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ABSTRACT

Object detection in unmanned aerial vehicle (UAV) aerial images has become increasingly important in military
and civil applications. General object detection models are not robust enough against interclass similarity and
intraclass variability of small objects, and UAV-specific nuisances such as uncontrolled weather conditions. Unlike
previous approaches focusing on high-level semantic information, we report the importance of underlying features
to improve detection accuracy and robustness from the information-theoretic perspective. Specifically, we propose
a robust and discriminative feature learning approach through mutual information maximization (RD-MIM),
which can be integrated into numerous object detection methods for aerial images. Firstly, we present the rank
sample mining method to reduce underlying feature differences between the natural image domain and the aerial
image domain. Then, we design a momentum contrast learning strategy to make object features similar to the
same category and dissimilar to different categories. Finally, we construct a transformer-based global attention
mechanism to boost object location semantics by leveraging the high interrelation of different receptive fields. We
conduct extensive experiments on the VisDrone and Unmanned Aerial Vehicle Benchmark Object Detection and
Tracking (UAVDT) datasets to prove the effectiveness of the proposed method. The experimental results show that
our approach brings considerable robustness gains to basic detectors and advanced detection methods, achieving
relative growth rates of 51.0% and 39.4% in corruption robustness, respectively. Our code is available at https://
github.com/cq100/RD-MIM (accessed on 2 August 2024).
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1 Introduction

Unmanned aerial vehicles (UAVs) collecting high-resolution images have a wide range of applica-
tions in many fields, such as traffic management, disaster response, and infrastructure inspection [1,2].
Using object detection approaches to understand and analyze aerial images has attracted significant
attention [3]. In recent years, deep neural networks (DNNs) have developed rapidly in object detection,
which achieved superior performance on natural images [4].
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Directly applying these detection models to aerial images still has two problems. On the one hand,
interclass similarity and intraclass variability are more severe on aerial image datasets, impairing the
accuracy of object detection [5,6]. Fig. 1a intuitively illustrates that some objects indeed have confusing
appearances and low distinctiveness. On the other hand, UAVs have complex operating environments,
such as varying light, motion blur, and uncontrolled weather conditions, which make object detection
even harder [7]. As depicted in Fig. 1b, changing illumination drastically affects object visibility. To
deal with these problems, a great amount of effort has been carried out [8,9]. Nevertheless, these efforts
often ignore the importance of underlying features. For example, the dual sampler and head detection
network (DSHNet) [8] designed class-biased samplers and bilateral box heads from the perspective of
high-level semantic information to process semantically similar objects. Although it allowed detectors
to perform better for each category on clean aerial images, the robustness was poor in highly variable
capturing conditions.

Figure 1: Intuitive explanation of the two problems in object detection for aerial images. (a) Interclass
similarity and intraclass variability. (b) UAV complex operating environments (daytime vs. nighttime)

Transfer learning available everywhere is an effective scheme to learn underlying features. It
not only accelerates model convergence but also tremendously improves model robustness [10].
Common transfer learning methods use the mature backbone trained on the ImageNet dataset [11]
as initialization and freeze part of the layers to retain more robust underlying features [12]. When we
consider transfer learning from the ImageNet backbone to object detection models in aerial images,
the obtained results are not as desirable as described in the leading papers [10,13]. As shown in Fig. 2,
in the case of excluding model overfitting, the accuracy of the loading ImageNet method is similar
to training from scratch, and robustness performance is even worse with the increase of iterations.
We assume the reason for this phenomenon is that the underlying features are poorly learned due to
the significant differences between natural images and aerial images. The differences may stem from
the different heights and angles captured by UAV cameras, leading to smaller and denser objects in
aerial images.

To this end, we propose a robust and discriminative underlying feature learning approach
according to the mutual information maximization principle, which is able to assist object detectors for
aerial images to further improve robustness rather than achieve state-of-the-art performance. Similar
to the robustness measure method in natural images [13], we also add various corruption types to
aerial image datasets according to the UAV operation environments. The experiments are conducted
on clean and corrupted VisDrone [14] and Unmanned Aerial Vehicle Benchmark Object Detection
and Tracking (UAVDT) [15] datasets. Fig. 2 intuitively shows the great performance gains of our
approach, especially on corrupted aerial images. Our code is available at https://github.com/cq100/
RD-MIM (accessed on 2 August 2024). The main contributions of this paper are as follows:
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• We report from the information-theoretic perspective that effective underlying feature learning
for aerial image object detection resists pervasive nuisances and reduces interclass similarity
and intraclass variability.

• We propose a robust and discriminative feature learning approach based on mutual information
maximization (RD-MIM). Our method consists of the rank sample mining, the momentum
contrast learning strategy, and a flexible global attention mechanism based on transformer
encoder.

• Our RD-MIM is a generic method that can be easily coupled with various backbones and
detectors. The RD-MIM brings considerable performance gains in terms of clean accuracy and
corruption robustness to advanced aerial object detection methods.

The remaining sections of this paper are organized as follows. In Section 2, the related work is
reviewed. In Section 3, the proposed method is illustrated in detail. In Section 4, experimental datasets
and implementation details are presented, and related results are analyzed. Finally, in Section 5, the
work of this paper is summarized.

Figure 2: (Continued)
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Figure 2: Performance comparison of training from scratch, loading ImageNet, and our method. (a)
Accuracy measure on the clean VisDrone validation dataset. (b) Robustness measure on the corrupted
VisDrone validation dataset. (c) Accuracy measure on the clean VisDrone testing dataset

2 Related Work
2.1 General Object Detection

With the introduction of region-based convolutional neural network (R-CNN) model, DNN-
based networks have played a central role in general object detection tasks [16]. There are primarily
two streams of object detection approaches: anchor-free and anchor-based detectors [17]. Anchor-
free detectors use the key points to estimate the predicted bounding box, such as fully convolutional
one-stage object detection (FCOS) [18]. Anchor-based detectors locate object positions by generating
anchor candidates, which can be further divided into two-stage and one-stage detectors [19]. For
example, compared with the representative one-stage method RetinaNet [20], Faster R-CNN [21]
involves a region proposal network (RPN) to search for possible object locations. We measured the
proposed method on three different types of detectors.

From the component perspective, DNN-based object detectors generally consist of three parts:
the backbone, the neck, and the head [22]. The backbone plays a key role, which has strong feature
extraction capability, such as the traditional ResNet50 [23], the popular RegNet [24], and the latest
PVTv2 (pyramid vision transformer version 2) [25]. RegNet can balance accuracy and computation
amount well, which is conducive to designing lightweight networks. PVTv2 improves the current
promising pyramid vision transformer to establish a more robust and flexible baseline. We use the
three networks with different structures as the backbone of detectors.

2.2 Object Detection in Aerial Images

Compared with natural images, object detection for aerial images brings greater challenges.
Interclass similarity and intraclass variability degrade the performance of general detectors.
Huang et al. [26] constructed a multi-proxy detection network by analyzing object distribution for
aerial images to deal with serious category confusion. Wang et al. [27] used a class-aware strategy to
maintain a balance in the number of objects from different categories, which facilitated the distinction
of confused objects. Tang et al. [5] designed the points estimated network based on a coarse-to-fine
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framework to predict the positions of similar objects. These customized approaches are limited due to
non-universality, which cannot be effectively applied to common object detection methods.

