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ABSTRACT

This research introduces a novel approach to enhancing bucket elevator design and operation through the
integration of discrete element method (DEM) simulation, design of experiments (DOE), and metaheuristic
optimization algorithms. Specifically, the study employs the firefly algorithm (FA), a metaheuristic optimization
technique, to optimize bucket elevator parameters for maximizing transport mass and mass flow rate discharge of
granular materials under specified working conditions. The experimental methodology involves several key steps:
screening experiments to identify significant factors affecting bucket elevator operation, central composite design
(CCD) experiments to further explore these factors, and response surface methodology (RSM) to create predictive
models for transport mass and mass flow rate discharge. The FA algorithm is then applied to optimize these models,
and the results are validated through simulation and empirical experiments. The study validates the optimized
parameters through simulation and empirical experiments, comparing results with DEM simulation. The outcomes
demonstrate the effectiveness of the FA algorithm in identifying optimal bucket parameters, showcasing less than
10% and 15% deviation for transport mass and mass flow rate discharge, respectively, between predicted and actual
values. Overall, this research provides insights into the critical factors influencing bucket elevator operation and
offers a systematic methodology for optimizing bucket parameters, contributing to more efficient material handling
in various industrial applications.

KEYWORDS
Discrete element method (DEM); design of experiments (DOE); firefly algorithm (FA); response surface
methodology (RSM)

Nomenclature

lp Distance of poles (m)
g Gravitational acceleration (m/s2)
r1 Radius circumscribed by bucket outer edge (m)
r2 Radius circumscribed by bucket inner edge (m)
rs Distance of mass point center of gravity projection (m)
ω Distance of mass point center of gravity projection (rad/s)
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V The velocity of particles at the discharge point (m/s)
Fc Centrifugal force acting on the contents of the bucket (N)

1 Introduction

Bucket elevators are devices designed for the uninterrupted conveyance of bulk materials to
precise destinations under specified circumstances. They are comprised of a variable quantity of
buckets affixed to a moving belt or chain, which transfers motion to the buckets [1]. These elevators
find application across diverse industries including agriculture, food processing, pharmaceuticals,
mining, and more [2]. Despite the apparent simplicity of their operation, investigating the movement
of granular materials demands the utilization of advanced numerical methods to address materials
handling challenges [1]. The initial designs of modern buckets were primarily utilized for moving
and releasing granular substances at slow speeds, typically relying on gravity for discharge. In this
setup, materials were poured into a designated area due to gravitational forces, but this method had
limitations in terms of the quantity and distance of material transport [3]. Experiments revealed
that the behavior of the granules resembled that of a viscous fluid, leading to the adoption of
straightforward bucket shapes aimed at maximizing material volume. However, the necessity to
enhance both volume and distance necessitated an increase in operational speed, prompting the
development of discharge mechanisms reliant on centrifugal force. This transition made the mechanics
of discharge more complex, demanding precise analytical tools to understand the material’s behavior
within the bucket. Recent studies have led to the development of bucket conveyors across different
dimensions.

The primary research team prioritized design parameters aimed at achieving optimal performance
and efficient material handling [2,4–7]. For instance, the Engineer-to-Order approach is employed
alongside a mathematical model for designing bucket shapes, aiming to optimize the creation of new
and appropriate buckets suitable for high-speed transportation of bulk materials [4]. Finite Element
Method (FEM) analysis is utilized to address the challenges associated with the bucket chain elevator
used for handling large lumps in large tunnel manufacturing. The outcomes show a reduction in wear
on the main chain and sprocket, along with a decrease in vibration occurrences within the bucket
chain elevator [5]. A design methodology has been developed to address bucket-to-bucket interference
in chain bucket elevators. This process involves resolving constraint equations using Matlab software,
focusing on the inflection points of the bucket and its boundary contour at the discharge position.
The outcomes demonstrate improved performance with complete discharge and maximum loading
capacity of the bucket [2]. Additionally, research has delved into the relationship between power,
bucket speed, bucket elevator capacity, and the slope angle of the bucket elevator. These studies
incorporate experiments with both palm oil and cowpea seeds, offering relevant parameters for speed,
the operational slope angle of the bucket, power consumption, and the efficient performance of mass
flow rate [6,7].

