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ABSTRACT

Molecular Dynamics (MD) simulation for computing Interatomic Potential (IAP) is a very important High-
Performance Computing (HPC) application. MD simulation on particles of experimental relevance takes huge
computation time, despite using an expensive high-end server. Heterogeneous computing, a combination of the
Field Programmable Gate Array (FPGA) and a computer, is proposed as a solution to compute MD simulation
efficiently. In such heterogeneous computation, communication between FPGA and Computer is necessary. One
such MD simulation, explained in the paper, is the (Artificial Neural Network) ANN-based IAP computation of
gold (Au147 & Au309) nanoparticles. MD simulation calculates the forces between atoms and the total energy of the
chemical system. This work proposes the novel design and implementation of an ANN IAP-based MD simulation
for Au147 & Au309 using communication protocols, such as Universal Asynchronous Receiver-Transmitter (UART)
and Ethernet, for communication between the FPGA and the host computer. To improve the latency of MD sim-
ulation through heterogeneous computing, Universal Asynchronous Receiver-Transmitter (UART) and Ethernet
communication protocols were explored to conduct MD simulation of 50,000 cycles. In this study, computation
times of 17.54 and 18.70 h were achieved with UART and Ethernet, respectively, compared to the conventional
server time of 29 h for Au147 nanoparticles. The results pave the way for the development of a Lab-on-a-chip
application.
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1 Introduction

High Performance Computing (HPC) applications, such as simulating Molecular Dynamics
(MD), forecasting weather patterns, studying nuclear physics, Data Science and Engineering (DSE),
and the Internet of Things (IoT), require diverse computing infrastructures ranging from individual
desktop setups to extensive parallel processing environments [1,2]. With the tremendous increase in
data volume, traditional Central Processing Units (CPUs) are finding it challenging to keep up with
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the demands of HPC [3]. Researchers are working on improving the speed of HPC applications. With
advancements in the Very Large-Scale Integration (VLSI) hardware industry, they use Heterogeneous
Computing platforms to improve the performance of these HPC applications. Heterogeneous comput-
ing is a unique kind of parallel computing where different tasks are allocated to different systems to
achieve optimal performance and power efficiency [4,5]. Researchers are integrating various systems
such as CPUs, Graphics Processing Units (GPUs), FPGAs, and Application Specific Integrated
Circuits (ASICs) to accelerate the performance of heterogeneous computing systems [6–8]. One such
HPC application that our group is working on is the molecular dynamics simulation using ANN-
based interatomic potential of gold (Au13, Au55, Au147, Au309, etc.) nanoparticles, Gold nanoparticles
have always been a subject of interest in various applications such as biomedical, chemical, plasmonics,
and non-linear optics, among others [9].

MD simulation, a vital application of HPC, is a technique for computer simulations of chemical
systems for predicting their structural and thermodynamic properties. It involves 1. Time evolutions
of atoms or molecules in the system, and 2. Interactions between the atoms and/or molecules in the
system for a fixed period of time. Time evolution of the system is followed via integrating classical
equations of motions of atoms and/or molecules in the system. The Verlet algorithm [10,11] is used
to integrate the equation of motion. It is well known that the evaluation of interatomic interactions
between atoms and/or molecules, in the studied material system, is the most computationally expensive
task in MD simulations.

The modeling of inter-atomic (molecular) interactions requires calculations of force acting on
each atom due to all other atoms in the systems, which is always a computational bottleneck in an
MD simulation. To address this, researchers are exploring the concept of heterogeneous computing
[12]. In MD simulation, various heterogeneous computing models, such as GPUs, FPGAs, and ASICs,
are considered alongside CPUs [13–15]. FPGAs stand out due to their ability to handle parallelized
computations and their potential to overcome computation time challenges [16–18].

Our group’s earlier work Bulusu et al. [19] presents an innovative approach for implementing
the use of MD simulations using FPGAs. Using an MD simulation for ANN-based Interatomic
Potential (IAP), the study focuses on gold nanoparticles, specifically the Au147 & Au309 nanoparticles.
The complete system was implemented on the Xilinx Kintex-7 KC705 evaluation board [20]. The
implemented design is shown in Fig. 1, illustrating a hardware-software co-design model.

