinate-based representation, offers a
method of parameterizing various signals. Unlike traditional discrete signal representations, implicit
neural representations characterize a signal as a continuous function. Among the applications of
INR, Neural Radiance Fields (NeRF) [1] stand out as a prominent example. NeRF represents a deep
learning model for 3D implicit spatial modeling, utilizing neural networks to implicitly capture the
color and density functions of each point within a 3D scene. Ongoing research in NeRF focuses on
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enhancing the quality of 3D content representation [2–5], accelerating rendering processes [6–8], and
reconstructing sparse views [9–12]. As NeRF advances in 3D content representation, the need for
addressing copyright protection concerns surrounding implicitly representation-oriented 3D models
of neural radiance fields has become increasingly urgent.

In the future, individuals will likely share their captured 3D content online, akin to sharing images
and videos, necessitating measures to protect the copyrights of NeRF and 3D scenes shared online to
prevent unauthorized reposting. StegaNeRF [13] pioneered the fusion of the neural radiance field with
information hiding. Employing a two-step training approach, it embeds secret information within
non-essential weight parameters of the network, ensuring that images rendered from NeRF carry
watermarking information, subsequently extracted using a dedicated network. However, StegaNeRF’s
direct alteration of network parameters compromises NeRF’s ability to represent 3D content, thus
diminishing rendered image quality. Given the growing importance of retrieving information from 2D
renderings of 3D models in domains like gaming, film production, and graphic design, maintaining
the quality of rendered images becomes paramount.

To tackle this issue, we propose a novel approach aimed at safeguarding the copyright of the
neural radiation fields through the application of a robust watermarking technique utilizing reversible
neural networks. The envisioned application scenarios of this approach involve various instances. For
instance, Alice captures images of a 3D scene through photography, embeds watermarks into these
images, and subsequently utilizes a Neural Radiance Fields (NeRF) model for rendering the scene.
She then disseminates both the NeRF model and the rendered 3D scene online for public enjoyment.
However, if Bob, without Alice’s authorization, appropriates the NeRF model and shares it under
his name, Alice observes the NeRF model shared by Bob and utilizes it to generate a 2D image for
watermark extraction, thereby confirming Alice’s ownership of the copyright for the NeRF model.
Bob is found to be infringing on the copyright and is required to remove the post, as depicted in
Fig. 1.

Figure 1: Application scenarios

Our primary contributions are threefold:

Firstly, compared to the latest NeRF copyright protection method, StegaNeRF, which directly
alters NeRF’s network parameters, this modification impacts the neural network’s 3D content
representation capability and the quality of its 3D module. Conversely, our approach refrains from
modifying NeRF’s network parameters. Leveraging image watermarking technology, we preserve the
network’s 3D content representation ability while concurrently achieving copyright protection for the
NeRF model.



CMC, 2024, vol.80, no.3 4067

Secondly, to fortify the scheme’s robustness, the copyright verification process incorporates a
trained image quality enhancement network. This network performs image restoration on NeRF-
rendered images, countering both the effects of NeRF rendering and deliberate tampering on image
quality.

The operational procedure of our scheme entails the initial application of a forward network
watermarking algorithm employing reversible neural networks. This algorithm embeds watermark
information into each image within the training set used for NeRF model training. Subsequently, 3D
modeling is conducted utilizing the NeRF model. Finally, for copyright verification, the embedded
watermark information is extracted using the inverse process, facilitated by the extraction network.
In scenarios where the 3D model is utilized without authorization, the verifier can extract the water-
mark information, thereby verifying the model’s copyright, provided it is viewed from a perspective
consistent with the training set.

2 Related Work
2.1 Traditional 3D Watermarking

Watermarking techniques for traditional 3D models are primarily categorized into two types: 3D
mesh model-based watermarking algorithms [14–18] and 3D point cloud model-based watermarking
algorithms. The former typically employ a multi-resolution framework to conduct wavelet decom-
position or Fourier transform on the target triangular or polygonal mesh. Subsequently, watermark
embedding is achieved either by modifying the topological or geometric features of the mesh model
or by establishing a correlation function between the mesh vertices. On the other hand, the latter, as
exemplified by the 3D point cloud model-based watermarking algorithm [19], initiates by establishing
synchronization relationships between the point clouds. Then, the model is segmented into spherical
rings based on radial radius, and the watermark is repetitively inserted into the vertices of each
spherical ring to accomplish watermark embedding.

