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ABSTRACT

In recent years, wearable devices-based Human Activity Recognition (HAR) models have received significant
attention. Previously developed HAR models use hand-crafted features to recognize human activities, leading to
the extraction of basic features. The images captured by wearable sensors contain advanced features, allowing
them to be analyzed by deep learning algorithms to enhance the detection and recognition of human actions.
Poor lighting and limited sensor capabilities can impact data quality, making the recognition of human actions
a challenging task. The unimodal-based HAR approaches are not suitable in a real-time environment. Therefore,
an updated HAR model is developed using multiple types of data and an advanced deep-learning approach.
Firstly, the required signals and sensor data are accumulated from the standard databases. From these signals, the
wave features are retrieved. Then the extracted wave features and sensor data are given as the input to recognize
the human activity. An Adaptive Hybrid Deep Attentive Network (AHDAN) is developed by incorporating a
“1D Convolutional Neural Network (1DCNN)” with a “Gated Recurrent Unit (GRU)” for the human activity
recognition process. Additionally, the Enhanced Archerfish Hunting Optimizer (EAHO) is suggested to fine-tune
the network parameters for enhancing the recognition process. An experimental evaluation is performed on various
deep learning networks and heuristic algorithms to confirm the effectiveness of the proposed HAR model. The
EAHO-based HAR model outperforms traditional deep learning networks with an accuracy of 95.36, 95.25 for
recall, 95.48 for specificity, and 95.47 for precision, respectively. The result proved that the developed model is
effective in recognizing human action by taking less time. Additionally, it reduces the computation complexity and
overfitting issue through using an optimization approach.
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1 Introduction

Over the last two decades, the HAR has progressed with bounds and leaps with various indirect
and direct practical implications such as Artificial Intelligence (AI) mount cameras in robotics,
wearable sensor devices, health and fitness apps in the healthcare industry, Automated surveillance
systems in surveillance of traffic, and Interaction environment between the computers and computers
are majorly influencing our daily lives [1]. Extensive research is required for the recognition of human
activities and behaviors since these are the true motives behind these HAR over the recent years [2].
In wearable and mobile computing, the HAR becomes a wide area of research in which wearable
devices are mostly used for the collection of data for recognition purposes. A deep understanding
of the activity patterns of individuals is needed for the recognition of human actions. Furthermore,
the long-term abilities and habits of individuals contribute to a wide range of user-centric applications.
Video streaming, human-computer interaction, video surveillance, and healthcare systems are the wide
of applications supported by the HAR [3]. In the field of computer vision, the recognition of human
activities is extensively studied and limited to specific scenario-based applications. Hence, pre-installed
cameras are equipped in the HAR models with guaranteed angle of view and sufficient resolution [4].
Yet, the use of wearable sensors in HAR approaches allows for continuous sensing without being
constrained by spatio-temporal characteristics during daily activities [5]. Since the wearable does not
need infrastructural support and is ubiquitous and hence special attention is needed for wearable
devices during data acquisition. Wearable body sensors are utilized to collect specific body movements
in HAR approaches, which are then transformed into various signal patterns for classification using
both machine and deep structure models [6].