Figure 1: The hardware-software Co-design prototype for MD simulation



CMC, 2024, vol.80, no.3 3805

The prototype design shown in Fig. 1 divides the system into two parts. The FPGA hardware
handles complex, time-intensive computations while the host computer manages controlling functions
and sequential computations. The heterogeneous computing-based MD simulation shown in the
model requires constant communication between the host computer and the FPGA board to function
correctly. Peripheral Component Interconnect Express (PCIe) communication protocol is indeed used
for communication between the FPGA and the host computer. In the hardware-software co-design
shown in Fig. 1, the Cartesian coordinates (X, Y, and Z) are sent from the host computer to the FPGA,
and the outputs (forces and energy values) are sent from the FPGA to the host computer using PCIe
communication. Thus, in every MD cycle, around 3.5 KB (Kilobytes) of data transfer occurs between
the FPGA and host computer using PCIe for Au147. With PCIe communication 50,000 MD cycles,
PCIe took 19.84 h, whereas HPC Server took 29 h for Au147 nanoparticles. With PCIe, the computation
time was reduced by 1.5 times as reported by Bulusu et al. [19].

Due to its high-speed serial point-to-point capabilities, PCIe is widely used in heterogeneous
computing, especially in applications requiring large amounts of data transfer. However, PCIe comes
with limitations. A thorough study by Marcin et al. [4] on FPGA applications highlights the first
drawback, emphasizing the necessity for dedicated hardware and drivers, specifically a PCIe slot and
associated drivers, leading to increased programming complexities. The second limitation involves the
absence of support for hot plug operations, thus requiring a system restart for configuration. Also,
PCIe’s complexity overhead is unnecessary for small data transfers like a few KBs (here, 3.5 KB
for Au147 and 7.2 KB for Au309). Hence, the advantage of high-speed and low-latency data transfer
is reduced due to the complexity overhead in a few KB data transfers.

This paper presents a novel approach to exploring UART (Universal Asynchronous
Receiver/Transmitter) and Ethernet communication protocols for the same MD computation.
We aim to reduce computation time further. Communication protocols like UART and Ethernet
present versatile and user-friendly alternatives. Utilizing simplified, universally applicable code across
operating systems helps mitigate the complexities associated with PCIe implementations. Both UART
and Ethernet protocols support hot plug operations, eliminating the need for system restarts. These
protocols are also easier to use than PCIe, and using them in embedded heterogeneous computing
systems makes it easier to control the complete system by letting embedded processors step in. This
attempt is for two atomic gold nanoparticles Au147 and Au309.

To reduce computation time, UARTLite and EthernetLite IP (Intellectual Property) are explored
in the design with the following key setup:

1. Explore UART and Ethernet communication protocols as alternatives to PCIe communication
for ANN-based MD simulation for gold nanoparticles.

2. Integrate the Microblaze soft-core processor to enhance hardware control ensuring an easily
debuggable system.

3. Implement the MD calculation in the FPGA-Computer (CPU) based system using both
communication protocols.

The paper is structured as follows: Section 2 outlines the system architecture overview. Section 3
discusses the hardware-software co-design for UART and Ethernet-based design implementation. The
obtained results are presented in Section 4. Section 5 provides a detailed discussion, and Section 6
concludes the paper.



3806 CMC, 2024, vol.80, no.3

2 System Architecture Overview

The block diagram of hardware-software co-design for ANN-based MD simulation of gold
nanoparticles is shown in Fig. 2. Several FPGA IPs have been used to design hardware in Xilinx
Vivado. A brief overview of these IPs is given below.