2.2 Neural Network Watermarking

The representation of 3D models in NeRF differs significantly from traditional approaches, as
NeRF bypasses conventional geometric structures and instead directly learns and produces lifelike
renderings through neural networks. Essentially, NeRF functions as a neural network for the implicit
representation of 3D scenes. Consequently, traditional 3D model watermarking algorithms do not
apply to watermarking neural radiance fields. The protection of copyrights for neural networks,
termed neural network watermarking, has emerged as a critical research avenue in the security domain.
Neural network watermarking encompasses four primary types: white-box watermarking, black-box
watermarking, boxless watermarking, and vulnerable neural network watermarking. In the white-box
watermarking scheme [20], the verifier can inspect the network’s internals and access information such
as weights to authenticate its copyright. The black-box watermarking scheme [21] suits scenarios where
the verifier lacks direct access to the network’s internals but can interact with it via a remote API
interface. Boxless watermarking [22] primarily serves for copyright validation in generative networks,
training the network to embed watermark information directly into generated images for direct
copyright verification by the verifier. Vulnerable watermarking [23] diverges from the aforementioned
three by detecting malicious tampering with the network’s functionality, such as injecting a backdoor,
based on watermark corruption.
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2.3 Invertible Neural Networks Watermarking

INNs (Invertible Neural Networks) are neural networks designed using invertible transformation,
and normalizing flow achieves the invertible transformation between the data distribution px and a
latent distribution px [24]. Jing et al. [25] pioneered the fusion of reversible neural networks with infor-
mation hiding, treating the concealment and retrieval of a secret message as complementary processes
and employing the same network for both tasks. Addressing the escalating issue of artwork plagiarism,
Luo et al. [26] advocated for copyright protection for high-quality artworks, integrating reversible
neural networks into watermarking to bolster copyright security with heightened concealment and
resilience. However, Ma et al. [27] critiqued the robustness of such schemes, attributing vulnerabilities
to excessive reliance on reversibility. Consequently, a hybrid watermarking scheme intertwining
reversible and non-reversible networks was devised, featuring a watermark extractor leveraging the
attention mechanism across multiple channels to optimize watermark extraction efficacy and enhance
scheme robustness.

3 Network Components

Our proposed watermarking method comprises four primary network structures: Invertible Block,
FDTM (Frequency Domain Transform Module), NeRF (Neural Radiation Fields), and IQEM
(Image Quality Enhancement Module). The invertible block facilitates watermark embedding and
extraction. The frequency domain transform module preprocesses training images with watermark
information. Our method safeguards the neural radiation fields. The image quality enhancement
module is utilized to counteract losses in the rendering process as well as losses due to malicious attacks
during propagation.

3.1 Overall Framework

We propose the utilization of an invertible neural network 2D watermarking algorithm to
safeguard both the neural radiation field and the 3D scene. The algorithmic framework comprises
a frequency domain transform module, invertible module, neural radiation field, and image quality
enhancement block as depicted in Fig. 2. The embedding and extraction processes in invertible neural
network watermarking constitute a pair of inverse operations.

IW = H (I , MW) (1)

(IR, RW) = H−1 (QEM (NeRF (IW))) (2)

In Eqs. (1) and (2): where H(·) represents the forward embedding watermarking process and H−1(·)
signifies the reverse extraction watermarking process. IQEM serves as the image quality enhancement
module, while NeRF represents our protected target. The process begins with operating on the training
image I along with the watermark information MW using operation H(·) to yield IW . Subsequently,
IW is fed into NeRF for rendering. The resulting image is then subjected to enhancement by IQEM.
Finally, the watermark information Rw is recovered through the process H−1(·).

