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ABSTRACT

This work investigates a multi-product parallel disassembly line balancing problem considering multi-skilled
workers. A mathematical model for the parallel disassembly line is established to achieve maximized disassembly
profit and minimized workstation cycle time. Based on a product’s AND/OR graph, matrices for task-skill,
worker-skill, precedence relationships, and disassembly correlations are developed. A multi-objective discrete
chemical reaction optimization algorithm is designed. To enhance solution diversity, improvements are made to
four reactions: decomposition, synthesis, intermolecular ineffective collision, and wall invalid collision reaction,
completing the evolution of molecular individuals. The established model and improved algorithm are applied
to ball pen, flashlight, washing machine, and radio combinations, respectively. Introducing a Collaborative
Resource Allocation (CRA) strategy based on a Decomposition-Based Multi-Objective Evolutionary Algorithm,
the experimental results are compared with four classical algorithms: MOEA/D, MOEAD-CRA, Non-dominated
Sorting Genetic Algorithm II (NSGA-II), and Non-dominated Sorting Genetic Algorithm III (NSGA-III). This
validates the feasibility and superiority of the proposed algorithm in parallel disassembly production lines.

KEYWORDS
Parallel disassembly line balancing problem; multi-product; multiskilled workers; discrete chemical reaction
optimization algorithm

1 Introduction

Nowadays, with the rapid development of the economy, various industries produce large quantities
of end-of-life (EOL) products. Initially, most EOL products are treated by incineration and burial,
which negatively impact the environment. Moreover, EOL products cannot be reused, causing a great
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waste of resources [1,2]. Disassembly is one of the important steps of product resource recovery. Parts
of EOL products can be remanufactured by disassembly [3]. There is less impact on the environment,
and the waste of resources is reduced simultaneously.

In the past, for the Disassembly Line Balancing Problem (DLBP), most scholars [4–6] mainly
study a single disassembly line, which is widely used. A single disassembly line can be divided into two
types: a linear disassembly line and a U-shaped disassembly line. The linear disassembly line comprises
one disassembly line, where workers disassemble on one side of the workstation. Bentaha et al. [7]
consider the stochastic partial benefit-oriented DLBP (SP-DLBP) in the presence of hazardous parts.
They use an AND/OR graph to model the precedence relationships between disassembly alternative
schemes and tasks, aiming to maximize the generated profits. Compared to linear disassembly lines,
the U-shaped disassembly line offers greater flexibility, with workers positioned in the middle and
able to disassemble EOL products on both sides of the workstation. The U-shaped disassembly line
has attracted numerous researchers due to its unique advantages. Li et al. [8] optimize the single-
objective U-shaped disassembly line model with mixed-integer programming using a local iterative
neighborhood search algorithm and compare it with the CPLEX solver to verify its performance.

In actual production and life, a parallel disassembly line can be used to completely separate
different EOL products during disassembly, reduce the disassembly difficulty, and improve the
workstation’s utilization rate. This work introduces the Parallel Disassembly Line Balancing Problem
(PDLBP). A parallel disassembly line refers to the arrangement of two or more disassembly lines
in parallel, enabling the simultaneous disassembly of various products and effectively enhancing
disassembly efficiency and production line flexibility. Since the introduction of PDLBP, there has
been relatively little research on this problem. Hezer et al. [9] propose a solution method based on
the shortest path model of the network and establish a PDLBP mathematical model to minimize the
number of chemical stations.

DLBP can be divided into two types. The first type is where the number of workstations
is uncertain, and each workstation has a fixed cycle. The second type is where the number of
workstations is determined, and the cycle of workstations is uncertain. Wang et al. [10] study the
two-sided DLBP with the number of workstations determined, establishe the mathematical model
of the problem, and design a variable neighborhood leapfrog algorithm. The proposed algorithm uses
variable neighborhood search to improve population local search efficiency. Under the condition that
the number of disassembly line workstations is fixed, Wang et al. [11] establish the optimization model
of the Class II DLBP with the goal of the minimum beat time and the assignment of balancing tasks
on the workstation and proposes a parallel dynamic neighborhood depth search algorithm to solve
the problem. This work studies the second type of DLBP.

Multi-product means that EOL products can be combined in pairs or other forms of single-
product combination, and multiple products can be disassembled simultaneously. Yin et al. [12]
propose a multi-objective hybrid-driven algorithm (HDA) based on a three-tier encoding method and
heuristic rules to address the balanced problem of synchronously disassembling multiple products
across multiple robot workstations (MPRPDLBP). Precise mixed-integer programming models are
established, targeting cycle time, energy consumption, and an improved hazard index. Guo et al. [13]
propose a disassembly line balance control method for random multi-product robots, which can solve
the DLBP of multi-objective and multi-product robots and give a better solution.

Among many studies on DLBP, only very few pay attention to multi-skilled workers. In actual
production, qualified operation skills of workers are the premise to ensure work quality and product
quality, and also the basis for enterprises to produce on time and within budget. Simultaneously,
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through the rational allocation of multi-skilled workers, enterprises help reduce labor costs, address
the issue of insufficient emergency production personnel, respond flexibly to emergencies to ensure the
normal operation of production operations, improve the flexibility and versatility of the production
line, and enhance the overall productivity level of the enterprise [14–18]. This work introduces
multi-skilled workers, who are arranged on workstations to disassemble EOL products. The dif-
ferent skills required for each task in the disassembly of each product lead to more diversified
disassembly sequences.

