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ABSTRACT

Internet of Things (IoTs) provides better solutions in various fields, namely healthcare, smart transportation, home,
etc. Recognizing Denial of Service (DoS) outbreaks in IoT platforms is significant in certifying the accessibility and
integrity of IoT systems. Deep learning (DL) models outperform in detecting complex, non-linear relationships,
allowing them to effectually severe slight deviations from normal IoT activities that may designate a DoS outbreak.
The uninterrupted observation and real-time detection actions of DL participate in accurate and rapid detection,
permitting proactive reduction events to be executed, hence securing the IoT network’s safety and functionality.
Subsequently, this study presents pigeon-inspired optimization with a DL-based attack detection and classification
(PIODL-ADC) approach in an IoT environment. The PIODL-ADC approach implements a hyperparameter-tuned
DL method for Distributed Denial-of-Service (DDoS) attack detection in an IoT platform. Initially, the PIODL-
ADC model utilizes Z-score normalization to scale input data into a uniform format. For handling the convolutional
and adaptive behaviors of IoT, the PIODL-ADC model employs the pigeon-inspired optimization (PIO) method for
feature selection to detect the related features, considerably enhancing the recognition’s accuracy. Also, the Elman
Recurrent Neural Network (ERNN) model is utilized to recognize and classify DDoS attacks. Moreover, reptile
search algorithm (RSA) based hyperparameter tuning is employed to improve the precision and robustness of the
ERNN method. A series of investigational validations is made to ensure the accomplishment of the PIODL-ADC
method. The experimental outcome exhibited that the PIODL-ADC method shows greater accomplishment when
related to existing models, with a maximum accuracy of 99.81%.
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1 Introduction

Numerous IoT devices linked to the system promptly rise, so network attacks like DoS and
flooding grow simultaneously [1]. These assaults cause system disruption and DoS to IoT systems.
IoT safety is an intriguing and challenging subject requiring advanced measures to prevent numerous
attacks [2]. Due to the significant heterogeneity of IoT, preserving even communication values through
manifold systems is problematic. Developing many solutions for each device is a complex process. As
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an outcome, an intelligent system must adjust to numerous gadgets while professionally defending
them from safety threats [3]. Distributed DDoS assaults are chief threats to the system, affecting users
and gadgets based on them. DDoS assaults contain manifold plans besides one target, preventing
genuine consumers from accessing services like websites and email [4]. They signify the most common
and dangerous attack beside and from IoT networks, 5th generation (5G) communication systems,
and Cloud Computing (CC).

DDoS attacks are classified into dual chief classes such as high- and low-rate attacks which afford
to the dimension of traffic they create [5]. The low-rate attack behavior is really modest because
they perform likewise to genuine traffic and account for nearly 10–20 percent of total usual network
traffic. If regular traffic of low-rate assaults is small, they theoretically decrease the service quality
of the target and stop the service completely [6]. However, many heterogeneous devices organized
in an IoT environment make it complex to identify IoT attacks by employing customary rule-based
safety solutions. It is a highly challenging task to improve optimum safety techniques for every kind
of device [7]. Machine learning (ML) is a substitute method that permits one to improve optimum
safety techniques depending on experimental data from every device. DL has a lot of achievements in
numerous uses, such as face detection, image processing, and natural language translation [8].

DL can able to extract raw features from data without the need for human participation. It
attains a higher performance rate by mechanically identifying associations in raw data [9]. As an
outcome of DL-based techniques, the accuracy of classifying attacks has enlarged even more [10].
In addition, temporary network traffic connections frequently offer consecutive data and efficiently
train DL techniques with successive traffic, leading to data loss [11]. Some methods related to enlarged
cybersecurity include integrating ML models to recognize DDoS assaults over IoT gadgets [12]. ML
or DL techniques are crucial for analyzing numerous datasets, mainly IoT, to improve the capability
to identify cyberattacks [13]. The restricted resources, like the limited computational capability linked
to IoT devices, pose many limitations, so other methodologies should be applied to tackle these limits
frequently when needed [14].