In the forward embedding watermarking process, the training image I and the watermark
information MW serve as inputs. Initially, they undergo the DWT (Discrete Wavelet Transform),
decomposing it into high and low-frequency wavelet subbands, which are then fed into a sequence
of invertible blocks. Following the final invertible block output, the IWT (Inverse Wavelet Transform)
is applied to generate the watermarked image IW along with the loss information l. All images utilized
for NeRF training undergo these operations to ensure that watermarking information can be extracted
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from any angle within the training set. The resulting watermarked image IW is then employed to
train the NeRF model, with specified camera position, orientation, and field of view parameters for
rendering. The rendered image is produced through ray-voxel intersection sampling, color blending
operation, and subsequently subjected to noise layer processing to obtain the corresponding distorted
image I′.

In the reverse extraction watermarking process, the distorted image I ′ undergoes initial processing
through IQEM to mitigate distortion effects arising from the NeRF rendering process and intentional
damage modeling using the noise layer. After this, akin to the embedding process, the INN reverse
process introduces a random variable Z. This variable Z is randomly sampled from an arbitrary
Gaussian distribution, which matches the distribution of l. This variable Z is learned from the
extraction loss during training. The auxiliary variable Z and the enhanced image I′′ traverse through a
frequency domain transform and a sequence of invertible blocks to yield the restored watermark RW

and the restored image IR.

Figure 2: The overall framework of robust watermarking scheme for neural radiance fields based on
invertible neural networks

3.2 Invertible Blocks

As depicted in Fig. 3, both the concealment and recovery processes entail identical sub-blocks
and share network parameters, differing only in the direction of information flow. The network
architecture comprises 8 invertible blocks with the same structure, outlined as follows:

Figure 3: The detailed workflow of NeRF

For the Lth concealment block in the forward process, the inputs encompass I l and Ml
W , yielding

outputs I l+1 and Ml+1
W .
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)
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In Eqs. (3) and (4): where σ denotes the activation function, LeakyReLU (Leaky Rectified Linear
Unit) in this context. Functions f (·), r(·) and y(·) represent densely connected networks. The outputs
of the final invertible block, Mk

W , and Ik, subsequently undergo transformation via IWT to yield the
watermarked image IW , and loss information l.

The Lth recovery block in the reverse recovery process, with inputs I’’l + 1 and Zl + 1, and outputs I’’l

and Zl, is presented in Eqs. (5) and (6).

Zl = (
Zl+1 − y

(
I ′′l+1

)) ⊗ exp
(−σ

(
r
(
I ′′l+1

)))
(5)

I ′′l = I ′′l+1 − f
(
Zl

)
(6)

where σ denotes the activation function, LeakyReLU in this context. Functions f (·), r(·) and y(·)
represent densely connected networks. In the reverse process, the information flow direction is reversed
compared to the forward process, traversing through the l+1th layer before the lth layer. Finally,
following the initial invertible transformation layer, the data undergoes IWT to derive the restored
image IR and the restored watermark RW .

3.3 Frequency Domain Transform Module

Watermarked images embedded in the pixel domain are susceptible to texture replication artifacts
and color distortion [28,29]. The frequency domain and high-frequency domain are more conducive
to watermark embedding compared to the pixel domain. We employ the FDTM to partition the
image into low-frequency and high-frequency wavelet subbands before the invertible transform. The
high-frequency subbands encapsulate image details, while the low-frequency subbands encompass
overall image features, facilitating improved fusion of watermark information into the carrier image by
the network. Compared to direct operations in the original image domain, wavelet transforms offer
superior visual fidelity and embed watermark information in a few subbands, minimally impacting
the overall image and often eluding detection. Additionally, the excellent reconstruction properties
of wavelets [30] mitigate information loss and enhance watermark embedding capabilities. Before
entering the invertible block, the image undergoes processing through the FDTM. Following the DWT,
the feature map of size (B,C,H,W) transforms into (B,4C,H/2,W/2), where B represents the batch size,
H denotes height, W signifies width, and C represents the number of channels. The DWT effectively
reduces computational costs, thereby expediting the training process. After the last invertible block,
the feature map (B,4C,H/2,W/2) is fed into the FDTM for IWT, thereby restoring the feature map size
to (B,C,H,W) and generating the restored watermark IW .