This work proposes a multi-product parallel disassembly-line-balancing problem considering
multi-skilled workers (MPDMW). As MPDMW is a discrete problem, heuristic algorithms typically
address such problems [19–22]. In recent years, researchers have explored various methods to solve
DLBP [23–25]. Table 1 summarizes the literature above. However, a Multi-Objective Discrete Chem-
ical Reaction Optimization (MDCRO) algorithm has not yet been applied to address this problem.
Chemical Reaction Optimization (CRO) is a recent swarm intelligence optimization algorithm. It
draws inspiration from chemical reactions in the natural world. It simulates the interactions between
molecules in chemical reactions to seek minimal potential energy. In just a few years, CRO has
successfully addressed many complex problems. We choose to employ CRO to solve MPDMW
because CRO possesses robust global search capabilities, adaptability, and parallelism. This algorithm
conducts a global search by simulating chemical reactions, avoiding being trapped in local optima.
The adaptability allows for dynamic adjustments in the search strategy, enhancing convergence speed.
The parallelism fully utilizes computational resources, accelerating the solving process. We attempt to
use it to address MPDMW. The main contributions of this paper are as follows:

1. This work introduces a new problem, MPDMW. To address this problem, a mixed-integer
linear programming mathematical model is established to maximize profits and minimize
workstation cycles.

2. The use of MDCRO to solve MPDMW is proposed for the first time. Among them, we
design a three-segment coding structure. Four reactions, decomposition reaction, synthesis
reaction, intermolecular ineffective collision reaction, and wall ineffective collision reaction,
are designed to achieve the evolution of molecular individuals and enhance the algorithm’s
capability for optimal solution search.

3. In order to verify the feasibility and superiority of MDCRO, we compare the algorithm
with Non-dominated Sorting Genetic Algorithm II (NSGA-II) [26], Non-dominated Sorting
Genetic Algorithm III (NSGA-III) [27], and Multi-Objective Evolutionary based on Decom-
position (MOEA/D) [28], and collaborative resource allocation (CRA) strategy for MOEA/D
(MOEA/D-CRA) [29]. Experimental results show the effectiveness of MDCRO in solving
MPDMW.

Table 1: Literature review

Reference ID Problem Method

22 Disassembly sequence planning problem Discrete marine predators algorithm
23 Disassembly scheduling problem Discrete fruit fly optimization algorithm
24 Biobjective DSP problem Multiverse optimization algorithm
25 Multi-product DLBP Group teaching optimization algorithm
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The following content arrangement is outlined in this paper. Section 2 describes MPDMW and its
mathematical model. Section 3 introduces MDCRO. Section 4 analyzes experimental results. Section 5
summarizes the work and discusses future research directions.

2 Problem Statement and Formulation
2.1 Problem Description

In actual production and life, a parallel disassembly line can be used to completely separate
different EOL products during disassembly, reduce the disassembly difficulty, and improve the
workstation’s utilization rate. This work puts forward MPDMW. Multi-product means that EOL
products can be combined in pairs or other single products in various forms to form multi-products
for disassembly simultaneously. The multi-skilled worker means that each worker has different skills.
The multi-skilled worker is assigned to the workstation to disassemble EOL products. The different
skills required for each task in disassembling each product lead to the allocation disassembly sequence
becoming more diverse, and there are often many complex task allocation problems. Enterprises can
reduce labor costs through the reasonable distribution of multi-skilled workers. Solve the problem of
insufficient emergency production personnel. Flexible response to emergencies to ensure the normal
operation of production operations. Improve the production line’s flexibility and the enterprise’s
overall productivity level. A parallel disassembly line is placed in two or more parallel disassembly
lines and can disassemble various products synchronously, effectively improving disassembly efficiency
and production line flexibility. According to the mathematical model established by MPDMW, the
following assumptions are made:

• Each worker has multiple skills.
• One task corresponds to one workstation.
• The cost per unit of time is workstation-specific.
• The disassembly task satisfies the known precedence and conflict constraints.
• No matter which workstation the task is assigned, it has nothing to do with workers and time.

Through the AND/OR graph of the flashlight in Fig. 1, different disassembly sequences can be
obtained, but these sequences must meet certain constraints to ensure that the disassembly sequence
is correct and feasible. In the AND/OR graph, subassemblies are represented by nodes, and the index
of each subassembly is indicated by an integer within angle brackets. Directed edges between linked
subassemblies depict each disassembly task. It is easy to observe that this product consists of 15
subassemblies and 10 disassembly tasks.

2.2 AND/OR Graph

In order to describe the problem more deeply and systematically, four relation matrices, S, D, A,
and B, are introduced in this paper to describe relevant constraint relations. The detailed definition of
the matrix is as follows.

The disassembly precedence relation matrix S = Sij is used to describe the precedence relation
between disassembly tasks i and j, specifically defined as:

Sij =
⎧⎨
⎩

1, If task i is performed before task j;
−1, If task i is conflict with task j;
0, Otherwise.
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Figure 1: AND/OR graph of a flashlight

Disassembly incidence matrix D = Dqi is used to describe the relationship between subassembly q
and disassembly task i, specifically defined as:

Dqi =
⎧⎨
⎩

1, If subassembly q is performed before task i;
−1, If subassembly q is obtained by disassembly in i;
0, Otherwise.