The 3D action data collected by the wearable sensors is considered to be multivariate time series.
The sampling rate of the data collected by these sensors has a higher sampling rate, enabling them to
function in challenging and dim conditions. The inertial sensors have some challenges similar to that
of vision-based sensors including the awkwardness of wearing them all the time, inadequate onboard
power, and sensor drift [7]. To enhance accessibility through smartwatches and commercial fitness
trackers, there is no consensus on the optimal sensor position when adopting a wrist-mountable form
during data acquisition [8]. Recently in [9], a comprehensive study was conducted to identify a suitable
machine leaner for adapting wrist-mountable sensors in HAR. It studied the placement of the lower
limb sensors for the HAR. Optimizing sensor placement for the HAR is also a research interest. Public
datasets from Inertial Measurement Units (IMU) are available, with data collected from different parts
of the human body such as the chest, knee, ear, wrist, arm, ankle, and waist using various parametric
settings [10]. Depending on the type of activities, there is variation in data acquisition that needs to
be investigated. Simple activities with coarse granularity, such as sitting and walking, are efficiently
recognized using the low sampling rate-based sensor placed on the waist [11]. But, while detecting the
combinatorial activities with finer granularity such as driving and eating, a satisfactory performance
is not produced by the single sensor attached to the waist [12].
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Effective machine learning techniques are necessary to accurately identify human activities using
data from multiple sensors and signals. Support Vector Machine (SVM) and Hidden Markov Models
(HMM) are machine learning models recently developed for the HAR [13]. However, the recognition
performance over human activities is further improved by the adoption of deep learning methods and
these models produce higher recognition accuracy. The recognition of human actions and activities
is challenging in various situations due to the large variability in body movements [14]. On the other
hand, it is difficult to recognize human behaviors and activities from the multimodal body sensor
data and signals. Most of the conventional approaches mainly focused on single modalities for the
identification of human activities that do not provide robust outcomes and it is not practical in
healthcare applications [15]. Increasing the HAR accuracy over the multi-modal data has been a
challenging task over the multi-modal data because it learns only fewer numbers of features from
the sensor data. To improve the HAR performance, combinations of sensors like gyroscope sensors
and accelerometer sensors are used for the acquisition of multimodal sensor data. Convolutional
Neural Network (CNN) and Deep Belief Network (DBN) are the most widely used approaches
for HAR, known for achieving higher recognition accuracy [16]. The most discriminative and
relevant features from the data have been extracted to provide better recognition outcomes among
these approaches [17]. However, recognizing HAR in real-world scenarios is challenging and time-
consuming to produce accurate recognition outcomes. Moreover, the gradient vanishing issue is an
important problem in the deep learning-aided HAR models [18]. Therefore, a new hybrid deep learning
network with an attention mechanism is developed for the recognition of human action to get higher
recognition accuracy.

The significant contributions of the proposed hybrid deep learning-based human action recogni-
tion models are given in the following points:

• To develop a human action recognition model using a hybrid deep learning network with
an attention strategy. This model is designed to monitor human activities and interactions,
benefiting applications such as patient monitoring, video surveillance, and suspicious activity
detection.

• To implement an EAHO for updating the random parameters based on fitness values. This
optimization technique fine-tunes the parameters of the 1DCNN and GRU to enhance the
recognition performance of human actions.

• To develop an AHDAN model for monitoring human activities, the AHDAN model incorpo-
rates the 1DCNN and GRU with an attention mechanism. Parameter optimization enhances
performance by maximizing accuracy and minimizing False Positive Rate (FPR).

• The efficacy of the recommended HAR model is validated with the conventional algorithms
and techniques by various observation measures.

The remaining sections describe the proposed human action recognition model using a hybrid
deep structure with an attention mechanism given in the following points. The previously developed
human action recognition schemes with their advantages and demerits are provided in Section 2. The
problem statement is also included in this section. The collection of signals and data using the sensors
is provided in Section 3. Moreover, this section includes the architectural view of the recommended
HAR framework. The extraction of wave features from the signals and the proposed EAHO algorithm
are briefly elucidated in Section 4. The developed AHDAN model with the basic function of 1DCNN
and GRU is given in Section 5. The experimental setup and the comparative analysis are provided in
Section 6. The conclusion of the proposed HAR framework is elucidated in Section 7.
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2 Related Works

In 2019, Gumaei et al. [19] implemented an intelligent HAR framework utilizing a multi-sensor-
based hybrid deep structure mechanism. Here, the Gated Recurrent Unit (GRU) and Simple Recurrent
Units (SRUs) have been integrated into the neural networks. The deep SRUs process the multimodal
input data sequence by utilizing their ability to store internal memory states. After that, the amount
of past information passed to the future state has been learned and stored using the deep GRUs for
rectifying the instability or fluctuations in accuracy and gradient vanishing issues.