3.4 Neural Radiation Fields

NeRF is a neural network model designed for generating 3D scenes. The network structure
comprises multiple layers of perceptrons, which are employed to encode the scene’s surface as depicted
in Fig. 3. In the neural radiation fields model, each pixel position of the input image can be represented
as a 3D coordinate point in the scene, allowing for precise object location and rendering within the
scene. In NeRF, the input spatial point is defined by a 3D coordinate position, x = (x, y, z), and
a direction, d = (θ , φ), while the output spatial point is characterized by a color, c = (r, g, b), and
density σ at the corresponding voxel position.

Fθ : (x (x, y, z), d (θ , φ)) → (c (r, g, b), σ) (7)

In Eq. (7): where x = (x, y, z) for the position in 3D space, d = (θ , ϕ) for the line-of-sight
angle, and c = (r, g, b) for the color of the corresponding position, σ the density at the position of
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the corresponding voxel. NeRF takes in a finite sequence of discrete images and camera parameters
associated with specific viewpoints to generate a continuous static 3D scene. Moreover, it can render
the scene from infinite perspectives, resulting in new viewpoint images. Body rendering, on the other
hand, is a 3D-to-2D modeling process that leverages the pixel values c and the body density σ of 3D
points obtained through 3D reconstruction. The final pixel values of the 2D image are derived by the
weighted superposition of pixel point samples along a ray in the direction of observation.

C (r) =
∫ tf

tn

T (t) σ (r (t)) c (r(t), d) dt, where T (t) = exp
(

−
∫ tf

tn

σ (r (s)) ds
)

(8)

This process is illustrated in Eq. (8): where the ray, denoted as r(t), is defined as r(t) = o + td. o
represents the position of the camera’s optical center, and d represents the direction of the viewing
angle. Furthermore, T(t) indicates the cumulative transmittance of the ray as it travels from the
proximal point tn to the distal boundary tf . Building upon this characteristic of NeRF, this paper
proposes a method for extracting watermarks from any angle in the training set by randomly selecting
camera parameters. This approach aims to provide copyright protection for NeRF.

3.5 Image Quality Enhancement Module

The invertible neural network relies on the reversibility between its forward output and reverse
input. However, during actual transmission, the input for reverse propagation deviates from the output
of forward propagation. This discrepancy arises from two primary factors: firstly, the NeRF rendering
process induces partial loss of watermark information, and secondly, human-induced noise attacks
during transmission preceding the NeRF network leads to further loss of watermark information.
Consequently, before the reverse process for watermark extraction, we introduce an IQEM to mitigate
the effects of both NeRF rendering distortions and deliberate tampering as depicted in Fig. 4. The
IQEM employs a residual convolutional codec network, the Conv block in the encoder consists of a
3 × 3 convolution layer, a batch norm layer, and a ReLU (Rectified Linear Unit) layer. In addition,
the stride and padding of the convolution layer are both set to 1, we utilize a convolutional encoder
on the left side to extract multi-level features from the distorted image I’. These extracted features
are subsequently input into the right inverse convolutional decoder, along with residuals from the
previous layer. Overlaying the final result completes the restoration process of the image. Integration
of IQEM into the watermark extraction procedure fulfills preprocessing the rendered image I’ before
its input into the invertible neural network. This preprocessing step ensures that the inputs propagated
backward closely resemble the watermarked image IW , thereby enhancing the scheme’s capacity to
extract watermark information more comprehensively.

Figure 4: Image quality enhancement module architecture
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4 Loss Function

The loss associated with network model training proposed in this paper consists of four main
components.