The matrix of workers and skills A = Apk is as follows: The matrix of workers p and skills k
is described. According to the actual situation, each worker has different skills. We put the workers
who can master relatively complex disassembly skills into the workstation behind to achieve greater
disassembly of EOL products.

Apk =
{

1, If worker p has skill k;
0, If worker p doesn’t have skill k.

1) Disassemble the ballpoint pen and radio for the multi-skilled worker and skill matrix below.
The abscissa represents the multi-skilled workers required for disassembly, and the ordinate represents
the skills required for the disassembly task composed of 10 skills.

A =
⎡
⎣1 0 1 1 1 0 1 0 1 0

1 1 0 1 0 1 0 1 1 0
0 1 1 0 1 1 1 1 1 1

⎤
⎦
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Disassembly task and disassembly task skill matrix B = Bjk, which is used to describe the skill k
required by disassembly task j, specifically defined as:

Bjk =
{

1, If disassembly task j requires skill k;
0, If disassembly task j doesn’trequire skill k.

2) Disassemble the ballpoint pen and radio for the disassembly task and the disassembly task
required the skill matrix below. The abscissa represents that the disassembly task consists of 43
disassembly tasks, and the ordinate represents that the skills required by the disassembly task consist
of 10 skills.

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0

. . .

0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

In MPDMW, a feasible disassembly task sequence is obtained, and it is reasonably allocated to
each workstation according to the required skills of the disassembly task and the workers’ skills. This
work aims to reduce costs, improve workstation utilization, and meet the environmental requirements
of disassembly enterprises.

Notations used in the model to be presented are summarized as follows:

Sets:

G Set of products.
I Set of tasks.
Q Set of subassemblies.
M Set of workstations.
P Set of line workers.
K Set of skills.

Parameters:

αpk Worker p has skill k.
βgik Disassemble the matrix of skill k required for task i in product g.
l Disassembly line serial number l, l = {1, 2}, If l = 1, it is assigned to the upper side of

the workstation. Otherwise, l = 2, is assigned to the lower side of the workstation.
Nl Number of disassembly tasks on disassembly line l.
TD

gik Disassembly time of skill k required for task i in disassembly product g, If task i of
product g takes precedence over task j of product g, p = 1, otherwise, p = 0.
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Cp The cost of hiring workers.
Vgq The recovery value of disassembled component q in product g.
H A big enough number.
CT Workstation cycle time.
Sg

ij An element of the precedence matrix S of product g in the i-th row and i-th column.
Sg Precedence matrix for product g.
Dg The incidence matrix of product g.
dgiq An element in the i-th row and q-th column of D for product g.
Ypk The matrix of workers p and skills k.

Decision variables:

xgilm =
{

1, If disassemble the execution of task i in product g assigned to workstation m on side l;
0, Otherwise.

um =
{

1, If the m − th workstation is started;
0, Otherwise.

zplm =
{

1, If worker p is assigned to workstation m on side l;
0, Otherwise.

ygipklm =
⎧⎨
⎩

1, If the disassembly task i in product g requires the k skills of worker p and
is arranged to be performed at workstation;

0, Otherwise.

2.3 Mathematical Model

We formulate the optimization problem of MPDMW as:

max f1 =
G∑

g=1

I∑
i=1

Q∑
q=1

2∑
l=1

M∑
m=1

Vgqdgiqxgilm −
G∑

g=1

I∑
i=1

P∑
p=1

K∑
k=1

2∑
l=1

M∑
m=1

TD
gikc

D
gikygipklm −

P∑
p=1

2∑
l=1

M∑
m=1

Cpzplm (1)

max f2 = CT (2)

∑P

p=1
zplm = um, ∀m, ∀l (3)

∑M

m=1

∑2

l=1
zplm ≤ 1, ∀p (4)

∑2

l=1

∑M

m=1
xgilm ≤ 1, ∀g, ∀i (5)

∑G

g=1

∑I

i=1

∑2

l=1
xgilm ≥ um, ∀m (6)

∑G

g=1

∑I

i=1

∑2

l=1
xgilm ≤ Ium, ∀m (7)

∑K

k=1
βkiygipklm ≥ xgilm + zplm − 1, ∀g, ∀i, ∀p, ∀l, ∀m (8)

∑P

p=1

∑K

k=1
αpkβkizplm ≥ xgilm, ∀g, ∀i, ∀l, ∀m (9)
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ygipklm ≤ xgilm, ∀g, ∀i, ∀p, ∀k, ∀l, ∀m (10)

ygipklm ≤ zplm, ∀g, ∀i, ∀p, ∀k, ∀l, ∀m (11)

∑G

g=1

∑I

i=1

∑K

k=1

∑2

l=1

∑M

m=1
TD

gikxgilm ≤ CT (12)

∑G

g=1

∑I

i=1

∑P

p=1

∑K

k=1

∑2

l=1
TD

gikygipklm ≤ m ∗ um (13)

∑M

m=1
(mxgilm) ≤

∑M

m=1
(mxgjlm) + (N1 + N2)

(
1 −

∑M

m=1
xgjlm

)
, ∀g, ∀i, ∀l, ∀j (14)

∑M

m=1

∑2

l=1
(xgilm + xgjlm) ≤ 1, ∀g, Sg

ij = −1 (15)

xgjlm, um, zplm, ygipklm, ∀g, ∀i, ∀p, ∀k, ∀l, ∀m (16)