Figure 2: Block diagram of hardware-software Co-design for MD simulation

2.1 FPGA IPs

2.1.1 Microblaze: Soft-Core Processor

It is a 32-bit general-purpose Reduced Instruction Set Computer (RISC) soft-core processor.
This processor features a 32-bit general-purpose register, RISC Harward Architecture, a 3-stage
pipeline, and an interrupt module [21]. Utilizing the local memory bus (LMB), Microblaze accesses
on-chip memory and is compatible with the IEEE 754 single-precision floating-point format. It also
includes an Instruction Cache (IC) and Data Cache (DC), exception handling, a debug module,
and a barrel shifter. Except for the Zynq family, Microblaze is supported in most Xilinx FPGA
families (Artix-7, Kintex-7, Spartan, etc.). A comprehensive explanation of Microblaze is provided
in XilinxMicroblaze [22].

Xilinx provides a software environment called Software Development Kit (SDK) with the
Embedded processor (Microblaze) [22]. The SDK supports C/C++ languages for writing software
code and is responsible for controlling the operation of the Microblaze soft-core processor. It extends
support to all peripherals IPs used with the processor.

2.1.2 Communication IP (AXI UARTLite/EthernetLite)

The Advanced eXtensible Interface (AXI) UARTLite serves as a control interface for asyn-
chronous serial data transfer. It supports full-duplex communication, providing AXI4-Lite interface
register access and data transfer. The receiver and transmitter (First in First out) FIFO size are limited
to 16 Bytes. This module incorporates configurable baud rates (e.g., 9600, 115200, 421800, 921600,
etc.). A comprehensive explanation of AXI UARTLite is available in XilinxUart [23]. UARTLite IP
follows the standard UART frame format as shown in Fig. 3. In this implementation, the parity bit is
not used, and the stop bit size is one bit. Thus, each UART packet (frame) is 10 bits in size.
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Figure 3: UART frame format

The AXI EthernetLite is designed to incorporate the features of the IEEE 802.3 Ethernet standard.
It facilitates connection to external 10/100 Mb/s physical (PHY) transceivers through the Media
Independent Interface (MII). It utilizes the AXI4/AXI4-Lite on-chip communication protocol to
enable communication with the Microblaze soft-core Processor. A comprehensive explanation of the
AXI EthernetLite is provided in XilinxEthernet [24]. EthernetLite IP follows the IEEE 802.3 standard
Ethernet frame format for communication as shown in Fig. 4. This frame format allows a maximum
of 1500 bytes of actual data to be sent, along with an additional 14 bytes for the header and 4 bytes for
the Cyclic Redundancy Check (CRC). Therefore, for larger data sizes, multiple Ethernet frames have
been used.

Figure 4: IEEE 802.3 ethernet frame format

2.2 Hardware Accelerator HLS IP for ANN-Based IAP Calculation

In this subsection, FPGA hardware blocks are introduced for reconfigurable high-performance
computation. Generally, high-performance computation contains multiple loops. So, in conventional
processors, all loops run sequentially. However, FPGA has the ability to take up several independent
serial loops and can parallelize them [25]. So, when implemented on FPGA, similar tasks are
performed concurrently, and the algorithm will be converted into multipliers and adders (MAC blocks)
that go along multiple loops.

The Algorithm 1 [19] for constructing the ANN-based IAP for gold nanoparticles is described
below. Firstly, obtaining cartesian coordinates from the host computer via UART/Ethernet commu-
nication. The cartesian coordinates are used to calculate radial and angular descriptors and their
derivatives. The descriptors serve as input to the NN (Neural Network) to evaluate the energy for
each atom. Force components are calculated using the derivatives of the descriptors. Finally, the force
components are sent back to the host computer.



3808 CMC, 2024, vol.80, no.3

Algorithm 1: ANN-Based IAP Calculation

Vivado-HLS (High-Level Synthesis) software has been chosen to accelerate this high-performance
computation algorithm. Utilizing C-based code in Vivado HLS, it was converted into Hardware
Description Language (HDL). As shown in Fig. 5, after composing the C language code, the
AXI_return directive was used to make it AXI-compatible. After that, a pipeline was applied to
enhance the latency and throughput of the system. Also, all operations are floating-point operations
and contain multidimensional arrays. So, it requires significant space in memory. Array partitioning
directive is used to optimize multidimensional arrays. Upon achieving the optimal design, the
algorithm was exported to the RTL (Register Transfer Level) design and then converted into IP. The
physics and mathematical calculations of this module are completely discussed in Bulusu et al. [19].