In 2022, Roche et al. [20] introduced a HAR framework for leveraging the benefits of multimodal
machine learning and sensor fusion. Subjects performed activities using RGB and point cloud data
initially described using a 3-D modified Fisher vector model and Regions-based-CNN (R-CNN). The
outputs of the human activity classification were accurate when evaluated through custom-accustomed
multimodal data.

In 2021, Buffelli et al. [21] proposed a purely attention-based strategy for the recognition of human
activities. The analysis showed that the performance of the developed attention-based human action
recognition model was significantly superior to previous methods. The personalizing human activity
recognition approach attained greater importance in terms of F1 score.

In 2023, Wang et al. [22] offered a HAR approach using the “Multidimensional Parallel Convo-
lutional Connected (MPCC)-based deep learning” method based on multi-dimensional data. Multi-
dimensional convolutional kernels have been fully used to recognize human activities. The diversity of
feature information was improved by incorporating “Multi-scale Residual Convolutional Squeeze-
and-Excitation (MRCSE)” blocks. The developed model’s performance was confirmed through
tenfold cross-validation.

In 2021, Ahmad et al. [23] implemented a “Multistage Gated Average Fusion (MGAF)”-based
HAR framework that extracted and fused the features of CNN from all layers. The MGAF, known as
Signal Images (SI) and Sequential Front View Images (SFI), has transformed the inertial sensor data
into depth images.

In 2023, Hu et al. [24] presented an innovative data fusion methodology based on multimodal
data, which was skeleton-guided and it modified the RGB, depth, and optical flow information into
images. The transformation into depth images has been accomplished concerning key point sequences.
The multi-modal fusion network has comprehensively extracted the actions of the pattern, signifi-
cantly increasing recognition effectiveness for rapid inference speed. Finally, extensive experiments
were made to show its efficacy on two large-scale datasets likely and the results achieved exciting
recognition outcomes.

In 2020, Yudistira et al. [25] presented a multimodal CNN that captured the multimodal
correlations over arbitrary timestamps to recognize human actions. By using the deep CNN, the
temporal and spatial features were needed for recognizing the actions, a fusion of these two streams
and decreasing overfitting were the open problems. After, the pre-trained CNN was learned through
the Shannon fusion-based correlation network. The simple fully connected layers of the correlation
network captured spatiotemporal correlations from long-duration videos over arbitrary times. The
effectiveness of the multi-modal correlation was confirmed by comparing it to conventional fusion
methods using the HMDB-51 and UCF-101 datasets.
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In 2019, Chung et al. [26] introduced a recognition scheme for human actions using deep learning.
The data collection process was done through an Android mobile device and eight body-worn IMU
sensors. The human activity data has been trained using Long Short-Term Memory (LSTM) was
taken in both controlled and real-world scenarios. The experimental results demonstrated that the
model effectively identified daily living actions such as driving and eating activities.

3 Structural Demonstration of Proposed Human Action Recognition Model over Multi-Modal Data
Using Adaptive and Network

3.1 Architectural View of Developed Human Action Recognition Model

The recognition of fine-grained activities of human action is the challenging task of conventional
human action recognition models. Fine-grained activities play a crucial role in identifying the action
sequence and sub-actions, which offer more detailed information about the context. As a result,
deep learning strategies are employed for human action recognition, yielding average accuracy levels.
Furthermore, the ability of the current deep structure-based HAR approach to generalize is limited.
Hence, advanced methodologies are needed to provide a better balance between the accuracy of
HAR and the resources utilized for the recognition process. Additional data is required for accurate
human action recognition. In contrast, traditional deep learning techniques have low activity detection
efficiency and require high computation time for human action recognition. Additionally, identifying
everyday human activities poses a significant challenge. These challenges are addressed and solved
by the newly recommended advanced deep structure-aided HAR framework. This model effectively
identifies descriptive functions from wave signals, leading to accurate human action recognition. The
advanced deep learning strategy used in the human action recognition model demonstrates high
scalability. The architectural view of the implemented advanced deep learning-based HAR is shown
in Fig. 1.