This manuscript offers the design of pigeon-inspired pigeon-inspired optimization with DL-
based attack detection and classification (PIODL-ADC) technique on an IoT platform. The PIODL-
ADC system employs a hyperparameter-tuned DL model for DDoS attack recognition in the IoT
atmosphere. Primarily, the PIODL-ADC technique employs Z-score normalization to scale input data
into a uniform format. For the feature selection process, the PIODL-ADC technique uses the PIO
algorithm. Meanwhile, the Elman Recurrent Neural Network (ERNN) model was applied to detect
and identify DDoS attacks. Furthermore, Reptile Search Algorithm (RSA) based hyperparameter
tuning is exploited for optimal hyperparameter selection of the ERNN model. A series of experimental
analyses are made to ensure the performance of the PIODL-ADC technique.

2 Related Works

In [15], the authors developed an exclusive technique for safeguarding IoT systems using an SDN
(Software Defined Network)-enabled structure that integrates an active counter-based technique and
DL methods. The main goal is to identify and moderate numerous safety vulnerabilities that attackers
use to create DDoS attacks in IoT systems. A developed framework was verified by employing the
CICDDoS2019 dataset for detecting exploitation and reflection attacks in User Datagram Protocol
(UDP), Transmission Control Protocol (TCP), and Internet Control Message Protocol (ICMP). In
[16], a new attack recognition technique was developed. Initially, input data pre-processed from
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the most applicable features are removed. The removed raw landscapes openly assumed long short-
term memory (LSTM), and mined higher-order arithmetical features exposed to deep reinforcement
learning (DRL) to detect. Next, the average of LSTM and DRL offers identified output in an
actual way. The load of LSTM is enhanced by the self-improved battle royale optimization (SIBRO)
technique.

Ortet Lopes et al. [17] developed CyDDoS, a combined Intrusion Detection Systems (IDS) struc-
ture integrating feature engineering techniques with Deep Neural Networks (DNNs). The ensemble
Feature Selection (FS) depends on 5 ML classifiers employed to detect and remove the most relevant
features utilized by the analytical method. In [18], a Low-Rate Denial of Service (LDDoS) attack
recognition technique has been proposed depending on the DL model that contains an initiation
purpose of LSTM by analyzing specific values of dissimilar LDDoS assaults and usual traffic.
Ahmim et al. [19] developed a new DL-based IDS consisting of two stages. This hybrid technique
integrates DL techniques such as Convolutional Neural Networks (CNNs), Deep Autoencoder,
LSTM, and DNN. The primary stage has dissimilar parallel sub-neural systems trained by exact
methods. The second stage employs the output of the frozen first stage joined by early data as input.

Sagu et al. [20] developed a hybrid technique for recognizing attacks in an IoT atmosphere with
three levels. Primarily, higher-order arithmetical features are removed. Then, recognition takes place
by employing Bidirectional Long Short-Term Memory (BLSTM) and Gated Recurrent Unit (GRU)
to identify the presence of network assaults. To enhance classification accuracy, loads of BLSTM are
optimally set over a self-upgraded Cat and Mouse Optimizer (SU-CMO) method. Ragab et al. [21]
develop a Piecewise Harris Hawks Optimization (PHHO) with an Optimal DL Classifier (PHHO-
ODLC) model. This method has a staged procedure. At an early stage, the PHHO technique is used to
pick pertinent features and improve classification performance. Then, an attention-based bidirectional
LSTM (ABiLSTM) system is used for the DDoS attack detection procedure. Lastly, the ABiLSTM
network’s hyperparameter collection is executed using a grey wolf optimizer (GWO).

In [22], an SDN-enabled DL-driven structure has been developed for threat recognition in an
IoT atmosphere. The advanced Cuda-DNN, GRU (Cu-DNNGRU), and Cuda-BLSTM (Cu-BLSTM)
classification algorithms are approved for actual threat recognition. The offered model also executed
ten-fold cross-validation to display the unbiasedness of outcomes. Aljebreen et al. [23] presented
DDoS attack detection using a snake optimizer with ensemble learning (DDAD-SOEL) model. This
approach incorporated a snake optimizer for the feature subset section and integration of LSTM,
ABiLSTM, and deep belief network (DBN) methods. Also, an Adadelta optimizer is employed for the
hyperparameter tuning process. Bella et al. [24] introduced a hybrid correlation-based feature selection-
bat optimization algorithm (HCFS-BOA) technique and present a CNN method. This model utilized
min-max normalization and CNN classification.