Figure 5: Design flow for HLS IP creation
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3 Hardware-Software Co-Design

The inputs of the proposed system are (X, Y, Z) cartesian coordinates of atoms and the outputs
are forces and total energy of the nanoparticles. Thus, data being large, are stored in the DDR (Double
Data Rate) memory present in the FPGA evaluation board. Microblaze, a microcontroller IP was used
to control data from the host computer to memory and vice-versa. Fig. 6 shows the sequence of data
transfer for one single operation.

Figure 6: Data flow diagram of system implementation for MD simulation

The complete FPGA implementations of UART and Ethernet communication-based heteroge-
neous computing systems are discussed in detail in the following subsection.

3.1 IAP Implementation Using UART/Ethernet

To design a communication interface, a schematic-based design was developed in Xilinx Vivado
as shown in Fig. 4 hardware module [26]. This design included DDR3 (Double Data Rate3) SDRAM
(Synchronous Dynamic Random-Access Memory) on the Kintex KC-705 board for data storage
during processing. The Microblaze soft-core processor acted as the master controller, operating at
300 MHz, while the hardware accelerator MD simulation IP operated at 100 MHz. Communication
between the FPGA and the host computer was handled by the AXI UARTLite IP / EthernetLite
IP. Other Peripheral IPs communicated with the Microblaze processor through AXI Interconnect or
SmartConnect IP.

An Embedded-C language code was written in Xilinx SDK to control the hardware [27]. This code
handled tasks such as data reception and transmission, data storage in DDR memory, and initiation
and termination of the hardware accelerator module. The flowchart of the SDK code is shown in
Fig. 7. The structure of the SDK code is nearly identical for UART and Ethernet-based designs.
Changes related to communication interfaces were highlighted with different colored rectangular
dotted boxes, with an orange box denoting UART communication and a green box for Ethernet
communication.



3810 CMC, 2024, vol.80, no.3

Figure 7: SDK flow diagram for UART and ethernet communication implementation

The entire IAP computation is implemented as a hardware-software co-design. The Microblaze
acts as a master and the hardware accelerator IP serves as a slave. The Microblaze starts with a polling
to expect ‘X, Y, Z’ coordinates values from the computer. Upon receiving the same, the accelerator IP
is activated and the Microblaze goes into SLEEP mode. Parallelly, it will initiate another polling mode
to wait for the forces & energy deposition with the memory.

The accelerator IP uses the parallel algorithm on the FPGA to calculate the forces & energy and
deport the same in the DDR memory. Further, it ends the wait for the Microblaze. The Microblaze
gets activated and transfers the data through UART/Ethernet IP to the host computer. Depending on
the number of cycles, the entire process is repeated.

The Verlet algorithm was used to execute the remaining sequential operations and compile
all necessary MD files in the host computer. The C-program in the host computer manages the
UART/Ethernet communication between the host computer and FPGA.

4 Results

For performing the MD simulation, two different examples are explored. They are Au147 and Au309

nanoparticles. The FPGA used was Xilinx Kintex-7 KC-705 evaluation FPGA board. In addition
to the accelerator IP developed, a Microblaze-based microcontroller system was also implemented
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through the block design of the Xilinx Vivado software. The accelerator outputs energy and force
values which need to be transferred to the computer. A separate Verlet algorithm will take the force and
energy values and calculate the next set of coordinates on the computer side. The accelerator IP on the
FPGA works at 100 MHz, while the Microblaze processor and its peripherals operate at 300 MHz. For
communicating between the FPGA and the computer, AXI UARTLite and AXI EthernetLite IPs were
implemented. Microblaze processor controls the data transfer between the FPGA Random Access
Memory (RAM) and the different communication IPs, and this program was written in embedded C.