4.1 Embedding Loss LEmb

The purpose of the embedding loss is to ensure that the generated watermarked image IW is
indistinguishable from the training image I . The embedding loss is used in the following steps:

LEmb (θ) =
N∑

n=1

�Emb

(
I (n)

W , I (n)
)

(9)

In Eq. (9): where N represents the number of training samples, and �Emb calculates the difference
between the watermarked image IW and the training image I , we use the L2 paradigm.

4.2 Low-Frequency Wavelet Loss Llow-f

Literature [31] verified that watermark information embedded in high-frequency components
is less detectable than watermark information embedded in low-frequency components. To ensure
higher visual fidelity and minimize the impact on the image as a whole due to the embedding of the
watermarking information, so that the watermarking information is embedded in the high-frequency
components of the image as much as possible, we employ a loss constraint on the low-frequency
subbands of the training image I and the watermarked image IW .

Llow−f (θ) =
N∑

n=1

�f

(
H

(
I (n)

)
ll

, H
(
I (n)

W

)
ll

)
(10)

In Eq. (10): where N represents the number of training samples, �f calculates the low-frequency
difference between the training image I and the watermarked image IW , and H(·)ll represents the low-
frequency subband operation of the extracted image.

4.3 Extraction Loss LExt

To ensure the consistency between the restored watermark RW and the watermark information
MW . The difference between the restored watermark RW and the watermark information MW is
minimized to improve the watermark extraction accuracy of the model.

LExt (θ) =
N∑

n=1

Ez∼p(z)

[
�Ext

(
R(n)

W , M (n)

W

)]
(11)

In Eq. (11): where N represents the number of training samples, and �Ext computes the difference
between the restored watermark RW and the watermark information MW . The process of sampling the
random vector z is random.

The total loss function of the invertible neural network is a weighted sum of the embedding loss,
the low-frequency wavelet loss, and the extraction loss.

Ltotal (θ) = λ1LEmb + λ2Llow−f + λ3LExt (12)

In the training process, λ1, λ2, λ3 is a hyperparameter for making a trade-off between the LEmb,
Llow−f and LExt loss component, λ2 is first set to 0, the network model is directly pre-trained without
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considering the effect of Llow−f on the network, so that the network model first obtains the basic
embedding-extraction ability. Then the Llow−f constraints are gradually added to further optimize the
network model to embed the watermark information in the high-frequency components of the training
image, to minimize the impact of the embedding of the watermark information on the image as a whole.

4.4 Loss of Image Quality Enhancement Module MSE

To address embedded watermark information degradation stemming from both the rendering
process and simulated malicious attacks introduced by the noise layer, we constrain the loss of the
IQEM using MSE (Mean Squared Error). Notably, the IQEM operates independently of the invertible
neural network’s training process. Its design aims to ensure that the enhanced image I’’, derived from
the distorted image I’ via the IQEM, closely resembles the watermarked image IW generated by the
invertible neural network. This similarity is crucial for resisting watermark information corruption
and loss attributable to rendering processes and noise layer attacks. The relationship is represented as:

MSE = 1
n

n∑
i=1

(
I

′
i , IWi

)
(13)

In Eq. (13): where n represents the number of training samples. I’i is the ith distorted image and IWi

is the ith watermarked image.

5 Experimental Results
5.1 Setting

The network model employed operates on the PyTorch platform with CUDA version 11.6 and
an Nvidia GeForce RTX 2070 GPU. Training for 3D scene generation utilizes the source code from
Read-NeRF [1]. The architecture of the invertible neural network is derived from HiNet [25]. Training
the network model involves using an Adam optimizer with hyperparameters λ1 = 5, λ2 = 0.5, and
λ3 = 1, a learning rate of 1×10−4.5, and a batch size of 2. The entire network comprises 8 invertible
blocks, each incorporating DenseNet blocks with 7 layers of convolutional blocks as f (·), r(·), and y(·)
functions for coding and decoding, respectively.