The second research group dedicated their efforts to conducting tolerance analyses that affected
various components of the bucket elevator. For example, certain studies utilized finite element analysis
to assess stress and deformation effects on the bucket, aiming to refine its design and explore alternative
options. These investigations revealed the relationship between bucket geometries and stress and
deflection effects [8–10]. Another study specifically examined failures of bucket elevator shafts during
both operational and design phases, employing the FEA method to design the head shaft of the
bucket elevator. These findings emphasized the effectiveness of the Finite Element Analysis method
in ensuring optimal performance design by evaluating fatigue strength, a critical concern in shaft
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failures [11]. Additionally, other studies delved into stress analysis in chain bucket elevators. In one
such study, topology optimization was utilized to develop a new chain, with the aim of reducing
failures in conveyor chain links. The results demonstrated that the new chain design increased stress
tolerance in the beam and lever by 36% and 47%, respectively [12]. Another research endeavor focused
on investigating shaft failures of bucket elevator shafts in chain bucket elevators, particularly under
conditions of jerky loading. This investigation provided insights into the causes of failure occurrences,
which often included welded regions and misaligned counterweights of the shaft [13]. The following
research group centered its efforts on studying operational control. They utilized sensor systems
and contemporary software packages to oversee the operations of bucket elevators, with the goal
of extending their operational lifespan and decreasing power consumption. Moreover, these tools
facilitated the identification of diagnostic signals prior to the onset of failures [14–16]. Furthermore,
research has extended beyond machine and operational parameters to address the quality of bulk
material mixing and handling. For instance, the carry-over phenomenon on bucket elevators was
investigated by studying microtracer deposit behavior during tracer batch passage and subsequent
collection. It was emphasized that analyzing deposition and gathering phases separately is essential,
revealing that approximately 20% of the initial microtracer mass is deposited during tracer batch
passage, with around 32% picked up during collector batch passage. In both cases, the majority of
the microtracer is concentrated in the elevator foot and head [15]. Another study aimed to identify
operational issues in bucket elevator loading and unloading processes that could cause seed damage.
By analyzing and evaluating factors affecting grain damage rates, the research aimed to enhance safety
during these processes, consequently reducing crop losses. This analysis holds practical significance for
the agricultural sector, facilitating the identification of operational challenges and the development of
mitigation measures, thereby improving work efficiency and seed grain quality [16].

The latest research group has employed numerical methods to address both the design and
operation of bucket elevators. Specifically, they utilized the discrete element method (DEM) to tackle
discharge profiles in bucket elevator operations, recognizing its significance as a key characteristic
in bulk material handling [17–20]. Their findings consistently highlight the effectiveness of DEM
simulations in optimizing machine parameters for bucket elevators. These simulations can recommend
suitable parameters such as belt velocity, bucket angular velocity, and bucket shape tailored to specific
material handling needs. Moreover, another study merged DEM with discontinuous deformation
analysis (DDA) to enhance bucket shape profiles, aiming to maximize transport distance and minimize
remaining materials in the bucket. This approach is deemed valuable for designing the most efficient
bucket shapes under various working conditions [1]. Additionally, there’s research that reconfigured
the bulk material dimension model (quasi-2-D, 5.6 d) for DEM simulation, thereby validating bucket
elevator operations. By doing so, they managed to significantly reduce simulation time and streamline
the design process by up to 70% compared to using actual bulk material dimensions [21].

After reviewing existing literature, no research efforts were found aimed at enhancing bucket
elevator design and operation through metaheuristic optimization algorithms. Recent studies uti-
lizing metaheuristic optimization algorithms in engineering and industrial applications show their
effectiveness in optimizing complex systems. For example, in mechanical engineering, a study used
Particle Swarm Optimization (PSO) to identify the mechanical parameters of a Two-Mass electric
drive system with flexible couplings. Resonant frequencies and mechanical parameters were estimated
via Frequency Response Function (FRF) analysis and validated experimentally, demonstrating the
PSO method’s effectiveness [22]. Additionally, Genetic Algorithms (GA) have been used to design
compliant mechanisms for following a non-linear path, integrating a Python interface with ANSYS
MAPDL (Mechanical APDL) for precise modeling and optimization [23]. Moreover, the Firefly
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algorithm has been applied to solve unequal facility layout problems, illustrating its versatility and
robustness in engineering applications [24]. These examples highlight the broad applicability and
success of metaheuristic algorithms in diverse engineering contexts, underscoring their potential in
optimizing bucket elevator design parameters as explored in this research. Therefore, this article
introduces and validates the combination of the discrete element method (DEM) with the design
experiment method (DOE), complemented by the use of a firefly algorithm (FA), a metaheuristic
optimization algorithm. This approach offers an alternative analysis of bucket elevators by aiming
to maximize transport mass and maximize mass flow rate in the bucket. The genetic optimization
algorithm is employed to optimize these aspects for a given granular material under specified working
conditions. Through simulation and empirical validation, this method enables the identification of
critical bucket parameters affecting granular discharge dynamics and facilitates the design of optimal
bucket parameters. Section 3 outlines the experimental process, which involves identifying the main
parameters affecting bucket elevator operation through DOE utilizing Response Surface Methodology
(RSM) and Analysis of Variance (ANOVA). A fitness function model is then created using RSM
methodology, and the FA optimization algorithm is applied to determine suitable bucket elevator
operation parameters. In Section 4, the numerical results of the procedure are presented: firstly, the
main factors affecting bucket elevator operation are identified through DOE and ANOVA analysis.
Secondly, the RSM methodology generates a quadratic equation to serve as the fitness function for
maximizing transport mass and mass flow rate discharge in the bucket. Thirdly, the FA algorithm
optimizes the parameters to meet the fitness function. Section 5 showcases simulations and empirical
experiments of transport mass and mass flow rate discharge using thousands of particles to compare
discharge profiles between DEM simulation and experimental cases. Finally, Section 6 concludes the
article by presenting optimized bucket parameters for various operational conditions and materials.