Object detection methods for aerial images require detectors with strong robustness due to
UAV complex working conditions [28]. Existing potential solutions generally can be divided into
three aspects [29,30]. First, adversarial training frameworks are utilized to obtain robustness gains.
Wu et al. [31] used UAV meta-data in conjunction with the detector based on adversarial learning
to extract domain-robust features. Second, the expert head is designed on the top of the model for
each specific domain, such as capturing time and weather [29]. As more domains are involved, model
ensemble becomes difficult, and it cannot be generalized to unseen domains. Last, data augmentation
is a typical strategy to enhance the robustness of detectors. Dense and small object detection (DSDet)
[9] used data augmentation based on crop functionality to increase training data, achieving robust
detection in aerial images.

Besides the aforementioned methods, there exist other advanced techniques for aerial object
detection. Blas et al. [32] designed a swimming pool detection platform by utilizing geographic
information tools and common machine learning methods. Xie et al. [33] presented a plug-and-play
object activation network (OAN) to help detectors focus on patches containing objects in aerial images.
Task-wise sampling convolutions (TS-Conv) [34] guided dynamic label assignment by adaptively
sampling features from sensitive areas for localization and classification, boosting detector adaptation
and resistance.

2.3 Transfer Learning in Object Detection for Aerial Images

Using transfer learning to improve the performance of DNN-based models is a common practice,
because underlying features are close to each other when the input domains of the tasks are similar
[35,36]. Specifically, models transfer the structure or parameters from the pre-trained network trained
on the ImageNet dataset available publicly [37]. Generally speaking, there exist three transfer learning
methods. The first is full-network transfer only using the pre-trained network as initialization, which
easily erases the robustness property during fine-tuning. The second is fixed-feature transfer, which
freezes the whole backbone and only trains the detection head. It performs slightly worse, but
facilitates robustness transfer [13]. The third is a common approach that fixes part of the pre-trained
backbone and loads parameters as initialization, which is usually applied for object detection models
in aerial images [22,38].

We find that directly transferring ImageNet backbone to detectors for aerial images yields
poor performance gains. The possible reason is that the complex capturing conditions of UAVs
make the differences between natural images and aerial images larger, which leads to fewer similar
underlying features.

3 Methodology
3.1 Theoretical Analysis

Many approaches have successfully learned the representations through the mutual information
maximization principle [39]. Inspired by this, we attempt to solve the poor robustness of detectors
to object categorical similarity and UAV nuisances from the information-theoretic perspective. To be
specific, we compute the mutual information between the underlying features extracted from different
backbones and corresponding categories. In practice, it is intractable to maximize mutual information,
so this problem is usually translated into estimating a lower bound.
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Assuming that B0 is the backbone trained on the ImageNet dataset, B1 is the enhanced backbone
using the momentum contrast learning strategy and rank sample mining method. Let (x1, y1) denote an
example pair, where x1 is an object or background area on the aerial image, and y1 is the corresponding
category. According to the InfoNCE [39] lower bound, we can estimate the mutual information I as
follows:

I (B0 (x1), y1) ≥ E
ζ

⎡
⎢⎣log

fθ (B0 (x1), y1)∑
y′∈ζ

fθ (B0 (x1), y′)

⎤
⎥⎦ + log ζ (1)

I (B1 (x1), y1) ≥ E
ζ

⎡
⎢⎣log

fθ (B1 (x1), y1)∑
y′∈ζ

fθ (B1 (x1), y′)

⎤
⎥⎦ + log ζ (2)

where f θ is a function used to score the correlation of B(x1) and y1, and ζ is a category collection of
objects and backgrounds on the aerial image dataset.

The backbone B0 trained on the ImageNet dataset uses cross-entropy loss Lin, which is defined as

Lin = − log
exp

(
ϕθ [B0 (u1)]

T v1

)
∑
v′∈V

exp
(
ϕθ [B0 (u1)]

T v′
) (3)

where (u1, v1) is an example pair from the ImageNet dataset, V is a category collection, and ϕθ is a
mapping function. By minimizing the loss function Lin, the backbone B0 only can indirectly increase
the correlation of B0(x1) and y1 due to the differences between natural images and aerial images.

The enhanced backbone B1 with the momentum contrast learning is trained on the set of object
and background chips from the aerial image through the proposed rank sample mining method. Given
category y1, B1 learns to minimize the Lce and Lmc losses of the sample x1

Lce = − log
exp

(
gθ [B1 (x1)]

T y1

)
∑
y′∈ζ

exp
(
gθ [B1 (x1)]

T y′
) (4)

Lmc = − log
exp

(
B1 (x1)

T B1 (x+)/τ
)

∑
y′∈ζ

exp
(
B1 (x1)

T B1

(
xy′

)
/τ

) (5)

where gθ is a mapping function, B1(x+) is the positive representation, and τ is a temperature parameter.

By optimizing Eqs. (4) and (5), the enhanced backbone B1 can learn more similar features to the
size and viewing angle of aerial objects, which directly maximizes the lower bound of I(B1(x1), y1).
Considering that the backbone B0 can learn generalized underlying features from a vast number of
natural images, our enhanced backbone B1 adopts the backbone B0 parameters as initialization. Fig. 2
also verifies the fact that the loading ImageNet method has better accuracy and robustness compared
to the training from scratch in the early stage of network training.

Based on the above analysis, it can be concluded that I(B1(x1), y1) has a larger lower bound on
mutual information than I(B0(x1), y1). It demonstrates that the enhanced backbone B1 learns more
robust and discriminative underlying features than B0. That is, the enhanced backbone B1 can provide
more benefits for object detection in aerial images. This conclusion also motivates us to design an
efficient robust and discriminative feature learning approach.
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3.2 Overview Framework

The proposed RD-MIM approach can efficiently learn robust and discriminative features, which
is available for almost all detectors. The framework of the proposed method based on Faster R-CNN
with feature pyramid network (FPN) [40] is depicted in Fig. 3. Different from the original Faster R-
CNN, we design the rank sample mining method, the momentum contrast learning strategy, and a
GATM module. Firstly, the priorities of object categories are ranked on aerial image datasets. Upon
the priorities, we utilize them and the positions of the ground truth anchors to mine object chips and
background chips. Then, these chips are used to fine-tune the backbone that loads the parameters of a
pre-trained ImageNet network. During fine-tuning, the backbone utilizes the momentum contrast
learning to improve the capability to distinguish object features. Finally, we directly transfer the
enhanced backbone to detectors and integrate the GATM module to efficiently extract global feature
information, which flows to each feature map through the FPN. The RPN and detection head are the
same as Faster R-CNN.

Figure 3: Framework of the proposed method based on Faster R-CNN with FPN. The rank sample
mining method and momentum contrast learning strategy mainly learn the robust and discriminative
underlying features between different image domains. The global attention mechanism based on
transformer encoder (GATM) captures global information between different regions of feature maps
to enhance object location semantics
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3.3 Rank Sample Mining Method

Unlike natural images, aerial images usually contain small and dense objects and more complex
backgrounds, since UAVs capture these images at different altitudes, angles, lighting, and weather
conditions. The significant differences impair robust feature learning. To maximize the mutual
information between natural image domain features and aerial image domain features, we design a
rank sample mining method to sample image chips from high resolution aerial images.