The objective function (1) represents the maximum profit from the disassembly of EOL products,
composed of three parts: the total recovery value of disassembly EOL products, the total cost of
disassembly, and the total cost of workers. (2) represents the minimization cycle time. Constraint (3)
guarantees that only one worker can be assigned to each workstation on each side. Constraint (4)
indicates that a person can be assigned to at most one side of the workstation. Constraint (5) indicates
that each task can only be assigned to one side of a workstation. Constraint (6) indicates that each
enabled workstation must be assigned at least one task. Constraint (7) indicates that a workstation
that is not enabled cannot be assigned tasks. Constraint (8) ensures that each assigned task must be
executed. Constraint (9) represents the relationship between skills and workers’ tasks. Constraint (10)
ensures that the task can only be executed if it is assigned to the workstation side. Constraint (11)
ensures that the task can only be performed if the worker is assigned to the workstation and has this
skill. Constraint (12) indicates that the processing time of each workstation does not exceed the cycle
time. Constraint (13) indicates that tasks on the demolition line must meet the precedence relation.
Constraints (14) and (15) indicate that the feasible disassembly sequence must satisfy the conflict
relation. Constraint (16) represents the range of decision variables.

3 Proposed Algorithm

The inspiration for CRO comes from the interactions among molecules during chemical reactions,
thereby attaining the minimum molecular potential energy [30]. Many past studies indicate that CRO
performs excellently in solving optimization problems, which is why we chose this method [31–33]. In
CRO, molecules possess kinetic and potential energy, denoted as and, respectively. Represents the
objective value of the disassembly sequence while signifying the molecule’s ability to escape local
optima. We make some improvements to its four reactions. The flowchart of MDCRO is illustrated
in Fig. 2.
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Figure 2: Flowchart of MDCRO

3.1 Encoding

The three-segment idea π = π1, π2, π3 in the U-shaped is continued in the encoding of union
type to solve an MPDMW. π1 is the sequence of disassembly tasks, π2 determines whether the task is
executed, and π3 determines which disassembly line the current task takes. As shown in Fig. 3. It is
the feasible task sequence of disassembling the ballpoint pen and radio, where in π1, orange is the task
sequence of disassembling the radio, and yellow is the task sequence of disassembling the ballpoint
pen. In π3, orange is placed below the parallel disassembly line, and yellow is placed above the parallel
disassembly line.
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Figure 3: Coding process of a case

3.2 Decoding

After the coding of the solution is completed, it needs to be decoded. The idea of decoding is to
assign tasks to each workstation based on the fixed number of workstations. The decoding process of
the parallel disassembly line is to assign feasible task sequences to each workstation. The allocation
principle allocates disassembly tasks to each workstation. In the allocation process, the cycle time
of each workstation is minimized. Fig. 4 shows the specific assignment of the task sequence at the
workstation. Task 2 takes 10 s, task 14 takes 6 s, and task 11 takes 8 s. Assigned to workstation 1,
Workstation 1 has a cycle time of 24 s. Task 16 has a time of 5 s, task 6 has a time of 7 s, task 8 has a
time of 9 s, and workstation 2 has a cycle time of 21 s. Task 43 time is 4 s, Task 17 time is 5 s, task 18
time is 7 s, task 29 time is 5 s, task 10 time is 4 s, and workstation 3 cycle time is 25 s.

Figure 4: Decoding process of a case

According to the above allocation, the cycle of each workstation can be minimized. Three
workstations are required to complete the disassembly to optimize the two objective functions.

This work uses the AND/OR graph of two products, ballpoint pen and radio, to illustrate the
encoding and decoding of parallel disassembly lines. Fig. 5 describes the disassembly process of these
two products on the parallel disassembly line. For illustration purposes, the feasible disassembly
sequence it forms is {2, −14, −16, −43, −17, −18, 11, 6, −29, 8, 10}. The numbers in the disassembly
sequence represent the corresponding disassembly tasks. The numbers prefixed with “−” indicate that
the current task is disassembling the radio and assigned to the lower disassembly line. The numbers
without prefix symbols indicate that the current task disassembles the ballpoint pen and is assigned to
the upper disassembly line. For instance, −14 denotes that task 14 for the radio is allocated to the lower
disassembly line, while 2 signifies that task 2 for the ballpoint pen is assigned to the upper disassembly
line. The required skills refer to the skills needed to perform each disassembly task, and only workers
possessing those specific skills can execute the disassembly. For example, task −14 corresponds to skill
4, meaning skill level 4 is necessary to accomplish task −14. At this moment, Worker 1 happens to
have skill level 4, thus enabling the allocation of task −14 to Worker 1’s lower disassembly line station
for disassembly.
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Figure 5: Distribution process of a case

3.3 Synthesis Reaction Search Strategy

Synthesis reaction is the process of two or more molecules colliding to form a single molecule. As
shown in Fig. 6. The steps are as follows:

Figure 6: Synthesis reaction

Step 1: Randomly select two molecules from the population and judge whether the kinetic energy
of each molecule of the two molecules is greater than the threshold for the decomposition reaction. If
the conditions are met, a synthesis reaction will occur. Currently, the number of molecular collisions
at each position (POS1, POS2) is +1.

Step 2: Give the molecule at POS1 position to the Father and the molecule at POS2 position to
the Mother, and calculate the length of each molecule, respectively. The beginning value of the current
index is 0, and the corresponding current index is increased by 1 for each operation.