A new human action recognition approach is implemented via an advanced deep structure strategy
for classifying manually trimmed actions with higher recognition accuracy. The input signals wanted
for the recognition of human action are collected using traditional databases like Kaggle. Gathered
sensor signals are given to the wave feature extraction stage, where wave features like P, T, U, and QRS
complex waves are attained for the recognition of human action. Then, the collected bio-signals and
the sensor data are passed as the single combined input to the proposed attention-aided hybrid deep
structure for the recognition of human actions. The feature extraction steps involve extracting both the
spatial and temporal features. The spatial and temporal features are obtained from the human motion
signals from Dataset 2. Combining features from sensor signals and data enhances action recognition
by providing detailed information for training the deep learning model. Incorporating ECG wave
features, both spatial and temporal, helps the model distinguish between different human actions such
as jogging, walking, and running. These make an additional source and increase the effectiveness of
the HAR technique.

This network is developed using 1DCNN and GRU networks to attain better recognition
outcomes. The recognition accuracy of the implemented AHDAN is further increased by optimizing
hyperparameters of the 1DCNN and GRU. Here, the hyperparameters such as “hidden neuron count
and epoch size” from both 1DCNN and GRU are optimized by the proposed EAHO. This optimal
tuning of parameters maximizes the accuracy and minimizes the FPR over the identification of human
action. The performance of the suggested HAR model is validated with the conventional heuristic
algorithms and previously developed human action recognition models to show effectiveness.
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Figure 1: Block schematic demonstration of recommended advanced deep learning-based HAR model

3.2 Multi-Modal Dataset Collection

Sensors are used for the collection of bio-signals and data to recognize human action. This
information is acquired from traditional sources for processing the proposed HAR model. For the
experimentation of the proposed model, 75% of the entire data has been used for training purposes,
and the remaining 25% is used for testing purposes. This can ensure the validation of the proposed
methodology.

Dataset 1 (Sensor Data): The wanted sensor data are collected from the “Human Activity
Recognition with Smartphones” Dataset from the source of https://www.kaggle.com/datasets/uciml/
human-activity-recognition-with-smartphones (accessed 01 February 2024). This HAR database is
generated with the recordings of a total of 30 study participants with the help of embedded initial
sensors mounted on the smartphone. This dataset contains the “estimated body acceleration and
Triaxial acceleration from the accelerometer”, 561 feature vectors with the “frequency and time
domain attributes, Triaxial angular velocity from the gyroscope, identifier of the subject and its activity
label”. With the support of the embedded gyrometer and accelerometer, “3-axial linear acceleration
and 3-axial angular velocity” are captured at the constant frequency of 50 Hz.

https://www.kaggle.com/datasets/uciml/human-activity-recognition-with-smartphones
https://www.kaggle.com/datasets/uciml/human-activity-recognition-with-smartphones
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Dataset 2 (Sensor Signals): The sensor signals required for the recognition of human action
are taken from the dataset of “UTD Multimodal Human Action Dataset (UTD-MHAD)”, which
is attained from the source of https://personal.utdallas.edu/~kehtar/UTD-MHAD.html (accessed 01
February 2024). Low-cost wearable IMUs are used for the collection of the HAR dataset. The
sampling rate of the IMU sensor is about 50 Hz. This UTD-MHAD database contains 27 different
actions including crossing arms in the chest, walking in place, squatting, and so on. These 27 actions
are performed by a total of 8 subjects included in this dataset. After removing all corrupted sequences,
861 data sequences are presented. Four types of data, including skeleton, colour, inertial, and depth
information, are used for the recognition of human actions. The sample action image and the sensor
image for swipe left are given in Figs. 2 and 3, sample action image and the sensor image for swipe right
are given in Figs. 4 and 5 and for wave are given in Figs. 6 and 7. Data is often in signal or raw format.
To simplify representation, sensor signals are converted into images to extract spatial and temporal
features easily.