The designed approach includes object chip mining and background chip mining. Object chips
are predefined regions containing annotated objects within the aerial image. We state the detailed
object chip mining pipeline in Algorithm 1. Firstly, we rank each category in descending order based
on a predefined category priority. This priority is represented by CP as a hyperparameter, which
is specifically discussed in Section 4.4. For clarity, let B = {b1, . . . , bN} be the collection of ground
truth anchors, where each bi corresponds to an annotated object in the aerial image. To is defined
as the intersection over union (IoU) threshold. Then, we cherry-pick the ground truth anchors of
the highest category priority from B, denoted as M ← argmax(B, CP). The selected anchors M are
added to collection D that saves the required ground truth anchors. To avoid duplicate processing,
we sequentially remove M from B. Finally, we calculate the IoU of the ground truth anchors M
and those of other categories. If the IoU value of Mi and bi is greater than the threshold To, the
anchor bi is removed from B. The collection D is mapped to the original aerial image, obtaining object
chips O. Moreover, we perform random rotation, horizontal, and vertical flipping operations for
data augmentation to further increase the number of object chips with high priority, which facilitates
alleviating model bias.

Algorithm 1: Object chip mining
Input: B = {b1, . . . , bN}, CP = [c1, . . . , cP], To, where B is the collection of ground truth anchors,

CP is the category priority, and To is the IoU threshold.
Output: Object chips O
1: Initialize: D = {}, which is used to save the required ground truth anchors.
2: while B �= {} do
3: M←argmax(B, CP)
4: D←D∪M, B←B−M
5: for bi∈B do
6: if IoU (M, bi)≥To then
7: B←B−bi

8: end if
9: end for
10: end while
11: O←cut(img, D)

The background chip mining aims to select regions that do not contain any annotated objects of
interest, promoting the detector to better understand and separate the foreground objects from the
complex backgrounds. One principle is the appropriate chip size. The width w and height h of the chip
are calculated as

w = h =
√√√√ 1

N

N∑
i=1

S (bi) (6)
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where b is the ground truth anchors, S is an area calculation operation, and N is the number of ground
truth anchors on the current aerial image. Another principle is the positions of background chips,
which do not overlap with the ground truth anchor of the object as much as possible. We divide the
aerial image into a grid of candidate regions. The center point of each grid is used as the center of
the candidate background chip. We calculate the IoU between these candidate chips and the ground
truth anchors. When the IoU value is lower than the threshold Tb, the candidate chip is retained as a
background chip. More details of the thresholds To and Tb are discussed in Section 4.4.

After mining the object chips and background chips, we uniform them to a fixed size. These resized
chips are used to enhance the backbone by fine-tuning. The rank sample mining method lays the
foundation for detectors to distinguish objects from complex backgrounds, and confused objects from
different categories.

3.4 Momentum Contrast Learning Strategy

In the aerial image domain, object categories often exhibit high semantic similarity, which
makes sample detection more difficult. To mitigate this, we propose a momentum contrast learning
strategy to enhance the backbone ability to learn more discriminative features. This approach enables
the backbone to encode features of the same category similarly and those of different categories
dissimilarly [41].

During the initialization phase, we use a matrix E with dimension [C, Dim] to store the average
encoded features for each category, where C denotes the number of categories and Dim is the
length of encoded features. We also initialize a queue Q with dimension [C, Num, Dim] as a temporary
storage for encoded features during the learning process. The Num is the maximum number of encoded
features for each category that the queue can store, which is discussed in Section 4.4.

In a concrete implementation, the feature map output from the backbone undergoes an average
pooling operation to reduce its dimensionality and retain important features. This operation results
in a feature map F with dimension [B, Dim], where B denotes the batch size, which is less than the Num.
We use momentum contrast loss function Lmc to fine-tune the backbone pre-trained on the ImageNet
dataset.

Lmc = − log
exp

(
xqE (c+)/τ

)
∑C

i=1 exp
(
xqE (ci)/τ

) (7)

where xq is the encoded feature of a sample in F , E(c+) is the expectation of encoded features that
are the same category as xq, and E(ci) is the expectation of encoded features for category i in the
matrix E.

The feature map F is enqueued into queue Q according to the category labels of input samples,
maintaining a dynamic and updated set of features for each category. When the queue reaches its
maximum capacity Num, we use the momentum method to update matrix E.

E (ci) ← mE (ci) + (1 − m) Eq (ci) (8)

where m is a momentum factor, and Eq(ci) is the expectation of encoded features for category i in
the updated queue Q. This momentum update mechanism ensures that the encoded features in the
matrix E are continuously and stably updated, facilitating the backbone to learn consistent feature
representations more easily.

Fig. 4 depicts the encoded feature visualization from ResNet50. After applying the proposed
momentum contrast learning strategy, we observe that the distances between features from the same
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category are closer, while those of different categories are more distant. The stark contrast in feature
clustering highlights the effectiveness of our proposed momentum contrast learning strategy.

Figure 4: Visualization results of the encoded feature distribution from ResNet50. (a) Without
momentum contrast learning. (b) With momentum contrast learning

3.5 Global Attention Mechanism Based on Transformer Encoder

Aerial images always contain complex geographical elements, which easily confuse objects and
backgrounds. In our work, we not only focus on the object regions but also consider the background
regions that provide abundant contextual information for objects and facilitate object localization.
Inspired by the transformer [42], we propose an efficient and simple GATM module to extract relevant
information from different receptive fields in robust and discriminative feature maps, which is able to
enhance the object location semantics. Our module maintains original input sizes and can be extended
as an additional component for various typical object detectors. As presented in Fig. 5, we only add
the GATM module in the last two stages of the backbone, which allows us to decrease the expensive
computation and memory costs. The enhanced information can flow to the shallow feature maps
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through FPN. Related experiments on the arrangement of the proposed module are discussed in
Section 4.4.

Figure 5: The architecture of GATM. Our module is embedded in the last two stages of the backbone
network, which primarily consists of the patch embedding and a transformer encoder

In GATM module, given an input feature map with dimension [H, W , C], we use the zero padding
and depthwise separable convolution to obtain a series of patches. They are flattened and projected to
the fixed dimensional embedding. After that, we feed the patch embedding and position embedding
into a transformer encoder. The output is reshaped to its original size through a 1 × 1 convolution. For
the transformer encoder, it contains the multi-head attention and feed-forward layers, which achieves
better performance for occluded and dense objects in aerial images. To further decrease computation
costs, we use spatial reduction (SR) to reduce input sequences for key K and value V. The self-attention
operation A can be formulated as

A (Q, K , V) = Softmax
(

Q × SR (K)
T

√
d

)
SR (V) (9)

where Q is the query, and d is a scaling factor.

4 Experimental Results and Analysis
4.1 Datasets

We used two popular datasets VisDrone and UAVDT to verify the effectiveness of the proposed
method for object detection in aerial images. In addition, to evaluate the compatibility of our method
with oriented object detection methods, we introduced the DroneVehicle dataset [43] with oriented
bounding box (OBB) annotations.

• VisDrone dataset: The dataset has 10 object categories and 10,209 images, including 6471 for
training, 548 for validation, and 3190 for testing. The image size is about 2000 × 1500 pixels, and
the majority of objects are small, dense, and occluded from each other. We used the validation
set to evaluate our method, following the same as previous methods [8].

• UAVDT dataset: The dataset consists of 23,258 training images and 15,069 testing images. The
images with a 1080 × 540 size include three kinds of vehicles: car, bus and truck.
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• DroneVehicle dataset: It includes 28439 visible-infrared image pairs with OBB annotations and
has five categories: car, truck, bus, van, and freight car. The input image size is 840 × 712. We
only adopted RGB images of the dataset.