The first step in this exploration is to identify the accuracy of the results obtained through the
proposed communication strategies. The calculated energy for every MD cycle from the FPGA-
based heterogeneous computing system should match the conventional approach (using a server). To
check the accuracy, both UART and Ethernet-based communication were implemented, and the MD
simulations were run on the board for 500 cycles. The results of energy and forces obtained at every
cycle were compared with a conventional approach, and the results are plotted in Fig. 8. There is no
difference between the results obtained from all the approaches, and this proves that the proposed
approach yields accurate results for several cycles as well. It validates that the total potential energy
obtained using UART and Ethernet designs is correct and identical to the PCIe-based design and HPC
server, as explained in Bulusu et al. [19].

Figure 8: Potential energy of Au147 & Au309 vs. number of MD cycles

Now that the accuracy of the system is verified, the system was explored to determine the
computation time for the two different communication protocols implemented onto the FPGA board.
A comparison of the computation time of the proposed two communication approaches with the
conventional PCIe and HPC server is shown in Table 1. UART operates at a baud rate of 921,600
bits/sec, while Ethernet works at a standard speed of 100 Mb/sec. PCIe speed is noted as 5 GT/sec,
and in the HPC server, seven CPUs run in parallel at a frequency of 2600 MHz (Megahertz).
Interestingly, UART and Ethernet-based communication protocols can withstand 50,000 iterations
of MD computations, and the time it takes for 50,000 iterations comes to 17.54 & 18.7 h for UART
& Ethernet communication, respectively for Au147 and 64.36 & 65.56 h respectively for Au309. This
shows the robustness of the system and the potential to provide a lab-on-a-chip solution for such IAP
computations.
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Table 1: Computation time comparison of UART, ethernet, and PCIe communication-based design
for Au147 (Au309)

No. of MD cycles Computation time
UART Ethernet PCIe HPC server
921,600 bits/sec 100 MB/sec 5 GT/sec —

1 1.26 sec (4.74 sec) 1.35 sec (4.76 sec) 2.77 sec (9.65 sec) 4.18 sec (16.75 sec)
10 13.89 sec (52.19 sec) 14.71 sec (52.21 sec) 15.18 sec (53.57 sec) 22.94 sec (92.00 sec)
100 2.12 min (7.99 min) 2.26 min (8.01 min) 2.34 min (8.12 min) 3.51 min (14.01 min)
500 10.54 min (39.62 min) 11.20 min (39.72 min) 11.58 min (40.25 min) 17.43 min (69.94 min)
5000 1.75 h (6.55 h) 1.86 h (6.56 h) 1.98 h (6.70 h) 2.90 h (11.64 h)
50,000 17.54 h (64.36 h) 18.70 h (65.56 h) 19.84 h (66.97 h) 29.00 h (116.34 h)

Initially, X, Y, and Z values were sent to the FPGA and the returning data were the computed
force and energy values. For the Au147 atoms, 442 32-bit numbers (147 force values in each X,
Y, and Z direction + 1 total energy value) were transmitted from the memory to the computer.
The return communication was 441 32-bit numbers back to the FPGA. In such cases, the total
data transfer was 3.5 KB per cycle. Even though PCIe communication is faster, the overheads
(e.g., frame construction) and loading of the drivers take more time. It is interesting to note that
UART and Ethernet communication can achieve better computational efficiency compared to PCIe
communication, despite PCIe being faster.

The next step is to determine the resources used by the FPGA board in both communication
approaches. This has a direct correlation to the power of the system. The results, as tabulated in Table 2,
reveal that the UART and Ethernet designs, leveraging a Microblaze soft-core processor, demonstrate
lower overall resource utilization than the PCIe-based design.