Figure 2: Sample image for swipe left

4 Description of Proposed Optimization Strategy for Parameter Tuning
4.1 Proposed EAHO

A new EAHO algorithm based on AHO is developed to get the optimum values of the design
variables to improve the recognition performance over human action. The hyperparameters are
optimized from the developed AHDAN to achieve the maximum performance during human action
recognition. The hyperparameters like “hidden neuron counts and epoch count” are tuned from
the 1DCNN model and GRU approach for improving the HAR efficacy. This optimal tuning of
parameters improves the effectiveness by maximizing accuracy and minimizing FPR.

The average performance metric, known as mean fitness, is also utilized in developing the adaptive
concept. The conventional AHO algorithm uses a randomly assigned parameter for controlling the
optimization procedure. In some cases, related to data scarcity, having an unequal distribution of data
can lead to finding the optimal solution prematurely or prolonging the convergence time. Both cases
are ineffective in finding an optimal solution. One way of overcoming this problem is adjusting the
random parameter using a cost function.

https://personal.utdallas.edu/~kehtar/UTD-MHAD.html
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Figure 3: Sensor image for swipe left

Figure 4: Sample image for swipe right

In the proposed EAHO, the random parameter ϑ1 is improved based on the best, worst, and the
mean fittest solutions. The updated adaptive concept ϑ1 based on fitness is provided in below Eq. (1):

ϑ1 = (FitBest ∗ MeanFit)

(FitWorst ∗ MeanFit)
(1)

The best fitness determined from the algorithm is denoted by FitBest, the worst fitness calculated
from the algorithm is indicated by FitWorst and the mean fitness attained from the algorithm is denoted
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by MeanFit. The proposed updated random parameter-based EAHO provides better searching ability
by incorporating data retention and higher accuracy abilities.

Figure 5: Sensor image for swipe right

Figure 6: Sample image for wave

The algorithmic steps involved in the proposed EAHO are briefed as the step-by-step procedure
below:

Step 1: First, the random solution is populated, and each candidate in the solution refers to the
sensor signals and the data.

Step 2: It involves defining the parameters, attributes, and fitness functions for the optimization
process.
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Figure 7: Sensor image for wave

Step 3: The elite or the optimal solution candidate is found using the fitness function, and now
the solution with the top fitness candidate, worst fitness candidate, and the mean fitness candidate are
represented as FitBest, FitWorst and MeanFit, respectively.

Step 4: Find the adaptable attribute ϑ1 for regulating various update procedures.

Step 5: Update the positions of the candidate according to the shooting and jumping behavior of
the Archerfish as defined by the existing AHO algorithm.

Step 6: After the set of the iteration, find the optimal solution representing the suitably hidden
neurons and epoch for the HAR recognition.

5 Classification of Spatial and Temporal Features for the Recognition of Human Action Using Adaptive
and Attentive Deep Learning Model

5.1 1DCNN Model

1DCNNs [27] offer an efficient solution for recognizing human actions. The convolution filters
are trained to adaptively extract meaningful spatiotemporal parameters from the input channels. As
a result of this process, the input sequence is transformed into a feature space, enhancing recognition
capabilities. Mostly, the one-dimensional convolution network has significantly reduced the number
of trainable parameters, making it computationally efficient for HAR.

In the one-dimensional CNN, the mth layer associated with the Xm hidden state is represented in
Eq. (2).

Xm =
{

Pm
X ∗ � + Bsm

X , if m = 1

Pm
X ∗ Xm−1 + Bsm

X , m = 2, 3, . . . , M
(2)
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The convolution operation is indicated by ∗, the biases are represented by the term Bsm
X and the

convolution filter of the 1DCNN is denoted by Pm
X, which has the dimensionality of gm ×em−1 ×el. Here,

the term � is the feature matrix of the fine-tuned network. The filter size is indicated by the terms gm

and em, correspondingly. The matrix for the hidden state for the mth layer is indicated by the term Xm,
which has the dimensionality of em ×�m. Here, the term �m indicates the length of the filter. The hidden
state outcomes are passed to the activation function of ReLU, which is depicted in Eq. (3).