5.2 Datasets

NeRF is trained using datasets such as Lego, Hotdog, Chair, etc., which use invertible neural
networks to embed watermarks only on the dataset used to train NeRF. Given the diversity, high
resolution, and authenticity of the DIV2K (Diverse 2K) dataset [32], we utilize it extensively. The
DIV2K training dataset, consisting of 800 images at a resolution of 1024 × 1024, serves as the principal
dataset for training the reversible neural network model. Subsequently, the network model’s validation
is performed using the DIV2K validation dataset, which comprises 100 images of the same resolution.
Furthermore, the effectiveness of the network model is assessed using the DIV2K test dataset, which
also consists of 100 images at a resolution of 1024 × 1024.

5.3 Performance Measurements

We use four evaluation metrics: PSNR (Peak Signal Noise Ratio), SSIM (Structural Similarity),
RMSE (Root Mean Square Error), and MAE (Mean Absolute Error), to measure the watermark
embedding and extraction capabilities of the network model.
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PSNR is commonly used to evaluate the quality of image reconstruction and is defined by the
Mean Square Error (MSE) between two images of size W × H, X , and Y . The formula for PSNR is
given by:

MSE = 1
W × H

W∑
i=1

H∑
j=1

[
Xi,j − Yi,j

]2
(14)

PSNR = 10 × log10

MAX 2

MSE
(15)

In Eqs. (14) and (15): X i,j and Y i,j refer to the pixel values of image X and Y at position (i,j),
respectively. MAX represents the maximum pixel value of an image point, and a higher PSNR value
indicates less distortion.

SSIM is another image quality evaluation metric that measures image similarity in terms of
brightness, contrast, and structure. It is defined by:

l (x, y) = 2μxμy + C1

μ2
x + μ2

y + C1

c (x, y) = 2σxσy + C2

σ 2
x + σ 2

y + C2

s (x, y) = σxy + C3

σxσy + C3

(16)

In Eq. (16): μx and σ x are the mean and variance of image X , μy and σ y are the mean and variance
of image Y , and σ xy is the covariance of X and Y. Constants C1, C2, and C3 are used, with C1 = (K1 ∗
L)∧2, C2 = (K2∗ L)∧2, and C3 = C2/2. In general, K1 = 0.01, K2 = 0.03, and L = 255.

SSIM (X , Y) = l (x, y) · c (x, y) · s (x, y) (17)

SSIM values range from 0 to 1, where a higher value indicates less image distortion.

RMSE indicates the sample standard deviation of the difference between predicted and observed
values (called residuals). It is equivalent to the L2 paradigm and is more sensitive to outliers in the
data.

RMSE = √
MSE (18)

MAE represents the mean of the absolute errors between predicted and observed values and is
equivalent to the L1 paradigm.

MAE = 1
W × H

W∑
i=1

H∑
j=1

∣∣Xi,j − Yi,j

∣∣ (19)

5.4 Results and Analysis

To showcase the advantages and feasibility of this approach, we employ three widely recognized
metrics to assess its efficacy: the invisibility of embedded watermark information, the accuracy of
extracted watermark data, and the scheme’s robustness against various attacks.
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5.4.1 Imperceptibility

The invertible network watermarking scheme (RWNeRF) proposed achieves blind watermarking,
aiming to minimize the distortion between the training image I and the watermarked image IW . The
evaluation of the method’s imperceptibility utilizes four metrics: PSNR, SSIM, MAE, and RMSE.
Comparisons were made between 100 training images I and their corresponding watermarked images
IW , as seen in Table 1. The experimental data demonstrate that the RWNeRF scheme successfully
achieves blind watermarking.

Table 1: Comparison of imperceptibility indicators

Metrics Datasets

Training image I /Watermark image IW

Lego Hotdog Chair

PSNR 38.226542 37.379475 37.890828
SSIM 0.943185 0.918761 0.936977
MAE 3.168850 3.962571 3.114965
RMSE 5.732577 6.188527 5.956620

Meanwhile, as depicted in Fig. 5, the watermark is embedded into images from three datasets:
Lego, Hotdog, and Chair, utilizing the invertible neural network robust watermarking scheme. Upon
comparing the training image I with the watermarked image IW , it is unfeasible to discern the presence
of watermark information within the training image based on visual cues. Experimental findings
corroborate the imperceptibility of the watermark embedded via our method, accomplishing the goal
of blind watermarking.