Table 2: Au147 FPGA implementation: resource utilization insights for UART, ethernet, and PCIe
communication

FPGA
resources

Communication protocol

UART (%) Ethernet (%) PCIe (%)

LUT (Look-Up Table) 55.50 55.80 65.85
LUT RAM 19.34 19.36 23.58
Flip-Flop 26.34 26.87 32.44
BRAM (Block RAM) 50.79 51.69 42.02
DSP (Digital Signal Processing) Slices 49.40 49.40 49.52

For a Lab-on-a-chip application, power consumption plays a very important role. Table 3 shows
the power consumed by the different communication protocols. It is clear that UART consumes the
least power, followed by the other protocols. This again can be attributed to the simplicity of the
communication protocols.
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Table 3: On-chip power consumption of UART, ethernet, & PCIe design for Au147 (Au309)

Communication protocols Power (Watts)

UART 5.9 (6.1)
Ethernet 6.0 (6.3)
PCIe 8.9 (9.2)

To check the efficiency of the proposed setup to experiment on new systems, an exploration
Ag42Pt13 system was explored. This system utilized the same feed-forward ANN model (59-30-30-1).
However, since this alloy consists of two types of nanoparticles in the atomic cluster, the HLS code
was modified with several additional conditional statements and loops. The algorithm for this system
was written in an HLS-based FPGA program and the latency and the estimated computation time
were calculated from the HLS synthesis. Table 4 shows the details of the estimated time before and
after parallel operations. It is clear from this table that the proposed system can provide a significant
reduction in computation time for up to two orders.

Table 4: Estimated computation time for Ag42Pt13 HLS implementation with and without optimization

Technique Computation time (in seconds) (Estimate from HLS)

Without optimization 18.6
With optimization 0.197

5 Discussion

The communication speeds of UART and Ethernet (100 × 106 bps (bits per second)) are three
orders respectively and the same three orders of difference is observed between ethernet and PCIe
(31 × 109 bps). Despite such high communication speeds, the computational time obtained from our
experimental systems is quite contradictory and worth discussing and reasoning them.

While the packet size of UART is 10 bits of communication (8 bits of actual data), ethernet
and PCIe communication communicates with several initial frames and library initialization. The
reason behind such a contradictory result could be ascertained by estimating the overheads of these
communication protocols. Needless to say, that UART has minimal overhead and can be considered
negligible compared to its own communication speed.

Ideally, one complete cycle of the MD calculation with any communication protocol is a combi-
nation of computation and communication time. This is shown in Eq. (1) below:

T(1 cycle) = T(comm) + T(comp) + T(overhead) (1)

where T(1 cycle) is the total time taken for one complete cycle, T(comm) is the communication time and T(comp)

is the time taken for computations in both FPGA and computer. T(overhead) is the overhead time required
for initialization of several libraries and frames especially in case of Ethernet and PCIe. T(overhead) for
UART is negligible and therefore we will ignore its contribution in calculating T(1 cycle).
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❖ Au147 Time Calculations:

In the case of UART Communication for 1 cycle,

TU
(1 cycle) = 1.26 s (From Table 1) (2)

TU
(comm) = No.of bits transferred

Speed/baudrate
= 35360

921600
= 0.038 s (3)

From Eq. (1),

T(comp) = 1.22 s (4)

T(comp) is identical for all the communication protocols. TU
(1 cycle) and TU

(comm) are the total time for
1 cycle and the communication time for UART communication protocol.

In case of Ethernet Communication for 1 cycle,

TE
(1 cycle) = 1.35 s (5)

TE
(comm) = No.of bits transferred

Speed
= 28864

100 x 106
= 0.288 × 10−3 s (6)

From Eq. (1) we know that

TE
(1 cycle) = TE

(comm) + T(comp) + TE
(overhead) (7)

TE
(overhead) = 0.128 s (8)

TE
(overhead)/frame = TE

(overhead)

No.of Ethernet frames
= 0.128

4
= 0.032 s (9)

TE
(1 cycle), TE

(comm) and TE
(overhead) are the total time for 1 cycle, communication time and the overhead

time in case of Ethernet communication protocol.

From the above analogy, it is very clear that to find the tipping point where Ethernet communica-
tion will have a better hand compared to UART, the accountability of overhead of 0.032 s should be
looked into. With these overheads in mind, one can propose which communication protocol should
be used and can be predicted with simple calculations. The tipping point occurs when the time taken
in 1 cycle using UART is same as the time taken in 1 cycle using Ethernet in transferring some data.
This can be shown as

TU
(1 cycle) = TE

(1 cycle) (10)

TU
(comm) = TE

(comm) + TE
(overhead) (11)

In Eq. (11), we omitted T(comp), because it is same both for UART and Ethernet. Using Eq. (11),
we can predict the tipping point by calculating TU

(comm) and TE
(comm) for different nanoparticles (number

of bits transferred varies with the nanoparticles size).