In the field of DDoS recognition in IoT platforms, present models mostly need help with the high
heterogeneity and dimensionality of data, paving the way to inefficiency in detecting relevant factors
that crucially affect the accuracy of the recognition. Conventional feature selection models may need
to sufficiently address IoT data streams’ dynamic and convolutional behavior, so further advanced
models are required. Metaheuristic techniques are prevalent because of their capacity to navigate
substantial search spaces and maximize convolutional issues, improving feature selection outcomes in
this background. Moreover, a research gap exists in effectually incorporating these models with hyper-
parameter tuning procedures to improve the precision and robustness of recognition methods. Present
research considers feature selection and hyperparameter tuning separately, leaving out potential effects
that may be attained by mutually maximizing both features. Addressing this gap via an overall model
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that utilizes metaheuristic techniques for feature selection and concurrent hyperparameter tuning may
improve DDoS recognition, safeguarding more productive and dependable safety for IoT platforms.
Therefore, the PIODL-ADC technique involves the development of PIO-based feature selection and
Resident Space Object (RSO)-based hyperparameter tuning.

3 The Proposed Method

This manuscript proposes the design of the PIODL-ADC technique in an IoT environment. The
technique employs a hyperparameter-tuned DL model for DDoS attack recognition in IoT platforms.
Fig. 1 represents the entire flow of the PIODL-ADC methodology.

Figure 1: Overall flow of PIODL-ADC technique

3.1 Z-Score Normalization

Primarily, the PIODL-ADC technique employs a Z-score normalized to scale the input data
into a uniform format. Z-score normalized is a serious pre-processing method in DDoS recognition
in IoT environments, allowing standardized representation of different sensor data [25]. This model
converts raw sensor values by deducting the mean and dividing by the standard deviation resulting in a
distribution with a standard deviation of 1 and a mean of 0. Using Z-score normalization, differences in
sensor readings are efficiently normalized, permitting reliable comparison and recognition of unusual
patterns indicative of DDoS attacks. In IoT settings, where various devices with dissimilar sensing
abilities donate to the data stream, Z-score normalization is essential in safeguarding the features
employed for DDoS detection are reliably signified, allowing ML techniques to distinguish abnormal
network behavior linked with potential attacks efficiently.
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3.2 Feature Selection Process

For the feature selection process, the PIODL-ADC technique uses the Pigeon-Inspired Opti-
mization (PIO) algorithm. The PIO is a biologically inspired Swarm Intelligence (SI) optimization
algorithm based on the behaviors of pigeons’ flocks [26]. Various amendments are introduced to
improve the convergence rate by changing the implementation procedure or the tuning parameters.
The study presents a predator-prey PIO (PPPIO) for combined controller design and mission planning.
Moreover, Bloch quantum-behaved PIO (BQPIO) is a hybrid model that integrates PIO with a
quantum model. Also, PIO is employed to find air robot path planning optimization problems and is
adapted by incorporating control parameterization and time discretization (CPTD) methods to deal
with the issue of Unmanned Aerial Vehicle (UAV) formation.

PIO is prolonged in its applicability to other uses such as control of landing systems, gliding
trajectory, and Direct Current (DC) motors control spacecraft. The map and compass operator
method entirely depends on the earth’s and sun’s magnetic field, whereby pigeons are used to discover
a flock in long travel. For pigeon i with speed vector Vi and location vector Xi, its velocity and position
in the D-dimensional searching range upgraded in all iterations are evaluated as follows:

Vi (t) = Vi (t − 1) · e−Rt + rand · (
Xg (t) − Xi (t − 1)

)
(1)

Xi (t) = Xi (t − 1) + Vi (t) (2)

In Eq. (1), the map and compass factor is R, rand denotes a random integer, Xg indicates the
existing global optimum location, and Xg is evaluated by comparing locations amongst each pigeon.