Xm =
{

0, if Xm ≤ 0

Xm, otherwise
(3)

The last hidden layer’s hidden state matrix is flattened by the vector
→
j

M

for fully connecting with
the output layer, which is indicated by Eq. (4).
→
k = Pk · →

j
M

+ →
Bsk,

→
k ∈ �H (4)

The affine transformation of
→
j

M

is defined by the term
→
k that has been associated with the bias

matrix
→
Bsk and weight matrix Pk. The outcome of the fully connected layer is given to the softmax layer

and that layer produces the predicted probability score. The structural demonstration of the 1DCNN
approach is provided in Fig. 8.

Figure 8: Sample schematic illustration of 1DCNN

5.2 GRU Model

The GRU model [28] is used for the recognition of human action, where all the hidden layers
are interconnected multiple times. There are only two gates presented, “reset gate and update gate”.
Here, the reset gate is denoted by the term Sg and Ug. The update gate primarily controls how much
information from the previous hidden state influences the current state. When the update gate has
a higher value, it gathers more details from the previous state. The reset gate determines which
information from the previous state should be disregarded. When the reset gate has a lower value,
it results in more information being ignored. Reset gates are used to handle short-term dependencies,
while update gates are utilized for long-term dependencies.
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The function to be followed in the reset gate is represented in Eq. (5).

Sg = ϑ
(
TS · ⌊

hig−1, Exg

⌋)
(5)

The weight matrix of the reset gate is indicated by Ts, the logistic sigmoid function is indicated by
the term ϑ and the information of the previous hidden state is represented by hig-1. Moreover, the term
Exg denotes the input of wave features applied to the input gate.

The function to be performed in the update gate is indicated in Eq. (6).

Ug = ϑ
(
TU · ⌊

hig−1, Exg

⌋)
(6)

The prior hidden and current hidden state functions are expressed in Eqs. (7) and (8), respectively.

h̃ig = tan h
(
Th̃i ·

[
Sg ∗ hig−1, Exg

])
(7)

hig = (
1 − Ug

) ∗ hig−1 + Ug ∗ h̃ig (8)

The function of the output gate is expressed in the following Eq. (9):

Outg = ϑ
(
TOut · hig

)
(9)

From these expressions, the long-term dependencies are effectively learned using the GRU model.
This model provides better human action recognition outcomes.

5.3 AHDAN-Based Human Action Recognition

A new HAR approach is implemented using an intelligent deep structure strategy for monitoring
the movement and activities of humans, which is helpful in fields like healthcare, human/computer
interface, gaming, intelligent monitoring, and sports performance analysis sector. Sensors are utilized
to collect necessary data and signals, enhancing the efficiency of HAR through advanced feature
extraction capabilities. The spatial and temporal features extracted from the data, along with the sensor
data, are inputted into the proposed AHDAN model for the recognition of human activities. The
proposed AHDAN model is developed with the assistance of the attentive-based 1DCNN and GRU
models. The attention mechanism in the hybrid deep learning network replicates the way biological
systems internally monitor activities. Detailed information from the data is acquired to improve the
recognition of human actions. Significant data is captured and emphasized by assigning weights in the
attention mechanism. After the weights are distributed, feature vectors are derived. Subsequently, the
accumulated features are aggregated to generate the ultimate feature matrix.

The hyperparameters like “hidden neuron count, and epoch count” from the 1DCNN and GRU
model are optimized for further improving the local feature extraction capability of the proposed
AHDAN model. Through parameter optimization, the proposed AHDAN model enhances accuracy
and reduces FPR in human action recognition. The objective function of the proposed AHDAN
method with the optimization process is given in Eq. (10).