To further measure robustness for detectors in aerial images, inspired by Yamada et al. [13]
work on natural images, we introduced 10 synthetic image corruption types to the two VisDrone
and UAVDT datasets. Considering the complex working conditions of UAVs, we adopted the
following corruption types: Gaussian, shot, defocus, motion, snow, frost, fog, brightness, contrast,
and compression [44]. The corrupted images are algorithmically synthesized and only used to test
detector robustness. We applied each type to the VisDrone validation dataset and UAVDT testing
dataset, obtaining 5480 and 150,690 corrupted images, respectively. Fig. 6 presents the 10 corruption
types on the VisDrone dataset.

Figure 6: Corruption types on the VisDrone dataset

4.2 Implementation Details

Our experiments were implemented on the open-source MMDetection toolbox [45]. The com-
parative method YOLOv8 [46] used the MMYOLO [47] framework. We adopted Faster R-CNN,
RetinaNet, and FCOS with three different backbones of ResNet50, RegNetX-1.6GF, and PVTv2-B0.
These models were trained and tested on two NVIDIA Tesla P40 GPUs with 24 GB memory.

In the training phase, we set the batch size to 4, the initial learning rate to 1.0 × 10−4, and the
number of the epochs to 18. The testing phase used the same input image size as the training phase.
We used the primary AP (average precision), AP50, and AP75 as evaluation metrics. AP50 and AP75
are the average precision with the IoU threshold of 0.5 and 0.75, respectively. Clean accuracy was
evaluated on images without corruption types. The mean detection accuracy of the detector for each
corruption type is defined as corruption robustness. The confusion matrix was also introduced to
evaluate and analyze errors and confusions between different object categories.

4.3 Comparison Experiments

To compare the detection performance of our approach and the original method that trans-
fers ImageNet network, we implemented three representative detectors, including Faster R-CNN
(FRCNN), RetinaNet (Retina), and FCOS as basic models. We chose ResNet50, RegNetX-1.6GF,
and PVTv2-B0 as backbones in Tables 1–3, respectively. RD-MIM achieves obvious improvements on
almost all basic models, demonstrating the importance of underlying features. It can be seen that our
method has higher AP score increases on the VisDrone dataset compared with the UAVDT dataset.
Also, the improvement in robustness is greater than that of accuracy on the UAVDT dataset. The
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reason is that the UAVDT dataset contains only three categories, so the categorical similarity is not
severe. In Table 1, original FCOS obtains higher clean accuracy than Retina, but it has poor corruption
robustness. It means that accuracy and robustness are not always correlated, indicating the necessity
of studying corruption robustness on aerial images. RD-MIM achieves the relative growth rates of
51.0% and 39.4% on the corrupted VisDrone dataset using FCOS and on the corrupted UAVDT
dataset using FRCNN, respectively. It suggests that the proposed approach has considerable benefits
in enhancing robustness. In Table 3, although the PVTv2-B0 composed of transformer architecture
performs well in handling dense and small object detection problems, it still obtains gains from our
method. The training loss of FRCNN with ResNet50 on the VisDrone dataset is presented in Fig. 7.
With the increase of training steps, our approach achieves faster convergence and lower loss values.

Table 1: Performance comparison of basic models based on ResNet50 backbone

Method VisDrone UAVDT

Clean accuracy Corruption robustness Clean accuracy Corruption robustness

AP (%) AP50 (%) AP75 (%) AP (%) AP50 (%) AP75 (%) AP (%) AP50 (%) AP75 (%) AP (%) AP50 (%) AP75 (%)
FRCNN 21.4 37.4 21.5 16.6 29.9 16.3 17.1 29.2 18.6 10.4 18.9 9.2
Retina 15.7 29.8 14.6 11.1 23.6 10.2 15.8 30.2 15.3 12.8 24.8 11.7
FCOS 16.9 29.8 17.2 9.8 19.2 9.3 16.9 29.9 17.8 10.5 19.8 10.0
FRCNN+RD-MIM 23.8 41.0 24.4 20.2 34.1 20.1 19.1 32.3 20.4 14.5 26.2 14.4
Retina+RD-MIM 18.0 34.1 16.6 15.1 27.4 13.8 16.1 29.2 16.6 13.5 25.3 13.1
FCOS+RD-MIM 18.7 32.6 18.8 14.8 26.5 14.6 19.0 32.1 20.9 14.4 25.4 15.2

Table 2: Performance comparison of basic models based on RegNetX-1.6GF backbone

Method VisDrone UAVDT

Clean accuracy Corruption robustness Clean accuracy Corruption robustness

AP (%) AP50 (%) AP75 (%) AP (%) AP50 (%) AP75 (%) AP (%) AP50 (%) AP75 (%) AP (%) AP50 (%) AP75 (%)
FRCNN 19.9 35.5 19.4 15.1 27.5 14.7 16.2 27.8 17.6 11.8 20.8 12.3
Retina 13.4 26.4 12.0 9.3 19.1 8.0 13.9 25.5 14.0 9.5 18.3 8.7
FCOS 14.3 26.0 14.2 10.9 20.2 10.6 14.1 25.7 14.6 10.8 20.3 10.7
FRCNN+RD-MIM 22.9 39.8 22.8 17.8 31.9 17.5 19.2 32.4 21.3 15.5 26.6 16.9
Retina+RD-MIM 16.1 31.2 14.6 11.9 23.8 10.6 15.7 28.8 16.1 12.0 22.7 11.6
FCOS+RD-MIM 18.1 31.6 17.8 13.9 24.8 13.7 15.6 29.2 15.8 13.3 25.5 13.1

Table 3: Performance comparison of basic models based on PVTv2-B0 backbone
Method VisDrone UAVDT

Clean accuracy Corruption robustness Clean accuracy Corruption robustness

AP (%) AP50 (%) AP75 (%) AP (%) AP50 (%) AP75 (%) AP (%) AP50 (%) AP75 (%) AP (%) AP50 (%) AP75 (%)

FRCNN 23.7 41.9 23.3 19.9 36.2 19.2 18.9 34.4 18.8 14.7 27.4 14.1
Retina 19.6 37.7 18.4 16.4 32.3 15.0 15.1 27.7 15.2 12.3 22.9 11.9
FCOS 17.2 30.7 17.3 14.5 26.6 14.3 16.7 31.3 16.6 14.1 26.9 13.5
FRCNN+RD-MIM 25.9 44.9 26.5 21.7 38.7 21.4 20.7 34.3 22.7 17.0 28.9 18.2
Retina+RD-MIM 21.1 39.9 19.8 17.7 34.5 16.3 15.1 27.4 15.1 12.9 23.9 12.7
FCOS+RD-MIM 18.8 32.6 18.8 16.0 28.4 15.9 17.6 32.3 17.9 16.2 29.8 16.4
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Figure 7: The training loss of FRCNN with ResNet50 on the VisDrone dataset

Table 4 presents the detection results on each class by using FRCNN with ResNet50 on the clean
VisDrone dataset. Our method improves AP scores for all classes, especially those categories with hard
samples. For example, the detection accuracy for the class awning-tricycle and bicycle is increased by
2.3% and 2.0%, respectively. We further explored the confusion matrices of AP scores for different
categories in Fig. 8. From the observation, our approach allows detectors to better distinguish objects
and complicated backgrounds, and reduces the detection errors of objects from confused categories.
The results reveal that the designed rank sample mining method and momentum contrast learning
strategy can effectively alleviate the problems of interclass similarity and intraclass variability.