The landmark operator model is based on landmarks whereby pigeons use learned landmarks to
discover their trajectory and fly toward their nest. This operator signifies that the pigeon is still far
from its destination and assumes they are unaware of the landmark. This decreases the pigeon number
in every new population by half. Consider Xc(t) as the middle of half of the pigeon’s location at the rth

iteration. Afterwards, each pigeon can fly directly towards the Xc’s destination.

The location upgrading rule for pigeon i at tth iteration is represented below:

Npl (t) = Np (t − 1)

2
(3)

xc =
∑

Npl
Xi (t) fitness (Xi (t))∑
Npl

fitness (Xi (t))
(4)

Xi (t) = Xi (t − 1) + rand. (Xc (t) − Xi (t − 1)) (5)

Fitness (Xi (t)) denotes the quality of individual pigeon:

fitness (Xi (t)) =
⎧⎨
⎩

1
fmin (Xi (t)) + ε

for minimization problems

fmax (Xi (t)) for maximization problems
(6)

For every individual, the optimum location of Ncth iteration is represented by Xp, and
Xp = min(Xi1, Xi2, . . . , XiNc). The aim of the PIO algorithm must be recognized. These two controllers
control the vehicle by multiplying the feedback signal through certain gains. These gains change with
time since the missile technique is a time-variant. The PIO is to calculate the optimal value for gains
to control missile movement. Fig. 2 exhibits the flowchart of PIO.
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Figure 2: Flowchart of PIO technique

The fitness function (FF) employed in the developed technique is specially designed to balance
the number of designated features in every solution (minimum) and classification accuracy (maximum)
achieved by utilizing these particular features. Eq. (7) signifies FF to assess solutions.

Fitness = αγR (D) + β
|R|
|C| (7)

whereas γR(D) denotes the classification error rate of a given classifier. |R| refers to the cardinality
of the nominated subset, and |C| indicates the total extent of features in the dataset; α and β mean
two parameters corresponding to the impact of classification excellence and subset length, ∈ [1,0] and
β = 1 − α.

3.3 DDoS Attack Detection Model

At this stage, the ERNN model is applied to recognize and identify to recognize and identify DDoS
attacks. ERNNs networks with hidden layer (HL) without innovative devices. ERNN is formally
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described below:

ht = f (Wixt + Wht−1 + bh) (8)

yt = g (Uht + bo) (9)

whereas Wi signifies input to HL weights, W denotes the recurrent weight matrix of HL, bh means
hidden bias, U represents HL to outcome weighted matrix and bo refers to the bias vector for the
resultant layer. f and g are corresponding nonlinear functions at HL and output layers. ht, xt, yt relates
to state, input and output at time t, individually and ht−1 is a state at preceding time instant t − 1.
In this case, it was a regression challenge that the output layer preserved linear (i.e., g means identity
function) and rectified linear units (ReLU) utilized in HL.

The parameters of networks enhanced with esteem to mean squared error loss function are
mentioned as follows:

E = 1
T

T∑
t=1

(dt − yt)
2 (10)

T denotes sequence length, and dt signifies the preferred signal at time t. The limits of the output
layer (in Eq. (9)) were learned by employing conventional back-propagation. Other limits of the model
(in Eq. (8)) were learned by utilizing back-propagation over time (BPTT). The recursion for calculating
the error signal at HL via BPTT is given as follows:

et = yt − dt (11)

δt = f ′ ∗ (
W Tδt+1 + UTet

)
(12)

et, δt symbolize error signal at time t at the resultant layer and HL, correspondingly. f ′ means a
derivative of the activation function in HL. However, naive execution of BPTT causes a vanishing
phenomenon or gradient explosion.

3.4 RSA-Based Hyperparameter Tuning

Eventually, the RSA-based hyperparameter tuning is exploited for optimal hyperparameter
selection of the ERNN model. Abualigah et al. first developed RSA in 2021, a special kind of
natural-inspired optimization technique. It is a gradient-free technique that can cope with complicated
challenges subjected to certain constraints.