Step 3: Give StartChildent1 the {−11, −13, 3, 6, −17, −18, 7, −19} at positions {0, 2, 4, 6, 8, 10,
12, 14} in the Father.
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Step 4: Give {2, −21, −40, 9, 6, −17, 10} at positions {1, 3, 5, 7, 9, 11, 13} in the Mother to the
corresponding {1, 3, 5, 7, 9, 11, 13} in StartChildren1.

Step 5: When the sequence is added to StartChildren1 by the Father and the Mother individuals,
respectively, the two are conducted by polling. If the sequence added does not exist in StartChildren1, it
will be added; otherwise, it will not be added. For example, when the Mother individual adds sequence
{6, −17}, If this sequence is found to already exist in StartChildren1, these two sequences cannot be
added. The corresponding current index is also added.

Step 6: If the size of the current index is smaller than the length of the Father, then add the sequence
of the corresponding index in the Father and the sequence does not exist in StartChildren1, then add
the sequence to StartChildren1 and then give the fully allocated sequence to StartChildren2.

Step 7: If the size of the current index is smaller than the length of the Mother, add the sequence of
the corresponding index in the Mother, and it does not exist in StartChildren1, then add the sequence
to StartChildren1.

Step 8: Because it is so multi-objective here in calculating the potential energy, we introduced the
thought of weight, combined with the actual reasonable weight distribution, due to the first goal being
profit, the second being the workstation cycle, are essential for decision making, so we are here to set
their weights are 0.5, calculation, draw the corresponding potential energy. To see if this reaction can
happen.

Step 9: If the sum of the kinetic energy plus the potential energy of the Father and the Mother is
greater than the potential energy of the StartChildren2 solution, this reaction can occur. The synthesis
reaction is complete, and the next iteration is performed.

Step 10: Check and adjust the newly generated sequence of StartChildren2 to meet the constraints
of precedence and conflict relationships.

3.4 Internal Molecule Invalid Collision Reaction Search Strategy

In this reaction, two or more molecules collide with each other without changing their structure.
Here, two molecules are taken as examples, as shown in Figs. 7 and 8, and the steps are as follows:

Step 1: Randomly select two molecules from the population and judge whether these two
molecules meet the threshold for synthesis. An ineffective internal molecular collision reaction will
occur if they do not meet the conditions. At this time, the molecular collision times of each position
(POS1, POS2) + 1.

Step 2: Give the molecule at POS1 position to the Father and the molecule at POS2 position to
the Mother, and calculate the length of each molecule, respectively. The beginning value of the current
index is 0, and the corresponding current index is increased by 1 for each operation.

Step 3: Generate two random numbers p and q for a long time. If p > q, exchange values between
them; otherwise, no exchange is required.

Step 4: Assign {−15, 1} and {10, −39, −41, −43, −42, 11, −22} in the Father to the corresponding
position of the Child 1. The middle blue part of Child 1 is filled with 0.

Step 5: Traverse the Mother individual and add the elements not in Child 1 to the 0 part of Child
1. In Fig. 7, fill {−14, 3, −16, −17, −18} into the corresponding position of Child 1, and {−19, −30,
6} in Mother individual into the opposite end of Child 1.

Step 6: If the Mother does not complete the 0 in Child 1 in Step 5, the Father will be randomly
selected from the middle of p and q and filled into Child 1.
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Step 7: Give {−14, 1, 3} and {11, −22} in the Mother to Child 2, and fill the middle blue part of
Child 2 with 0.

Step 8: Traverse the individual Father and add the elements not found in Child 2 to the 0 part of
Child 2. As shown in Fig. 8, fill {−15, 6, −24, −27, −32, 10, −39, −41, −43} into the corresponding
position of Child 2, and {−42} in the individual Father is added to the opposite end of Child 2.

Step 9: If the Father does not complete the 0 in Child 2 in Step 8, the Mother will be randomly
selected from the middle of p and q and filled into Child 2.

Step 10: Check and adjust the newly generated sequence of Child 1 and Child 2 to meet the
constraints of precedence and conflict relationships.

Figure 7: Example 1 of an internal molecular null collision reaction

Figure 8: Example 2 of an internal molecular null collision reaction

3.5 On-Wall-Ineffective-Collision Reaction Search Strategy

The molecules hit the wall, and the structure of the molecule doesn’t change very much. This
reaction is an example of a reaction in which one molecule forms another.

Step 1: As shown in Fig. 9, generate two random numbers p and q, p and q belong to [1, the length
of the father sequence].

Step 2: If p = q, create a new q until the two are different.

Step 3: Swap the disassembly tasks at positions p and q to generate a new sequence.

Step 4: Check and adjust the disassembly sequence, turn it into a feasible solution, and calculate
the objective function.
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Figure 9: On-wall-ineffective-collision reaction

3.6 Decomposition Reaction Strategy

Decomposition reaction refers to the decomposition of one molecule into two or more molecules.
The specific steps are shown in Fig. 10.

Step 1: The operation of new molecule 1 is: the loop starts from 0 and ends with the length/2 of
the parent task sequence.

Step 2: Once a cycle, a random number will be generated. If the number is greater than 0.5, Step
3 will be repeated three times.

Step 3: Randomly generate a task. If the task is larger than 13, multiply by −1. If the task is not
in the sequence, add it to the sequence.