2 The Discrete Element Method Materials and Methods

The Discrete Element Method (DEM) is a computational approach employed for modeling
granular flows at the individual grain level, offering significant potential as an optimization tool
in various industries dealing with granular materials. At each computational iteration, DEM tracks
every discrete particle in the system, computing the forces between particles as well as between
particles and boundaries. A contact force model is applied for each collision, with multiple models
of varying complexities available. However, it remains uncertain whether a more intricate, and thus
computationally demanding, force model is necessary at the particle level to precisely predict the
behavior of extensive particle assemblies. Therefore, the Hertz-Mindlin contact model is adopted for
particle interactions in DEM simulations, which includes both elastic and damping components for
normal and tangential forces. Eq. (1) presents the formula governing the contact forces in the normal
direction (Fe) [25,26].
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Eqs. (2) and (3) can be inserted into Eq. (1), where E′ and R′ represent the equivalents of Young’s
modulus and radius. Δe and v r

e
denote the normal overlap and relative velocity between particles; the
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expression for the normal damping coefficient Ce is denoted as in Eq. (4).
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The tangential contact force Ft comprises both the stiffness component (Fk, t) and the damping
component (Fd, t), as described in Eq. (5).
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Eqs. (6) and (7) can be incorporated into Eq. (5), where G′ signifies the equivalent shear modulus
and Ct stands for the tangential damping coefficient. The indices i and j refer to two particles. The
dynamic friction within DEM simulation is subsequently defined by the torque exerted on the contact
surface, depicted in Eq. (8).

Ti = μdFeRiωi (8)

The symbol μd represents the rolling friction coefficient between two particles in contact, while ω

denotes the relative angular velocity of the particles, with i being the unit vector.

3 Materials and Machine Experiment

Fig. 1a,b depicts the geometric characteristics of polypropylene and soybean particles, as detailed
by Sudsawat et al.’s research [25,26]. Their dimensions were assessed using a Vernier caliper, with 100
random samples measured. The mass of particles was determined by weighing 200 polypropylene and
soybean particles on a precise digital scale [27]. To create the DEM model for both polypropylene and
soybeans, EDEM software from DEM Solutions Ltd., in Edinburgh, UK, was employed to generate a
single sphere. The material properties of the DEM model are presented in Table 1, drawing on material
parameter properties from the aforementioned references [25,26].

In this research, the bucket elevator was utilized to validate the results as depicted in Fig. 2. The
bucket elevator consists of several key components: the head section, which includes the head pulley
and cover; the buckets, made of steel, used for conveying materials; the boot section, located at the
bottom of the elevator, which allows easy adjustment of the take-ups for the tail pulley; the feed chute
section, which serves as the inlet for feeding bulk materials; and the discharge section, a crucial part
of the system, responsible for handling and transferring bulk materials to other parts of the material
handling system.
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Figure 1: The DEM models for polypropylene and soybean grains. (a) Shows the dimensions of
polypropylene and soybean grains measured using a Vernier caliper. (b) Depicts the DEM models of
polypropylene and soybean grains, with particle diameters of 6 and 6.66 mm, respectively, as indicated
in references [25,26]

Table 1: The micromaterial properties of polypropylene and soybean grains, as well as steel plates, in
the context of DEM, were sourced from relevant literature