Figure 5: Visual effect obtained by applying RWNeRF for watermarking information embedding. The
elements depicted in the figure included the Training image I , and the Watermarked image IW

5.4.2 Accuracy

The RWNeRF framework embeds watermark information MW into three datasets—Lego, Hot-
dog, and Chair—utilizing a forward invertible neural network. Subsequently, NeRF is trained using
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the watermarked image IW . The 3D scene is rendered with input viewpoint information, yielding
the rendered image. This image undergoes processing through a noise layer to simulate malicious
attacks, resulting in the distorted image I’. It is then enhanced using an image quality enhancement
module to obtain the enhanced image I’’. Finally, the restored watermark RW is extracted via the
reverse invertible neural network. The accuracy of the restored watermark RW is evaluated against the
watermark information MW using four metrics as depicted in Fig. 6.

Figure 6: The average values of each metric across 100 images: PSNR exceeds 22 dB, SSIM approxi-
mates 0.55, MAE is around 9.2, and RMSE is approximately 29

RWNeRF conducts watermark extraction on original training image angles and non-original
training image angles in three datasets: Lego, Hotdog, and Chair. Two parameters, � and 	, influence
the image angle. In this study, � is adjusted while 	 is fixed to control the angle change. Using
the original angles � = 30, � = 45, and � = 60, a view angle offset of +1 is applied to verify the
extraction of watermark information when the selected angle differs from the original training angle.
The experimental results depicted in Fig. 7 indicate that watermark information can be extracted when
the selected angle matches the original training image angle. However, when the selected angle deviates
from the original training image angle, i.e., other angles, the extraction of watermark information
cannot be accurately achieved.

We have also explored alternative image watermarking methods for NeRF to enhance copyright
protection. These methods encountered challenges such as loss of watermark information during
the rendering process and potential malicious tampering during network delivery, rendering them
incapable of successfully extracting watermark information, as evidenced in Table 2. Experimental
results illustrate their inefficacy in this context, attributable to their development for conventional
settings where 2D images serve as the ultimate visual form. In contrast, our approach addresses the
novel INR framework as the foundational representation, where 2D images merely represent the final
output of NeRF rendering.
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Figure 7: Comparison of the visualization of watermark extraction from different angles

Table 2: Quantitative comparison of Restore watermark RW quality by the four methods

Dataset Watermark information MW/Restore watermark RW

Lego Hotdog Chair

Metric PSNR SSIM PSNR SSIM PSNR SSIM

Method

RWNeRF 22.28 0.54 22.23 0.54 22.36 0.56
Pallaw et al. [33] 9.96 0.16 9.97 0.18 8.35 0.15
DCT-DWT [34] 7.98 0.18 9.96 0.20 7.67 0.16
Hu et al. [35] 8.81 0.15 8.74 0.14 8.99 0.17

5.4.3 Robustness

Given the unpredictable nature of distortion experienced by 3D models in practical scenarios,
we employ four conventional noise attacks—Poisson, Gaussian, Pepper, and Speckle—to disrupt the
rendered image, thereby simulating malicious attacks. These distortions are utilized to train our IQEM,
enhancing the robustness of the proposed scheme, as depicted in Fig. 8. The rendered image undergoes
disruption from the four types of noise, respectively. However, the enhanced image I” processed by the
IQEM remains visually indistinguishable from the watermarked image IW and cannot be identified as
having suffered damage, verifying the robustness of the scheme.