Table 4: Detection results for each class on the clean VisDrone dataset

Method AP (%) Car Bus Van Ped. Motor Truck Person Tricycle Awn. Bicycle

FRCNN 21.4 51.2 32.2 27.8 20.4 20.1 20.1 13.7 13.5 7.7 7.0
FRCNN+RD-MIM 23.8 53.7 35.5 31.5 23.3 22.8 22.2 15.8 14.5 10.0 9.0

Figure 8: Confusion matrices on the clean VisDrone dataset using (a) original FRCNN and (b)
FRCNN with our RD-MIM
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To further explore the robustness performance of the RD-MIM, we evaluated the AP scores of
FRCNN with ResNet50 under different corruption types in Table 5. The shot noise and snow severely
deteriorate the accuracy of the original detector on the VisDrone and UAVDT datasets, resulting in
8.1% and 9.3% AP drops compared to clean accuracy. After applying the RD-MIM, the AP scores
increase by 5.2% and 6.0%. Moreover, we also used the models trained on the VisDrone dataset to
evaluate the unseen UAVDT dataset by using AP scores in Table 6. Even though the training and
testing sets have completely different data distributions, our implementation still outperforms the
original models, yielding 4.5%, 4.2%, and 4.8% average improvements. These results reveal that our
approach brings great robustness gains to the detector.

Table 5: Robustness evaluation under different corruption types in AP

Dataset Method Gaussian Shot Defocus Motion Snow Frost Fog Brightness Contrast Compression
VisDrone FRCNN 13.4 13.3 15.4 16.3 13.8 18.0 17.8 21.1 17.8 19.1

FRCNN+RD-MIM 18.6 18.5 17.9 19.2 19.7 21.2 20.9 23.3 20.0 22.7
UAVDT FRCNN 8.5 8.5 9.7 10.2 7.8 11.4 11.2 13.3 11.4 12.2

FRCNN+RD-MIM 12.2 12.3 12.6 13.6 13.8 15.5 15.0 18.5 15.0 16.8

Table 6: Evaluation results of robustness on the unseen UAVDT dataset by using models trained on
the VisDrone dataset

Method Car Truck Bus Average (%)

FRCNN 15.8 3.8 13.7 11.1
Retina 16.7 3.6 13.3 11.2
FCOS 17.2 2.8 14.2 11.4
FRCNN+RD-MIM 20.9 6.8 19.0 15.6
Retina+RD-MIM 21.4 5.8 18.9 15.4
FCOS+RD-MIM 22.1 7.2 19.4 16.2

The comparison of existing approaches on the VisDrone dataset is shown in Table 7. The proposed
approach outperforms the first two methods [9,27], resulting in 3.8% and 1.2% AP score improvements
respectively. Compared to the DSHNet [8] with FRCNN, RD-MIM obtains slightly lower accuracy
on clean aerial images but increases by 2.2% AP score on corrupted aerial images. QueryDet [48] is
specifically designed for aerial images, which performs well for small objects. After combining the
RD-MIM, the AP scores increase by 1.9% and 3.8% on clean and corrupted images, respectively. We
also evaluated the performance gains of the recently released YOLOv8 [46] and the advanced DINO
(DETR with Improved denoising anchor boxes) [49]. As can be seen, our RD-MIM still improves the
performance of advanced detectors, especially in terms of corruption robustness.

To demonstrate the compatibility of our method, we tested different types of oriented object
detection methods, including Faster R-CNN (OBB) [50], Retina (OBB) [20], ROI Transformer [51],
OAN [33], and recent TS-Conv [34] on the DroneVehicle dataset in Table 8. We adopted AP50 to
evaluate each subcategory. As can be observed, our RD-MIM help the original detection methods
achieve higher AP50 scores. It illustrates that our approach can be easily integrated into oriented object
detection methods to further improve performance.
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Table 7: Performance comparison of existing approaches on the VisDrone dataset

Method Detector Clean accuracy Corruption robustness

AP (%) AP50 (%) AP75 (%) AP (%) AP50 (%) AP75 (%)

SimCal [27] FRCNN 20.0 35.8 19.6 – – –
DSDet [9] 22.6 41.7 21.6 – – –
DSHNet [8] 24.6 44.4 24.1 18.0 34.0 18.3
DSHNet [8]+RD-MIM 23.8 41.0 24.4 20.2 34.1 20.1
DSHNet [8] Retina 16.1 30.2 15.5 11.6 25.3 10.3
DSHNet [8]+RD-MIM 18.0 34.1 16.6 15.1 27.4 13.8
QueryDet [48] 26.3 46.5 26.6 22.6 43.1 22.0
QueryDet [48]+RD-MIM 28.2 52.7 26.7 26.4 44.6 25.7
DINO [49] Advanced 23.1 41.8 22.0 19.7 36.8 18.1
DINO [49]+RD-MIM 26.2 42.8 26.9 23.5 38.9 23.9
YOLOv8 [46] 26.4 43.1 27.1 21.2 35.4 21.5
YOLOv8 [46]+RD-MIM 28.3 45.6 29.3 24.9 42.4 26.6

Table 8: Compatibility evaluation of our RD-MIM and oriented object detection methods

Method Car Freight car Truck Bus Van AP50 (%)

FRCNN(OBB) [50] 67.9 26.3 38.6 67.0 23.2 44.6
Retina(OBB) [20] 67.5 13.7 28.2 62.0 19.3 38.1
ROI Transformer [51] 68.1 29.1 44.2 70.6 27.6 47.9
OAN(OBB) [33] 68.6 26.1 38.4 68.2 24.3 45.1
TS-Conv(OBB) [34] 90.1 48.1 64.4 91.7 46.5 68.2
FRCNN(OBB) [50]+RD-MIM 68.2 33.5 43.3 67.7 29.8 48.5
Retina(OBB) [20]+RD-MIM 67.9 15.4 35.2 65.1 23.5 41.4
ROI Transformer [51]+RD-MIM 68.3 35.2 46.7 71.8 32.2 50.8
OAN(OBB) [33]+RD-MIM 69.5 29.2 43.8 69.8 27.1 47.9
TS-Conv(OBB) [34]+RD-MIM 90.0 50.7 66.5 92.0 49.3 69.7

4.4 Ablation Study

We conducted ablation experiments on the VisDrone dataset to verify the contributions of major
components in RD-MIM, as depicted in Table 9. Rank sample mining method (RSM) shows an
obvious increase over the original FRCNN, because it is conducive to better learning underlying
features of aerial images. After employing momentum contrast learning (MCL), the AP score increases
by 1.2% on the clean VisDrone dataset. The promising result indicates that our momentum contrast
learning can help the detector distinguish object features more effectively. The detection accuracy is
further improved with the GATM module, illustrating that it can enhance feature representations.
The performance trend of corruption robustness is similar to clean accuracy and has a higher gain. It
suggests that each component of RD-MIM facilitates remarkable robustness enhancement.
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Table 9: Results of the ablation study for RD-MIM on the VisDrone dataset

Method Clean accuracy Corruption robustness

AP (%) AP50 (%) AP75 (%) AP (%) AP50 (%) AP75 (%)