Step 4: Perform Step 1 until the loop ends. The new individual is Children1.

Step 5: The operation of new molecule 2 is: the loop starts at length/2 of the parent task sequence
and stops at the length of the parent task sequence.

Step 6: Once a cycle, a random number will be generated. If the number is greater than 0.5, Step
7 will be repeated three times.

Step 7: Randomly generate a task. If the task is larger than 13, multiply by −1. If the task is not
in the sequence, add it to the sequence.

Step 8: Go to Step 5 until the loop ends. The new individual is Children2.

Step 9: Check and adjust the disassembly sequence, turn it into a feasible solution, and calculate
the objective function.

Figure 10: Decomposition reaction
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4 Experimental Studies
4.1 Case Study

In this paper, multi-product composed of a Ballpoint pen and radio (BR), flashlight and radio
(FR), washing machine and radio (WR) are used as experimental cases to verify the feasibility
of MDCRO in solving MPDMW, and NSGA-II, MOEA/D, NSGA-III and MOEAD-CRA are
selected to solve MPDMW together to study the advantages and disadvantages of the five algorithms
in solving this problem. The reason for choosing these metaheuristic methods lies in their unique
strengths in multi-objective optimization. For instance, MOEA/D exhibits problem decomposition
capabilities, MOEAD-CRA incorporates a control variable adjustment mechanism, NSGA-II utilizes
non-dominated sorting and crowding distance calculation, and NSGA-III introduces layered non-
dominated sorting. These characteristics contribute to effectively addressing the complex objectives
and constraints of the problem. To ensure the accuracy and correctness of the experiment, all the
algorithms are compared under the condition of complete fairness.

Among the experimental parameters, the molecular collision rate is set as 0.5, the synthesis
threshold is 10, the energy loss rate is 0.3, the crossover rate of NSGA-II, MOEA/D, NSGA-III, and
MOEAD-CRA Px = 0.7, the mutation probability Pm = 0.1/number of subassemblies, the number
of workstations is 3, the total number of initialization groups of all algorithms is the same. And the
population is 100, 200, and 300, three comparisons, respectively. The maximum iteration count equals
three times the product of the subassemblies’ quantity and the tasks.

4.2 Model Validation and Analysis

To verify the correctness of the model, the CPLEX solver is used for the first time to solve the
established model. Since CPLEX does not support multi-objective optimization, only one objective
can be optimized. Therefore, when verifying the model, the maximum profit is taken as the goal to
solve. As can be seen from Table 2, comparing the sequence obtained by CPLEX solving BR, FR,
AND WR with the AND/OR graph composed of actual cases, it can be seen whether the sequence
is a feasible solution, thus verifying the correctness of the established model. To verify the feasibility
and superiority of MDCRO, the algorithm is compared with NSGA-II, MOEA/D, NSGA-III, and
MOEAD-CRA. The experimental results show that MDCRO is superior to the other four algorithms
in solving MPDMW.

Table 2: CPLEX solutions

No. Disassembly sequence from CPLEX Disassembly sequence from
AND/OR graph

Whether it
is the same

BR 1, 3, 8, 10, 13, 14, 16, 17, 18, 19, 20,
21, 43

1, 3, 8, 10, 13, 14, 16, 17, 18, 19, 20,
21, 43

Yes

FR 2, 4, 6, 9, 10, 12, 14, 15, 16, 20, 27, 39 2, 4, 6, 9, 10, 12, 14, 15, 16, 20, 27,
39

Yes

WR 1, 3, 7, 12, 15, 24, 26, 31, 37, 40, 42, 43 1, 3, 7, 12, 15, 24, 26, 31, 37, 40, 42,
43

Yes
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4.3 Results Analysis

To analyze the performance of MDCRO in solving MPDMW compared with other algorithms,
IGD-metric [34], Hypervolume-metric [35], and Epsilon-metric are used for comparison. Verification
is done using the t-test. The t-test is a statistical method used to compare whether the means of two
samples are significantly different. It assesses whether the difference in means between two samples is
likely due to random factors or if it reflects a true difference in population means. When calculating
the objective function, we try to find the maximization of profit and the minimization of workstation
cycle time, so the value of the first objective function is multiplied by −1 to facilitate the comparison
of results.

Through experiments, MDCRO can provide a feasible solution for MPDMW. Table 3 shows
the nine non-dominated solutions obtained by MDCRO solving the above three combination cases.
Among them, numbers 1–3 refer to the disassembly sequence obtained when BR is disassembled,
numbers 4–6 refer to the disassembly sequence obtained when FR is disassembled, and numbers 7–
9 refer to the disassembly sequence obtained when WR is disassembled. The disassembly sequence
represents the sequence of feasible tasks for disassembling the above multi-product, and the required
skills represent the skills required for disassembling the corresponding tasks. Workstation allocation
represents the allocation of disassembly tasks between workstations, with f1 and f2 representing profit
maximization and minimization of workstation cycle time, respectively.