To explain it experimentally, Table 5 shows T(comm) + T(overhead) time for different sizes of nanopar-
ticles. It is evident from Table 5 that, for a nanoparticle of approximately 430 atoms, the T(comm) +
T(overhead) times for UART and Ethernet are almost the same. However, when the size exceeds 430
atoms, TU

(comm) time surpasses TE
(comm) + TE

(overhead) time resulting in better communication efficiency
for Ethernet. The same analogy can be extended to PCIe communication as well. PCIe operates at
a speed of 5 GTps (Giga-transfer per Second) (equivalent to 31 Gbps for a Gen2 8-lane PCIe bus).
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When TE
(comm) + TE

(overhead) reaches to 0.2 seconds, it equals to the TP
(comm) + TP

(overhead) time of PCIe
communication. Estimated calculations suggest that this occurs when 3.5 million bits are transferred
per cycle, which approximately corresponds to a nanoparticles size of 18,000 atoms. Practically this
size does not fall under the category of nanoparticles. Therefore, for MD calculations of nanoparticles
or nanoalloys, Ethernet communication offers better efficiency.

Table 5: Tipping point calculation for different protocols

Size of
nanoparticles

No. of bits per
cycle

Type of
communication

T(comm) + T(overhead) in seconds

1 cycle 10 cycles 100 cycles

55 atoms 10,624
UART 0.024 0.235 2.329
Ethernet 0.117 1.179 12.082
PCIe 0.174 1.79 17.775

147 atoms 28,288
UART 0.054 0.515 5.138
Ethernet 0.133 1.335 12.096
PCIe 0.178 1.771 18.160

309 atoms 59,392
UART 0.103 1.017 10.103
Ethernet 0.130 1.280 12.120
PCIe 0.183 1.856 18.670

430 atoms 82,624
UART 0.133 1.346 13.512
Ethernet 0.133 1.351 13.426
PCIe 0.188 1.863 18.810

561 atoms 107,776
UART 0.180 1.811 18.085
Ethernet 0.136 1.374 13.965
PCIe 0.197 1.838 18.209

923 atoms 177,280
UART 0.293 2.933 29.409
Ethernet 0.137 1.375 14.023
PCIe 0.200 1.986 19.110

6 Conclusion

The ANN-based MD Simulation for Au147 and Au309 was implemented on the Xilinx Kintex-7
KC705 evaluation FPGA board. A hardware accelerator module with new communication strategies
is proposed and implemented for 50,000 MD cycles. The computation time for 50,000 MD cycles is
17.54 and 18.7 h for UART and Ethernet communication, respectively for Au147 and 64.36 & 65.56
h respectively for Au309. Compared to the conventional HPC server, the proposed methodology has
improved the computation time by 1.65 (1.81) times in UART and 1.55 (1.77) times in Ethernet
communication for Au147 (Au309) nanoparticles. The actual MD simulation requires more than 1
million cycles, so this computation time difference becomes more significant. The proposed systems
significantly reduce resource utilization, resulting in decreased on-chip power consumption. In the
implemented system, on-chip power consumption measured from Xilinx Vivado was 5.9 (6.1) Watts
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for UART and 6.0 (6.5) Watts for Ethernet, respectively, for Au147 (Au309). Compared to conventional
PCIe, on-chip power is reduced by 33% and 32% in UART and Ethernet, respectively. From this,
we concluded that where the nanoparticle size is larger than 430 atoms, Ethernet communication is
preferable in comparison to UART and PCIe and if the nanoparticle size is less than 430 atoms, then
UART is more efficient. Both UART and Ethernet communication are robust, hot-pluggable, and
user-friendly. This can lead to low-cost HPC for students and researchers to explore nanoparticles
of experimental relevance. This application paves the way for the development of a Lab-on-a-Chip
platform for the computation of IAP in the future.
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