FRCNN 21.4 37.4 21.5 16.6 29.9 16.3
FRCNN+RSM 22.0 38.7 22.1 18.1 32.4 18.1
FRCNN+RSM+MCL 23.2 40.1 23.6 19.5 33.9 19.0
FRCNN+RD-MIM 23.8 41.0 24.4 20.2 34.1 20.1

In Table 10, we explored the impact of relevant parameters on the AP scores of the rank sample
mining method. We conducted three ways of ranking category priorities, including random order,
quantity order, and performance order. The quantity order is based on long-tail distribution where
the fewer the sample number, the higher the category priority. The performance order is determined
by the detection results of the original FRCNN, where the lower the accuracy, the higher the category
priority. It can be seen from Table 10 that using performance order obtains higher AP scores. We
also observe that data augmentation of high priority object chips can enhance clean accuracy and
corruption robustness. In addition, we explored the impact of object clip and background chip IoU
thresholds on the classification accuracy for the enhanced backbone with the momentum contrast
learning in Fig. 9. When the object clip IoU threshold To is set to 0.1 and the background chip IoU
threshold Tb is set to 0.01, the highest classification accuracy can be reached.

Table 10: The impact of relevant parameters on the AP scores of the rank sample mining method

Random
order

Quantity
order

Performance
order

Data aug-
mentation

Background
chips

Clean
accuracy

Corruption
robustness

� 21.2 17.0
� 21.5 16.9

� 22.3 17.4
� � 22.8 18.9
� � � 23.8 20.2

We measured the maximum number Num of each category stored in the queue Q for momentum
contrast learning in Fig. 10. When the Num value is 512, the model achieves better accuracy and
robustness. A higher or lower value results in poorer performance. This is attributed to the fact that the
larger the queue capacity, the fewer update steps. When the capacity is small, it is difficult to approach
the expectation of encoded features. Therefore, we chose 512 as the Num value.

Table 11 shows the results of ablation study on GATM module. Using same the setting as TPH-
YOLOv5 [22], we added the attention module between the backbone and the neck. We explored the
impact of the GATM module position and the spatial reduction ratio. It can be observed that the
GATM module is only applied to the last two stages of the backbone and spatial reduction ratio c
is halved, which can achieve higher accuracy and robustness with fewer parameters and giga floating
point of operations (GFLOPs).
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Figure 9: The impact of object clip and background chip IoU thresholds on the classification accuracy.
Background@0.01 means that background chip IoU threshold Tb is set to 0.01

Figure 10: Evaluation of the hyperparameter Num value for momentum contrast learning

Table 11: Results of the ablation study on the GATM module by AP scores

Last one stage Last two stages All stages c/2 c/1 Clean accuracy Corruption robustness No. of parameters GFLOPs
� � 23.3 18.2 6.4 × 106 3.9

� � 23.8 20.2 9.1 × 106 7.4
� � 23.9 20.0 14.5 × 106 9.9

� � 23.5 19.5 30.5 × 106 24.1

Performance comparison of different attention modules is shown in Table 12. The squeeze-
and-excitation (SE) [52], convolutional block attention module (CBAM) [53], and efficient channel
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attention (ECA) [54] have fewer parameters than the non-local neural network (NL) [55], but their
performances are worse. Compared to NL, our GATM module improves AP scores in both clean
accuracy and corruption robustness. It not only utilizes the advantages of the transformer architecture
but also has acceptable parameters and computational complexity. This suggests that the design of the
attention module is scientific and reasonable.

Table 12: Performance comparison of different attention modules by AP scores

Module Clean accuracy Corruption robustness No. of parameters GFLOPs

SE [52] 22.3 17.2 0.7 × 106 0.02
CBAM [53] 22.5 18.0 0.7 × 106 0.02
ECA [54] 22.3 18.0 – 0.02
NL [55] 23.6 19.8 15.8 × 106 74.3
GATM 23.8 20.2 9.1 × 106 7.4

Figs. 11 and 12 show some visualization results on the corrupted VisDrone and UAVDT datasets.
These images cover complex capturing backgrounds, such as fog, snow, defocus blur, motion blur,
and low contrast. For comprehensive illustration, we employed the common FRCNN, FRCNN+RD-
MIM, QueryDet specifically designed for aerial object detection, and QueryDet+RD-MIM. As can
be seen, despite the presence of UAV-specific nuisances, our approach can still distinguish objects from
complex backgrounds and predict more accurately between confused objects.

Figure 11: Some visualization results on the corrupted VisDrone dataset. From top to bottom, original
FRCNN, FRCNN+RD-MIM, original QueryDet, and QueryDet+RD-MIM are given
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Figure 12: Some visualization results on the corrupted UAVDT dataset. From top to bottom, original
FRCNN and FRCNN+RD-MIM are given

5 Conclusion

In this paper, we show that effective underlying features are beneficial for the detection perfor-
mance improvement in aerial images by estimating the lower bound of mutual information. In light of
this, we propose the RD-MIM approach to solve the problems of object categorical similarity and the
poor robustness of object detection models under complex UAV working conditions. Our method
can be applied to almost all available object detectors. The key components in RD-MIM include
the rank sample mining method, the momentum contrast learning strategy, and the GATM module.
Specifically, the first two components are able to learn underlying features by maximizing the mutual
information of the robust and discriminative features between different image domains. They can also
help the detectors distinguish objects from complex backgrounds, and confused objects from different
categories. Furthermore, by using the GATM module, the global feature information from different
receptive fields boosts the object location semantics. Theoretical analysis and experiments demonstrate
that our approach improves the performance of basic detectors and advanced methods. Nevertheless,
there still exists a limitation in our approach. The proposed rank sample mining method completely
relies on supervised data with labels, and cannot be directly applied to unsupervised aerial images. In
the future, we will explore the method’s adaptability under various application conditions.

Acknowledgement: The authors would like to thank the support of the National Natural Science
Foundation of China, and the authors sincerely appreciate the valuable comments of the editors and
reviewers.

Funding Statement: This work was supported by the National Natural Science Foundation of China
under Grant 61671219.

Author Contributions: The authors confirm contribution to the paper as follows: study conception
and design: Xu Sun, Qing Cheng; data collection: Xu Sun, Qing Cheng; analysis and interpretation of
results: Xu Sun, Yinhui Yu, Qing Cheng; draft manuscript preparation: Xu Sun. All authors reviewed
the results and approved the final version of the manuscript.

Availability of Data and Materials: The code of the current study is available in the github repository,
https://github.com/cq100/RD-MIM (accessed on 2 August 2024).

Ethics Approval: Not applicable.

https://github.com/cq100/RD-MIM


CMC, 2024, vol.80, no.3 4169

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] Z. Chen, H. Ji, Y. Zhang, Z. Zhu, and Y. Li, “High-resolution feature pyramid network for small object

detection on drone view,” IEEE Trans. Circuits Syst. Video Technol., vol. 34, no. 1, pp. 475–489, 2024. doi:
10.1109/TCSVT.2023.3286896.

[2] A. M. Qureshi, N. A. Mudawi, M. Alonazi, S. A. Chelloug, and P. Jeongmin, “Road traffic monitoring
from aerial images using template matching and invariant features,” Comput. Mater. Contin., vol. 78, no.
3, pp. 3683–3701, 2024. doi: 10.32604/cmc.2024.043611.