The initial phase of the algorithm involves selecting a potential solution randomly using Eq. (13):

xi,j = rand · (Ub − Lb) + Lb; i ∈ (1, . . . , N) and j ∈ (1, . . . , q) (13)

Now, the overall population with q features is N. The solution of the ith population having the jth

feature denotes xi,j. The upper and lower boundaries for the jth feature are Ub and Lb and “rand” is
an arbitrarily created value within [0, 1]. Based on iteration count, RSA shifts between exploitation
(hunting) and exploration (encircling) strategies that correspondingly characterize local and global
search techniques.

3.5 Exploration Stage

Crocodile moves within search space via two different strategies: high walking and belly walking.
When t ≤ T

4
, a high walking search plan is employed and when t ≤ T

2
and τ ≤ T

4
, the belly
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walking search strategy is utilized, in which t represents constant iteration. The mathematical model
of exploration behavior is given in the following:

xi,j (t + 1) =

⎧⎪⎨
⎪⎩

[−ni,j (t) · Best (t) · γ
] − [

rand · Ri,j (t)
]

, t ≤ T
4

Es (t) · x(i∈[1,N],j) · Best (t) · rand, t ≤ 2T
4

and t ≥ T
4

(14)

where the hunting operator is ni,j, the best solution refers to Best (t), γ = 0.1, a constant that governs
exploration accuracy during iteration. The ηi,j(t) hunting parameter shown in Eq. (15) is used to retain
continuity of exploration and prevent getting trapped in local optima.

The reduced function is Ri,j(t) shown in Eq. (16), used to restrict the search range. “rand” is
a randomly generated value, and the evolutionary sense Es(t), shown in Eq. (17), representing the
likelihood proportion dropped from 1 to −1 during iteration.

ηi,j (t) = Best (t) × Pi,j (15)

Ri,j = Best(t) − x(rand,j)

Best(t) + ∈ (16)

Es (t) = 2 × rand∈[−1,1] ×
(

1 − 1
T

)
(17)

where ∈ denotes a smaller value. P(i, j) difference parameter is given by:

Pi,j = σ + xi,j − M(xi)

Best(t)(Ub − Lb) + ∈ (18)

In Eq. (19), σ is the sensitivity parameter set as 0.1 and M indicates the mean location:

M = 1
n

m∑
j−1

xi,j (19)

3.6 Exploitation Stage

The hunting or exploitation stage specifies that crocodiles apply cooperative and coordinated
hunting strategies during prey attacks. In the optimization algorithm, this strategy is used to perform a
local search and find the potential solution. The coordination hunting is performed according to t ≤ 3T

4

and t > 2T
4

, while the cooperative hunting is performed if t ≤ T and t > 3T
4

. The location-updating
formula can be represented as follows:

xi,j (t + 1) =

⎧⎪⎪⎨
⎪⎪⎩

Best (t) · rand∈[−1,1], Pi,j, t ≤ 3T
4

and t ≥ 2T
4

[
ni,j (t) · ε · Best (t)

] − [
Ri,j (t) · rand∈[−1,1]

]
, t ≤ T and t ≥ 3T

4

(20)

The termination condition is met once t hits the predefined maximum T . The quickness, efficiency,
and speed of the local search optimization technique named interior-point procedure was employed
to further the performance of RSA’s global search.

The RSA model originates an FF to reach an upgraded classifier solution. It defines a positive
integer to signify a better solution for candidate outcomes. In this research, the minimization of the
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classifier error rate is measured as FF, as assumed in Eq. (21).

fitness (xi) = ClassifierErrorRate (xi) = number of misclassified samples
Total number of samples

∗ 100 (21)

4 Experimental Validation

This The experimental outcome of the PIODL-ADC technique has been tested using the attack
database [27], which comprises 2056 instances and five class labels, as represented in Table 1.

Table 1: Details on database

Classes No. of instances

DDoS 500
DoS 500
Recon 500
Theft 79
Normal 477
Total instances 2056

Fig. 3 illustrates the confusion matrices attained by the PIODL-ADC technique under 80:20 and
70:30 of TRPH/TSPH. The results indicate the effectual detection and classification of all four classes.