Objfun = arg min
{HidCNN

x∗ ,EpCNN
y∗ ,HidGRU

u∗ ,EpGRU
v∗ }

(
1

ARY
+ FPR

)
(10)

The term Objfun denotes the fitness function of the proposed AHDAN, the maximized accuracy is
indicated as ARY , and minimized FPR is signified as FPR. The optimized hidden neuron is signified as
HidCNN

x∗ , which is present in the interval of [5, 255] and the optimally tuned epoch count from 1DCNN
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is denoted as EpCNN
y∗ , lies in the range of [5, 50]. The optimized hidden neuron from the GRU present

in between [5, 255] is represented as HidGRU
u∗ and the optimized epoch from the GRU is signified as

EpGRU
v∗ , which is tuned in the range between [5, 50]. The accuracy and FPR formula is given as below

in Eqs. (11) and (12), respectively:

ARY = X pos + X ngv

X pos + X ngv + Y pos + Y ngv
(11)

FPR = Y pos

X ngv + Y pos
(12)

Here, the terms “X pos, X ngv, Y pos and Y ngv represent the true positives, true negatives, false positives
and false negatives”.

The human action recognition process using the proposed AHDAN-based HAR is shown in
Fig. 9.

Figure 9: Human action recognition process using proposed AHDAN
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6 Results and Discussion
6.1 Experimental Setup

A new model for recognizing human movements and activities has been developed using a
combination of deep learning techniques and optimization strategies in Python, aiming for improved
accuracy in action recognition. The recognition results of the new approach have been compared with
traditional strategies and existing models to assess its performance in human action recognition. In
the experiments, a population of 10, a chromosome length of 4, and a maximum of 50 iterations were
used. The conventional heuristic algorithms like “Golden Eagle Optimizer (GEO) [29], Humboldt
Squid Optimization Algorithm (HSOA) [30], Gorilla Troops Optimizer (GTO) [31], and Archerfish
Hunting Optimizer (AHO) [32]” were considered for the evaluation of recognition performance. The
previously developed human action recognition models using LSTM [33], 1DCNN [34], GRU [35],
and 1DCNN-GRU [36] were considered for performing the experimental analysis. The cost function
analysis, convergence evaluation, and positive as well as negative measure analysis were conducted for
this experiment. Table 1 below provides an overview of the hardware and software details relevant to
the study implementation.

Table 1: Performance validation of the proposed human action recognition model using hybrid deep
learning

Hardware/Software Specification

Processor Intel(R) Core(TM) i3-1005G1 CPU @ 1.20 GHz 1.19 GHz
RAM 16.0 GB
System type 64-bit operating system, x64-based processor
OS Windows
Edition Windows 11 pro
Software development environment Python
Interpreter Python 3.11

6.2 Performance Validation in Terms of K-Fold

Several positive measures such as F1-Score, accuracy, sensitivity, precision, and specificity are
considered for the experimentation and also negative measures such as FPR, FNR, and FPR are
taken for analyzing the performance. The effectiveness among the traditional models is provided
in Fig. 10 and the performance validation among the heuristic strategies is depicted in Fig. 11.
Experimental results indicate that the F1-Score of the presented framework outperforms LSTM by
6.35%, 1DCNN by 5.5%, GRU by 3.83%, and 1DCNN-GRU by 3.25% when considering a K-fold
value of 3. The graphical results demonstrate that the effectiveness of human action recognition in the
presented scheme is significantly improved through the use of conventional optimization strategies
and previous approaches. As depicted below, the HAR performance by the proposed EAHO has
been more effective than other comparative techniques. The comparative heuristics have yielded lower
performance outcomes, highlighting the superior effectiveness of the proposed EAHO-based HAR
strategy. The proposed EAHO demonstrates superior accuracy at 95.36043, validating its effectiveness
in inaccurate activity recognition. Furthermore, performance metrics such as Recall, Specificity,
Precision, FPR, FNR, NPV, FDR, F1-Score, and MCC show enhancements in the EAHO compared
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to the values of 95.2454, 95.47546, 95.46503, 4.52454, 4.754601, 95.47546, 4.534973, and 95.35509 in
comparative techniques.