[3] F. Fang, W. Liang, Y. Cheng, Q. Xu, and J. -H. Lim, “Enhancing representation learning with spatial
transformation and early convolution for reinforcement learning-based small object detection,” IEEE
Trans. Circuits Syst. Video Technol., vol. 34, no. 1, pp. 315–328, 2023. doi: 10.1109/TCSVT.2023.3284453.

[4] C. Yan, X. Chang, M. Luo, H. Liu, X. Zhang and Q. Zheng, “Semantics-guided contrastive network for
zero-shot object detection,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 46, no. 3, pp. 1530–1544, 2024.
doi: 10.1109/TPAMI.2021.3140070.

[5] Z. Tang, X. Liu, and B. Yang, “PENet: Object detection using points estimation in high definition aerial
images,” in IEEE Int. Conf. Mach. Learn. Appl. (ICMLA), Miami, FL, USA, Dec.14–17, 2020, pp. 392–
398.

[6] C. Feng, C. Wang, D. Zhang, K. Renke, and Q. Fu, “Enhancing dense small object detection in UAV
images based on hybrid transformer,” Comput. Mater. Contin., vol. 78, no. 3, pp. 3993–4013, 2024. doi:
10.32604/cmc.2024.048351.

[7] J. Ye, C. Fu, G. Zheng, D. P. Paudel, and G. Chen, “Unsupervised domain adaptation for nighttime aerial
tracking,” in IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), New Orleans, LA, USA, Jun. 19–
24, 2022, pp. 8886–8895.

[8] W. Yu, T. Yang, and C. Chen, “Towards resolving the challenge of long-tail distribution in UAV images for
object detection,” in IEEE Winter Conf. Appl. Comput. Vis. (WACV), USA, Jan. 5–9, 2021, pp. 3257–3266.

[9] X. Zhang, E. Izquierdo, and K. Chandramouli, “Dense and small object detection in UAV vision based
on cascade network,” in Proc. IEEE/CVF Int. Conf. Comput. Vis. Workshop (ICCVW), Seoul, Republic of
Korea, Oct. 27–28, 2019, pp. 118–126.

[10] X. Chen, C. Xie, M. Tan, L. Zhang, C. -J. Hsieh and B. Gong, “Robust and accurate object detection via
adversarial learning,” in IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Nashville, TN, USA,
Jun. 19–25, 2021, pp. 16617–16626.

[11] J. Deng, W. Dong, R. Socher, L. -J. Li, K. Li and L. Fei-Fei, “ImageNet: A large-scale hierarchical image
database,” in IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Miami, FL, USA, Jun. 20–25,
2009, pp. 248–255.

[12] J. Ding et al., “Deeply unsupervised patch re-identification for pre-training object detectors,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 46, no. 3, pp. 1348–1361, 2024. doi: 10.1109/TPAMI.2022.3164911.

[13] Y. Yamada and M. Otani, “Does robustness on ImageNet transfer to downstream tasks?” in IEEE/CVF
Conf. Comput. Vis. Pattern Recognit. (CVPR), New Orleans, LA, USA, Jun. 18–24, 2022, pp. 9205–9214.

[14] Y. Cao et al., “VisDrone-DET2021: The vision meets drone object detection challenge results,” in Proc.
IEEE/CVF Int. Conf. Comput. Vis. Workshop (ICCVW), Montreal, BC, Canada, Oct. 11–17, 2021, pp.
2847–2854.

[15] D. Du et al., “The unmanned aerial vehicle benchmark: Object detection and tracking,” in Proc. Eur. Conf.
Comput. Vis. (ECCV), Munich, Germany, Sep. 8–14, 2018, pp. 375–391.

[16] L. Lu and F. Dai, “Accurate road user localization in aerial images captured by unmanned aerial vehicles,”
Autom. Constr., vol. 158, no. 3, 2024, Art. no. 105257. doi: 10.1016/j.autcon.2023.105257.

[17] W. Lin, J. Chu, L. Leng, J. Miao, and L. Wang, “Feature disentanglement in one-stage object detection,”
Pattern Recognit., vol. 145, no. 2, 2024, Art. no. 109878. doi: 10.1016/j.patcog.2023.109878.

https://doi.org/10.1109/TCSVT.2023.3286896
https://doi.org/10.32604/cmc.2024.043611
https://doi.org/10.1109/TCSVT.2023.3284453
https://doi.org/10.1109/TPAMI.2021.3140070
https://doi.org/10.32604/cmc.2024.048351
https://doi.org/10.1109/TPAMI.2022.3164911
https://doi.org/10.1016/j.autcon.2023.105257
https://doi.org/10.1016/j.patcog.2023.109878


4170 CMC, 2024, vol.80, no.3

[18] Z. Tian, C. Shen, H. Chen, and T. He, “FCOS: Fully convolutional one-stage object detection,” in
Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Seoul, Republic of Korea, Oct. 27–Nov. 2, 2019,
pp. 9626–9635.

[19] Y. Yu, K. Zhang, X. Wang, N. Wang, and X. Gao, “An adaptive region proposal network with progressive
attention propagation for tiny person detection from UAV images,” IEEE Trans. Circuits Syst. Video
Technol., vol. 34, no. 6, pp. 4392–4406, 2023. doi: 10.1109/TCSVT.2023.3335157.

[20] T. -Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar, “Focal loss for dense object detection,” in Proc.
IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Venice, Italy, Oct. 22–29, 2017, pp. 2999–3007.

[21] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-time object detection with region
proposal networks,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no. 6, pp. 1137–1149, 2017. doi:
10.1109/TPAMI.2016.2577031.

[22] X. Zhu, S. Lyu, X. Wang, and Q. Zhao, “TPH-YOLOv5: Improved YOLOv5 based on transformer
prediction head for object detection on drone-captured scenarios,” in Proc. IEEE/CVF Int. Conf. Comput.
Vis. Workshop (ICCVW), Montreal, BC, Canada, Oct. 11–17, 2021, pp. 2778–2788.

[23] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Las Vegas, NV, USA, Jun. 27–30, 2016, pp. 770–778.

[24] I. Radosavovic, R. P. Kosaraju, R. Girshick, K. He, and P. Dollar, “Designing network design spaces,” in
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), USA, Jun. 14–19, 2020, pp. 10425–10433.

[25] W. Wang et al., “PVT v2: Improved baselines with pyramid vision transformer,” Comput. Vis. Media.,
vol. 8, no. 3, pp. 415–424, 2022. doi: 10.1007/s41095-022-0274-8.

[26] Y. Huang, J. Chen, and D. Huang, “UFPMP-Det: Toward accurate and efficient object detection on drone
imagery,” in AAAI Conf. Artif. Intell, Feb. 22–Mar. 1, 2022, pp. 852–860.

[27] T. Wang et al., “The devil is in classification: A simple framework for long-tail instance segmentation,” in
Proc. Eur. Conf. Comput. Vis. (ECCV), Glasgow, UK, Aug. 23–28, 2020, pp. 728–744.

[28] H. Zhu, C. Xu, W. Yang, R. Zhang, Y. Zhang and G. -S. Xia, “Robust tiny object detection in aerial images
amidst label noise,” 2024, arXiv:2401.08056.

[29] B. Kiefer, M. Messmer, and A. Zell, “Diminishing domain bias by leveraging domain labels in object
detection on uavs,” in Int. Conf. Adv. Robot. (ICAR), Ljubljana, Slovenia, Dec. 6–10, 2021, pp. 523–530.