The DDoS attack recognition results of the PIODL-ADC approach are reported on 80:20 of
TRPH/TSPH, presented in Table 2 and Fig. 4. The attained performances demonstrate that the
PIODL-ADC system offers effectual recognition outcomes. On 80% of TRPH, the PIODL-ADC
technique offers an average accuy of 99.39%, precn of 97.51%, recal of 97.81%, Fscore of 97.65%, and
MCC of 97.27%. Meanwhile, on 20% of TSPH, the PIODL-ADC system gains an average accuy of
99.81%, precn of 99.61%, recal of 99.60%, Fscore of 99.61%, and MCC of 99.48%.

Figure 3: (Continued)
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Figure 3: Confusion matrices of (a–c) TRPH of 80% and 70% and (b–d) TSPH of 20% and 30%

Table 2: DDoS attack recognition of PIODL-ADC technique on 80:20 of TRPH/TSPH

Classes Accuy Precn Recal Fscore MCC

TRPH (80%)

DDoS 99.15 97.73 98.72 98.22 97.67
DoS 99.33 99.26 98.05 98.65 98.21
Recon 99.51 99.26 98.77 99.01 98.69
Theft 99.57 92.86 94.55 93.69 93.48
Normal 99.39 98.43 98.94 98.68 98.29
Average 99.39 97.51 97.81 97.65 97.27

TSPH (20%)

DDoS 99.51 99.07 99.07 99.07 98.75
DoS 100.00 100.00 100.00 100.00 100.00
Recon 99.76 100.00 98.92 99.46 99.31
Theft 100.00 100.00 100.00 100.00 100.00
Normal 99.76 98.99 100.00 99.49 99.34
Average 99.81 99.61 99.60 99.61 99.48

The DDoS attack recognition outcome of the PIODL-ADC methodology is defined on 70:30 of
TRPH/TSPH and is presented in Table 3 and Fig. 5. The archived outcomes demonstrate that the
PIODL-ADC method offers an effectual recognition solution.
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Figure 4: Average of PIODL-ADC technique on 80:20 of TRPH/TSPH

Table 3: DDoS attack recognition outcome of PIODL-ADC technique at 70:30 of TRPH/TSPH

Classes Accuy Precn Recal Fscore MCC

TRPH (70%)

DDoS 99.17 99.12 97.41 98.26 97.72
DoS 99.44 99.13 98.56 98.84 98.48
Recon 99.31 99.14 98.01 98.57 98.12
Theft 99.79 96.55 98.25 97.39 97.29
Normal 99.24 96.82 100.00 98.38 97.91
Average 99.39 98.15 98.45 98.29 97.90

TSPH (30%)

DDoS 99.35 98.68 98.68 98.68 98.25
DoS 99.51 98.70 99.35 99.02 98.70
Recon 99.19 98.64 97.97 98.31 97.77
Theft 99.68 91.67 100.00 95.65 95.58
Normal 99.68 100.00 98.59 99.29 99.08
Average 99.48 97.54 98.92 98.19 97.88

On 70% of TRPH, the PIODL-ADC approach gains an average accuy of 99.39%, precn of 98.15%,
recal of 98.45%, Fscore of 98.29%, and MCC of 97.90%. In the meantime, on 30% of TSPH, the PIODL-
ADC method reaches an average accuy of 99.48%, precn of 97.54%, recal of 98.92%, Fscore of 98.19%,
and MCC of 97.88%.
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Figure 5: Average of PIODL-ADC technique on 70:30 of TRPH/TSPH

The accuy curves for training (TR) and validation (VL) exposed in Fig. 6 for the PIODL- Analog-
to-Digital Converter (ADC) system on 80:20 of TRPH/TSPH offer valuable insights into its solution
under distinct epochs. Primarily, there is a consistent improvement in both TR and TS accuy with
increasing epochs, indicating the model’s proficiency in learning and distinguishing designs from TR
and TS data. The upward trend in TS accuy underscores the model’s adaptability to the TR dataset
and its ability to make correct forecasts on unobserved data, emphasizing robust generalized skills.

Fig. 7 provides a widespread overview of the TR and TS loss outcomes for the PIODL-ADC
approach on 80:20 of TRPH/TSPH under distinct epochs. The TR loss consistently decreases as
the model refines its weight to minimize classifier errors on both data. The loss curves exemplify
the model’s arrangement with the TR data, emphasizing its ability to capture patterns effectively in
both datasets. Noteworthy is the continuous refinement of parameters in the PIODL-ADC algorithm,
aimed at decreasing differences between forecasts and actual TR labels.