Table 3: Disassembly sequence results of three combined cases are disassembled by MDCRO

No. Disassembly task
sequence

Required skills Workstation f1 f2 Time

1 1, 3, −14, −16, −17,
−18

1, 1, 4, 4, 5, 5 1, 2, 1, 2, 3, 3 608 14 0.16 s

2 1, 3, −14, −16, −17,
−18, −19

1, 1, 4, 4, 5, 5, 5 1, 2, 1, 2, 2, 3, 3 703 16 0.28 s

3 2, −14, −16, −43,
−17, −18, 11, 6, −29,
8, 10

1, 4, 4, 10, 5, 5, 3,
2, 8, 2, 3

1, 1, 2, 3, 3, 3, 1, 2,
3, 2, 3

984 25 0.56 s

4 −12, 2, −21, 4, 9, 10,
−24, −30, −34

3, 1, 6, 1, 3, 3, 6, 8,
9

1, 1, 2, 2, 3, 3, 2, 3,
3

959 8 0.69 s

5 −12, −21, −23, 2, 4,
6, 9−31, −32, 10

3, 6, 6, 1, 1, 2, 3, 8,
8, 3

1, 2, 2, 1, 2, 2, 3, 2,
3, 3

1368 15 0.71 s

6 −12, 2, −20, −14,
−15, −16, −27, 4, 9,
−39, 10, 6

3, 1, 5, 4, 4, 4, 7, 1,
3, 10, 3, 2

1, 1, 1, 1, 2, 2, 3, 2,
3, 3, 3, 3

1619 24 0.78 s

7 −14, 1, 2, −16, −17,
−28, −36

4, 1, 1, 4, 5, 7, 9 1, 1, 2, 2, 3, 3, 3 621 19 0.48 s

8 1, −14, −16, 3, −17,
7, 12, −28, −36

1, 4, 4, 1, 5, 2, 3, 7,
9

1, 1, 1, 2, 2, 3, 3, 3,
3

777 21 0.53 s

9 −14, 1, −16, −17,
−28, −36, 3, −43,
−20, −21, 6

4, 1, 4, 5, 7, 9, 1,
10, 5, 6, 2

1, 1, 2, 2, 3, 3, 1, 3,
3, 3, 3

894 23 0.66 s
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In order to conduct an in-depth study on the performance of MDCRO, this paper chooses
NSGA-II, MOEA/D, NSGA-III, MOEAD-CRA, and MDCRO to conduct an in-depth study around
MPDMW. For multi-product cases composed of BR, FR, and WR under the condition of the same
implementation parameters, The performance gap of five algorithms under different population sizes
is studied.

Table 4 shows the IGD index results obtained by the five algorithms when the population is 100,
200, and 300. The experimental results indicate that MDCRO’s IGD index significantly outperforms
NSGA-II, MOEA/D, NSGA-III, and MOEAD-CRA in the three multi-product combination cases
mentioned above. It’s only in the case of a population size of 200 that the disassembly of WR is not as
effective as NSGA-III.

Table 4: Comparison of three algorithms via IGD-metric

Product Popula
tion
size

MDCRO MOEA/D NSGA-II MOEAD-CRA NSGA-III

Mean Variance Mean Variance t-
test

Mean Variance t-
test

Mean Variance t-
test

Mean Variance t-
test

100 0.01612 0.000005 0.2518 0.000007 + 0.02239 0.000005 + 0.3224 0.000005 + 0.0237 0.000007 +
FR 200 0.01357 0.000001 0.0244 0.000001 + 0.02044 0.000001 + 0.02873 0.000004 + 0.0229 0.000001 +

300 0.01241 0 0.01968 0.000003 + 0.01695 0 + 0.02156 0.000001 + 0.01902 0.000003 +

100 0.02792 0.000007 0.0542 0.00016 + 0.03545 0.000178 + 0.04003 0.000154 + 0.02905 0.000008 ∼
WR 200 0.03538 0.000006 0.06182 0.000207 + 0.04695 0.000332 + 0.03941 0.000251 ∼ 0.03112 0.000001 –

300 0.03649 0.000007 0.06966 0.000105 + 0.06647 0.000169 + 0.04568 0.000143 + 0.0448 0.000003 +

100 0.02698 0.000009 0.04582 0.000006 + 0.03155 0.000005 + 0.04179 0.000007 + 0.0335 0.000003 +
BR 200 0.02688 0.000002 0.04983 0.000008 + 0.0355 0.000004 + 0.03922 0.000005 + 0.0378 0.000002 +

300 0.01921 0.000004 0.03116 0.000003 + 0.02636 0.000001 + 0.02793 0.000001 + 0.02675 0.000002 +

Table 5 shows the Hypervolume index obtained by five algorithms when the population is 100,
200, and 300 for analysis. The Hypervolume index can comprehensively evaluate the convergence
and distribution of non-dominant solution sets. The experimental results show that the Hypervolume
index of MDCRO is slightly lower than that of NSGA-II except when the product BR is disassembled
and the population size is 100 and 200. The disassembly Hypervolume index of MDCRO of the
above three combinations is significantly higher than that of NSGA-II, MOEA/D, NSGA-III, and
MOEAD-CRA.