[30] Y. -T. Shen, H. Lee, H. Kwon, and S. S. Bhattacharyya, “Progressive transformation learning for leveraging
virtual images in training,” in IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Vancouver, BC,
Canada, Jun. 17–24, 2023, pp. 835–844.

[31] Z. Wu, K. Suresh, P. Narayanan, H. Xu, H. Kwon and Z. Wang, “Delving into robust object detection
from unmanned aerial vehicles: A deep nuisance disentanglement approach,” in Proc. IEEE/CVF Int. Conf.
Comput. Vis. (ICCV), Seoul, Republic of Korea, Oct. 27–Nov. 2, 2019, pp. 1201–1210.

[32] H. S. S. Blas, A. C. Balea, A. S. Mendes, L. Augusto, and G. V. Gonzalez, “A platform for swimming
pool detection and legal verification using a multi-agent system and remote image sensing,” Int. J. Interact.
Multimed. Artif. Intell., vol. 8, no. 4, pp. 153, 2023. doi: 10.9781/ijimai.2023.01.002.

[33] X. Xie, G. Cheng, Q. Li, S. Miao, K. Li and J. Han, “Fewer is more: Efficient object detection in large aerial
images,” Sci. Chin. Inf. Sci., vol. 67, no. 1, 2023.

[34] Z. Huang, W. Li, X. -G. Xia, H. Wang, and R. Tao, “Task-wise sampling convolutions for arbitrary-
oriented object detection in aerial images,” IEEE Trans. Neural Netw. Learn. Syst., pp. 1–15, 2024. doi:
10.1109/TNNLS.2024.3367331.

[35] K. Sohn et al., “Visual prompt tuning for generative transfer learning,” in IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. (CVPR), Vancouver, BC, Canada, Jun. 17–24, 2023, pp. 19840–19851.

[36] Y. Tian, F. Suya, A. Suri, F. Xu, and D. Evans, “Manipulating transfer learning for property inference,”
in IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Vancouver, BC, Canada, Jun. 17–24, 2023,
pp. 15975–15984.

[37] A. Deng, X. Li, D. Hu, T. Wang, H. Xiong and C. -Z. Xu, “Towards inadequately pre-trained models
in transfer learning,” in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Paris, France, Oct. 2–6, 2023,
pp. 19340–19351.

https://doi.org/10.1109/TCSVT.2023.3335157
https://doi.org/10.1109/TPAMI.2016.2577031
https://doi.org/10.1007/s41095-022-0274-8
https://doi.org/10.9781/ijimai.2023.01.002
https://doi.org/10.1109/TNNLS.2024.3367331


CMC, 2024, vol.80, no.3 4171

[38] M. Noroozi and A. Shah, “Towards optimal foreign object debris detection in an airport environment,”
Expert. Syst. Appl., vol. 213, no. 7, 2023, Art. no. 118829. doi: 10.1016/j.eswa.2022.118829.

[39] A. V. D. Oord, Y. Li, and O. Vinyals, “Representation learning with contrastive predictive coding,” 2018,
arXiv:1807.03748.

[40] T. -Y. Lin, P. Dollar, R. Girshick, K. He, B. Hariharan and S. Belongie, “Feature pyramid networks for
object detection,” in IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Honolulu, HI, USA, Jul.
21–26, 2017, pp. 936–944.

[41] K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick, “Momentum contrast for unsupervised visual representation
learning,” in IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), USA, Jun. 13–19, 2020, pp. 9726–
9735.

[42] A. Vaswani et al., “Attention is all you need,” Adv Neural Inf. Process. Syst., vol. 30, pp. 5999–6009, 2017.
[43] Y. Sun, B. Cao, P. Zhu, and Q. Hu, “Drone-based RGB-infrared cross-modality vehicle detection via

uncertainty-aware learning,” IEEE Trans. Circuits Syst. Video Technol., vol. 32, no. 10, pp. 6700–6713,
2022. doi: 10.1109/TCSVT.2022.3168279.

[44] D. Hendrycks and T. Dietterich, “Benchmarking neural network robustness to common corruptions and
perturbations,” in Int. Conf. Learn. Represent. (ICLR), New Orleans, LA, USA, May 6–9, 2019.

[45] K. Chen et al., “MMDetection: Open mmlab detection toolbox and benchmark,” 2019, arXiv:1906.07155.
[46] G. Jocher, A. Chaurasia, and J. Qiu, “Ultralytics YOLOv8,” AGPL-3.0, 2023. Accessed: Mar. 22, 2024.

[Online]. Available: https://github.com/ultralytics/ultralytics
[47] M. Contributors, “MMYOLO: OpenMMLab YOLO series toolbox and benchmark,” AGPL-3.0, 2022.

Accessed: Mar. 22, 2024. [Online]. Available: https://github.com/open-mmlab/mmyolo
[48] C. Yang, Z. Huang, and N. Wang, “QueryDet: Cascaded sparse query for accelerating high-resolution

small object detection,” in IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), New Orleans, LA,
USA, Jun. 18–24, 2022, pp. 13658–13667.

[49] Z. Hao et al., “DINO: Detr with improved denoising anchor boxes for end-to-end object detection,” in Int.
Conf. Learn. Represent. (ICLR), Kigali, Rwanda, May 1–5, 2023. doi: 10.48550/arXiv.2203.03605.

[50] G. -S. Xia et al., “DOTA: A large-scale dataset for object detection in aerial images,” in IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Salt Lake City, UT, USA, Jun. 18–22, 2018, pp. 3974–3983.

[51] J. Ding, N. Xue, Y. Long, G. -S. Xia, and Q. Lu, “Learning RoI transformer for oriented object detection
in aerial images,” in IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Long Beach, CA, USA,
Jun. 16–20, 2019, pp. 2844–2853.

[52] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in IEEE/CVF Conf. Comput. Vis. Pat-Tern
Recognit. (CVPR), Salt Lake City, UT, USA, Jun. 18–22, 2018, pp. 7132–7141.

[53] S. Woo, J. Park, J. -Y. Lee, and I. S. Kweon, “CBAM: Convolutional block attention module,” in Proc. Eur.
Conf. Comput. Vis. (ECCV), Munich, Germany, Sep. 8–14, 2018, pp. 3–19.

[54] Q. Wang, B. Wu, P. Zhu, P. Li, W. Zuo and Q. Hu, “ECA-Net: Efficient channel attention for deep
convolutional neural networks,” in IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Seattle, WA,
USA, Jun. 14–19, 2020, pp. 11531–11539.

[55] X. Wang, R. Girshick, A. Gupta, and K. He, “Non-local neural networks,” in IEEE/CVF Conf. Comput.
Vis. Pattern Recognit. (CVPR), Salt Lake City, UT, USA, Jun. 18–22, 2018, pp. 7794–7803.

https://doi.org/10.1016/j.eswa.2022.118829
https://doi.org/10.1109/TCSVT.2022.3168279
https://github.com/ultralytics/ultralytics
https://github.com/open-mmlab/mmyolo
https://doi.org/10.48550/arXiv.2203.03605

	Robust and Discriminative Feature Learning via Mutual Information Maximization for Object Detection in Aerial Images
	1 Introduction
	2 Related Work
	3 Methodology
	4 Experimental Results and Analysis
	5 Conclusion
	References