Moreover, the viewpoint images generated by NeRF during the rendering process lead to the
loss of original watermark information. To address this challenge, we propose an Image Quality
Enhancement Module (IQEM) in contrast to conventional methods. This module is trained to mitigate
various types of noise and to compensate for the loss of watermark information inherent in the
rendering process. While existing methods exhibit some degree of robustness, their failure to integrate
the IQEM results in an inability to compensate for watermark loss during rendering, and unable to
extract watermark information successfully, as depicted in Fig. 9.
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Figure 8: Visual comparison of Watermarked image IW , Enhanced image I′′ and the images after
undergoing four separate noise attacks

Figure 9: Comparison of the visualization of watermark extraction from different methods

5.4.4 Comparison of Rendering Image Quality

RWNeRF employs an invertible neural network watermarking approach to safeguard NeRF
by embedding watermarks into the 2D images utilized for NeRF training via a forward network.
Watermarks are then extracted from the rendered images using an inverse network, thus confirming
NeRF’s copyright. Given that direct modification of the MLP structure by StegaNeRF would impact
the rendering capability of the network structure itself, RWNeRF’s approach refrains from altering the
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network structure directly. Consequently, it preserves NeRF’s rendering capability without affecting
the network structure, achieving copyright protection through an indirect method. Moreover, owing
to the superior performance of reversible neural network watermarking, RWNeRF has less impact
on the original training image after watermark embedding compared to traditional watermarking
algorithms like LSB and other 2D watermarking algorithms based on deep learning. Through the
implementation of training for the same epoch (50000), the subjective visual assessment reveals that
the quality of images rendered by RWNeRF surpasses those rendered by Pallaw et al., DCT-DWT,
Hu et al., and StegaNeRF, as depicted in Fig. 10.

Figure 10: Visual effect obtained by applying the five methods for render image

The 13-angle images rendered by the five methods are compared with the original training images
at corresponding angles, and the quantitative results of the four evaluation metrics are presented in
Table 3. The standard NeRF in the first row represents the quality of the image rendered by the
unembed watermark NeRF, serving as a benchmark for image quality by the five methods. The images
produced by RWNeRF closely match the standard NeRF in all four evaluation metrics, demonstrating
that RWNeRF can achieve copyright protection without compromising NeRF’s rendering capabilities.
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Table 3: Quantitative comparison of rendered image quality by the five methods

Datasets Metrics

PSNR (dB)↑ SSIM↑ MAE↓ RMSE↓
Standard NeRF 32.88 0.97 3.02 7.48
RWNeRF 31.13 0.96 3.51 8.13
Pallaw et al. 29.97 0.94 5.66 10.86
DCT-DWT 30.22 0.94 4.10 9.75
Hu et al. 30.28 0.95 4.21 9.81
StegaNeRF 28.36 0.91 7.03 12.37

5.5 Ablation Study

Traditional deep learning image robust watermarking techniques such as HiNet [30] and ISN
[32] are not directly applicable to our task, as they prioritize reversibility and do not consider the
rendering process and simulated noise layer mimicking malicious attacks, leading to corruption
of embedded watermark information in training images. Therefore, RWNeRF incorporates IQEM
before watermark extraction to mitigate the effects. With the inclusion of the IQEM structure, the Peak
Signal-to-Noise Ratio (PSNR) of Watermark information MW and Restored watermark RW improves
from 5.31 to 22.23 dB, as demonstrated in Table 4. The experimental results underscore the significant
value of IQEM in successfully extracting watermark information.

Table 4: Quantitative comparison of rendered image quality by the four methods

IQEM FDTM Llow-f Comparison of watermark information MW of Restored
watermark RW (PSNR)

× √ √ 5.31 dB√ × √ 12.44 dB√ √ × 19.88 dB√ √ √ 22.23 dB

6 Conclusions

In this paper, we introduce a novel approach for protecting the neural radiance field through
Invertible Neural Network Robust Watermarking (RWNeRF), aiming to safeguard the copyright
of NeRF. RWNeRF utilizes an invertible neural network to embed and extract watermarks on 2D
images, treating the watermark embedding and extraction processes as forward and inverse operations
of the reversible network. Additionally, an image quality enhancement module is integrated into the
intermediate phase to compensate for the loss of watermark information resulting from the NeRF
rendering process and simulated noise layer mimicking malicious attacks, thereby safeguarding the
3D model represented by the neural radiance field. Experimental findings demonstrate RWNeRF’s
capability in watermark embedding and extraction; however, further enhancement is needed to
optimize watermark extraction quality.
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