Table 5: Comparison of three algorithms via Hypervolume-metric
Product Popula-

tion
size

MDCRO MOEA/D NSGA-II MOEAD-CRA NSGA-III

Mean Variance Mean Variance t-
test

Mean Variance t-
test

Mean Variance t-
test

Mean Variance t-
test

FR
100 0.6651 0.000881 0.5672 0.000151 + 0.5999 0.000001 + 0.5787 0.000633 + 0.5779 0.000195 +
200 0.6369 0.000303 0.5508 0.000248 + 0.5947 0.000001 + 0.5658 0.001037 + 0.5632 0.001171 +
300 0.6461 0.000929 0.5504 0.000006 + 0.5812 0.000002 + 0.5592 0.000256 + 0.5615 0.000362 +

WR
100 0.5559 0.000291 0.4766 0.000216 + 0.5205 0.000361 + 0.5581 0.001295 ∼ 0.4044 0.001639 +
200 0.4382 0.00055 0.3871 0.000183 + 0.4411 0.000532 + 0.4398 0.001756 + 0.2828 0.000901 +
300 0.533 0.000477 0.4579 0.000007 + 0.483 0.000243 + 0.4861 0.001117 + 0.3871 0.00235 +

(Continued)
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Table 5 (continued)
Product Popula-

tion
size

MDCRO MOEA/D NSGA-II MOEAD-CRA NSGA-III

Mean Variance Mean Variance t-
test

Mean Variance t-
test

Mean Variance t-
test

Mean Variance t-
test

BR
100 0.4919 0.000888 0.4305 0.000314 + 0.493 0.000204 ∼ 0.4892 0.001342 ∼ 0.4788 0.000008 +
200 0.4978 0.000714 0.4346 0.000424 + 0.5002 0.000528 ∼ 0.4877 0.001644 ∼ 0.4854 0.00137 ∼
300 0.5801 0.000737 0.5196 0.000445 + 0.5526 0.000523 + 0.5316 0.000581 + 0.5532 0.001052 +

Table 6 provides the Epsilon index obtained by five algorithms for population sizes of 100, 200,
and 300, along with the corresponding analysis. The Epsilon index can measure the approximation
degree of the solution. According to the results of the Epsilon index, the disassembly values of
the above three composite products by MDCRO are significantly lower than those of NSGA-II,
MOEA/D, NSGA-III, and MOEAD-CRA.

Table 6: Comparison of three algorithms via Epsilon-metric

Product Popula-
tion
size

MDCRO MOEA/D NSGA-II MOEAD-CRA NSGA-III

Mean Variance Mean Variance t-
test

Mean Variance t-
test

Mean Variance t-
test

Mean Variance t-
test

FR
100 0.2721 0.00162 0.3569 0.000025 + 0.3571 0.000021 + 0.3083 0.00112 + 0.3694 0.00022 +
200 0.1448 0.000896 0.3164 0.000001 + 0.3173 0.000001 + 0.2888 0.000179 + 0.3219 0.000004 +
300 0.2008 0.001318 0.3541 0 + 0.3545 0 + 0.3356 0.000144 + 0.3632 0.000006 +

WR
100 0.1762 0.00077 0.3181 0.00001 + 0.3295 0.0002 + 0.2712 0.00073 + 0.3443 0.0003 +
200 0.2534 0.00152 0.3705 0.00002 + 0.3698 0.00001 + 0.3431 0.00053 + 0.3915 0.00038 +
300 0.1955 0.000992 0.3261 0.000001 + 0.3265 0.000003 + 0.3098 0.000664 + 0.3594 0.000305 +

BR
100 0.183 0.00109 0.5157 0.000307 + 0.3116 0.000002 + 0.2793 0.000208 + 0.3106 0.000006 +
200 0.2229 0.000688 0.3528 0.001537 + 0.2912 0.000132 + 0.2751 0.001622 + 0.3195 0.000479 +
300 0.1795 0.001195 0.2784 0.000618 + 0.2617 0.000001 + 0.2565 0.000807 + 0.2805 0.000312 +

In order to further verify the superiority of MDCRO in the processing of MPDMWS, the
performance of MDCRO is shown by the box graph more intuitively. Fig. 11 shows MDCRO has
a better Hypervolume-metric, IGD-metric, and Epsilon-metric when removing WR. Experimental
results and analysis show that the MDCRO algorithm is superior to NSGA-II, MOEA/D, NSGA-III,
and MOEAD-CRA in solving MPDMW.

As shown in Fig. 12, when the profit is less than 1500, there is little difference between the solutions
of the five algorithms. However, when the profit reaches 1500, the feasible solution cannot be found
by other algorithms at all. MDCRO can still find a feasible solution. The results show that MDCRO
performs well in depth and breadth of solution. As a result, MDCRO has a broader distribution in
solving MPDMW than NSGA-II, MOEA/D, NSGA-III, and MOEAD-CRA.
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Figure 11: IGD-metric E-metric Hypervolume-metric compare boxplots of WR

Figure 12: FR set disassembly result
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5 Conclusion

This paper investigates MPDMW, introducing multi-skilled workers to dismantle EOL products.
It proposes MPDMW, establishes the corresponding mathematical model, and presents mathematical
models for maximizing disassembly profit and minimizing workstation cycle time. The MDCRO
is designed to solve this problem. In MDCRO, a three-segment encoding structure represents the
disassembly task. The corresponding encoding and decoding modes are designed, and the synthe-
sis reaction, decomposition reaction, internal molecule invalid collision reaction, and wall invalid
collision reaction are improved. The experimental results demonstrate the effective applicability of
the model and algorithm for the efficient operation of parallel disassembly lines. The results show
that MDCRO outperforms NSGA-II, MOEA/D, NSGA-III, and MOEAD-CRA, providing non-
dominated solution sets.

In our future work, we plan to continue exploring different types of disassembly lines and combine
additional optimization strategies [36,37] to enhance MDCRO for addressing multi-objective DLBP.
Additionally, we will explore the application of reinforcement learning in solving such problems [38].
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