Regarding the precision-recall (PR) curve obtainable in Fig. 8, the findings unequivocally support
that the PIODL-ADC system on 80:20 of TRPH/TSPH consistently accomplishes improved PR values
across all the classes. These outcomes underscore the model’s effectual capacity for discriminating
among different classes, underscoring its efficacy in accurately identifying class labels.

Furthermore, in Fig. 9, the PIODL-ADC algorithm creates Receiver Operating Characteristic
(ROC) outcomes on 80:20 of TRPH/TSPH, demonstrating its proficiency in distinguishing among
classes. These curves provide appreciated insights into how the trade-off between True Negative Rate
(TPR) and False Positive Rate (FPR) varies under various classifier epochs and thresholds. The
results underscore the model’s correct classifier performance under various class labels, emphasizing
its effectiveness in addressing diverse classification challenges.
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Figure 6: Accuy curve of PIODL-ADC technique on 80:20 of TRPH/TSPH

Figure 7: Loss curve of PIODL-ADC system at 80:20 of TRPH/TSPH
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Figure 8: PR curve of PIODL-ADC system at 80:20 of TRPH/TSPH

Figure 9: ROC curve of PIODL-ADC technique on 80:20 of TRPH/TSPH
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Finally, a detailed comparative analysis of the PIODL-ADC approach with recent systems is
provided in Table 4 and Fig. 10 [23]. The results implied a higher solution for the PIODL-ADC method
regarding different metrics. Based on accuy, the PIODL-ADC technique reported an improved accuy of
99.81% whereas the DDAD-SOEL, H3SC-DLIDS, AE-ML, IDS-IOT, XGBoost, and RF approaches
reach lesser accuy values of 99.61%, 98.70%, 97.48%, 96.83%, 96.77%, and 96.12%, respectively. Also,
based on precn, the PIODL-ADC algorithm reported a higher precn of 99.61% although the DDAD-
SOEL, H3SC-DLIDS, AE-ML, IDS-IOT, XGBoost, and RF system attain lower precn values of
99.27%, 96.45%, 95.31%, 95.47%, 993.68%, and 94.40%, correspondingly. At last, based on Fscore, the
PIODL-ADC system reported higher Fscore of 99.61% but the DDAD-SOEL, H3SC-DLIDS, AE-ML,
IDS-IOT, XGBoost, and RF methodologies gain minimal Fscore values of 99.28%, 95.70%, 94.82%,
95.21%, 94.91%, and 94.16%, correspondingly.

Table 4: Comparative outcome of PIODL-ADC technique with other models

Method Accuy Precn Recal Fscore

PIODL-ADC 99.81 99.61 99.6 99.61
DDAD-SOEL 99.61 99.27 99.27 99.28
H3SC-DLIDS 98.70 96.45 95.23 95.70
AE-ML 97.48 95.31 93.11 94.82
IDS-IOT 96.83 95.47 94.26 95.21
XGBoost 96.77 93.68 91.25 94.91
RF Model 96.12 94.40 93.29 94.16

Figure 10: Comparative outcome of PIODL-ADC technique with other approaches

These results guaranteed the superior performance of the PIODL-ADC technique on the DDoS
attack recognition process.
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5 Conclusion

In this manuscript, the PIODL-ADC technique is proposed in an IoT environment. The PIODL-
ADC technique employs a hyperparameter-tuned DL model for DDoS attack recognition in an IoT
environment. Primarily, the PIODL-ADC technique employs Z-score normalization to scale the input
data into a uniform format. For the feature selection process, the PIODL-ADC technique uses the PIO
algorithm. Meanwhile, the ERNN model is applied to identify and detect DDoS attacks. Furthermore,
RSA-based hyperparameter tuning is exploited to optimize the hyperparameter selection of the ERNN
model. A series of experimental analyses are made to ensure the performance of the PIODL-ADC
model. The experimental values stated that PIODL-ADC methodology exhibits better performance
when compared to other techniques in different measures.
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