6.3 Numerical Analysis among Traditional Algorithms

The performance validation of the proposed human action recognition model among the con-
ventional heuristic algorithms and traditional models is illustrated in Table 2. The analysis results
show that the precision of the presented human action recognition model is improved by 4.02% to
GEO-AHDAN, 4.6% to GTO-AHDAN, 3.68% to HSOA-AHDAN, and 2.52% to AHOO-AHDAN.
All the analysis results show that the efficacy of the recognition model is greatly enhanced than the
conventional techniques while performing the recognition of human actions among the sensor data.

Figure 10: (Continued)
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Figure 10: (Continued)
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Figure 10: Human action recognition performance of the presented approach among the prior works
in regards to “(a) accuracy, (b) F1-Score, (c) FDR, (d) FNR, (e) FPR, (f) NPV, (g) precision, (h)
sensitivity, (i) specificity, and (j) MCC” by varying K-fold

Figure 11: (Continued)
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Figure 11: Human action recognition efficiency of the proposed model among the heuristic algorithms
in regards to “(a) accuracy, (b) F1-Score, (c) FDR, (d) FNR, (e) FPR, (f) NPV, (g) precision, (h) recall,
(i) specificity, and (j) MCC” by varying K-fold
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Table 2: Performance validation of the proposed human action recognition model using hybrid deep
learning

Among algorithms

Performance
measures

GEO-AHDAN
[29]

GTO-AHDAN
[31]

HSOA-AHDAN
[30]

AHO-AHDAN
[32]

EAHO-
AHDAN

Accuracy 91.67945 91.29601 92.33129 93.71166 95.36043
Recall 91.56442 91.33436 92.63804 94.40184 95.2454
Specificity 91.79448 91.25767 92.02454 93.02147 95.47546
Precision 91.77556 91.26437 92.07317 93.11649 95.46503
FPR 8.205521 8.742331 7.97546 6.978528 4.52454
FNR 8.435583 8.665644 7.361963 5.59816 4.754601
NPV 91.79448 91.25767 92.02454 93.02147 95.47546
FDR 8.224443 8.735632 7.926829 6.88351 4.534973
F1-Score 91.66987 91.29935 92.35474 93.75476 95.35509
MCC 0.833591 0.82592 0.846642 0.874316 0.907211

Among techniques

Performance
measures

LSTM [33] 1DCNN [34] GRU [35] 1DCNN-GRU
[36]

EAHO-
AHDAN

Accuracy 89.68558 91.71779 92.06288 92.52301 95.36043
Recall 89.11043 90.87423 92.10123 93.32822 95.2454
Specificity 90.26074 92.56135 92.02454 91.71779 95.47546
Precision 90.1474 92.4337 92.03065 91.84906 95.46503
FPR 9.739264 7.43865 7.97546 8.282209 4.52454
FNR 10.88957 9.125767 7.898773 6.671779 4.754601
NPV 90.26074 92.56135 92.02454 91.71779 95.47546
FDR 9.852599 7.566303 7.969349 8.150943 4.534973
F1-Score 89.62592 91.64733 92.06593 92.58273 95.35509

7 Conclusion

A new HAR model has been developed to monitor human activities and movements for various
applications. Sensor data and signals needed for recognizing human activities were collected from
online sources. Spatial and temporal features were then extracted from these signals. The collected
sensor data and signals were integrated and provided to the implemented AHDAN for human action
recognition. This network was built using 1DCNN and GRU models with an attention mechanism.
Optimizing parameters improves recognition accuracy and reduces FPR. The proposed human action
recognition model plays a crucial role in computer vision applications. The effectiveness of the
implemented HAR scheme with hybrid deep learning was validated against conventional algorithms
and previous models. The analysis results demonstrate that the presented framework achieved an
accuracy of 95.36% in recognizing human actions. The recognition efficacy of the implemented HAR
framework has significantly surpassed that of previous works.
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