Material types Material properties Interaction parameters

Polypropylene
(PP)

Factor Values Factor Materials interaction Values

Poisson’s ratio 0.36a Coefficient of static
friction

PP-PP 0.52a

Solid density
(kg·m−3)

910a Coefficient of
dynamic friction

PP-PP 0.05a

Elastic modulus
(GPa)

1.3a Coefficient of
restitution

PP-PP 0.55a

(Continued)
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Table 1 (continued)

Material types Material properties Interaction parameters

Soya grains
Poisson’s ratio 0.25b Coefficient of static

friction
Soya grain-Soya
grain

0.45b

Solid density
(kg·m−3)

1228b Coefficient of
dynamic friction

Soya grain-Soya
grain

0.05b

Elastic modulus
(GPa)

1.04b Coefficient of
restitution

Soya grain-Soya
grain

0.6b

Steel
Poisson’s ratio 0.3a Coefficient of static

friction
PP-steel 0.26a

Soya grain-steel 0.3b

Solid density
(kg·m−3)

7800a Coefficient of
dynamic friction

PP-steel 0.246a

Soya grain-steel 0.05b

Elastic modulus
(GPa)

198a Coefficient of
restitution

PP-steel 0.71a

Soya grain-steel 0.6b

Note: a corresponds to [25], and b corresponds to [26].

Figure 2: Bucket elevator
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4 Experimental Methodology

The computational complexity of the algorithms proposed in this study encompasses multiple
stages and methodologies, including Discrete Element Method (DEM) simulations, Response Surface
Methodology (RSM), and the Firefly Algorithm (FA) for optimization. DEM simulations involve
intensive computation due to the modeling and tracking of interactions among numerous particles,
typically expressed as O(nlogn), where n denotes the number of simulated particles. This complexity
leverages efficient data structures like spatial grids to manage interactions, though it can escalate to
O(n2) under certain conditions, mitigated by neighbor search algorithms. Response Surface Methodol-
ogy (RSM) constructs predictive models from simulation data, with computational complexity O(k3),
dependent on the number k of factors and the volume of experiments. This arises from polynomial
fitting and regression operations, which involve matrix manipulations of cubic complexity. The Firefly
Algorithm (FA), a metaheuristic for optimization, scales with O(nf·ni·d), where nf is the number
of fireflies, ni is the iterations, and d is the problem’s dimensionality. This algorithm’s complexity
derives from pairwise comparisons and movements between fireflies, influenced by the problem’s
dimensional complexity. Integrating these methods yields an overall computational complexity of
O(nlogn) + O(k3) + O(nf·ni·d). The dominant term varies based on specific parameter settings: for
instance, DEM simulations dominate with high particle counts, RSM with numerous factors, and FA
with extensive optimization tasks. Managing computational costs through parallel computing and
optimized algorithms is crucial for maintaining efficiency across all stages.

The research methodology can be succinctly outlined as a step-by-step process, depicted in Fig. 3.
Initially, an experimental orthogonal array is crafted through screening factor processes using the
Plackett-Burmann method and EDEM simulation to identify significant factors [25]. Following this, a
central composite design (CCD) is formulated to encapsulate all factors influencing the maximization
of transport mass and mass flow rate discharge via EDEM simulation. The computational elements’
time step for polypropylene and soybean grains is determined using the Rayleigh method [28], resulting
in time steps of 8.34 and 12.3 μs, respectively. Subsequently, a predictive model is constructed using
response surface methodology (RSM), which is then employed in the Firefly Algorithm (FA) to
optimize the transport mass and mass flow rate discharge. The next phase involves comparing the
results obtained from the FA algorithms with those from exact experimental tests to determine the
optimal transport mass and mass flow rate discharge through laboratory testing with a bucket elevator,
as depicted in Fig. 3. Additionally, velocity profiles of the most promising simulations are analyzed in
comparison with empirical tests.

4.1 Plackett-Burmann Screening Experiment of Process Parameters

In the initial stage of these experiments, the focus was on screening all factors by assessing their
main effects and interactions, rather than prioritizing the development of the final quadratic model.
The screening process involved delineating the design space, as illustrated in Table 2, followed by
conducting simulation experiments using EDEM simulation software, as detailed in Tables 3 and
4. Subsequently, factors identified through screening were chosen for integration into the central
composite design (CCD) phase.
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Figure 3: Flow chart of methodology

Table 2: Processing parameters and levels

Number Factors Levels

Low High

1 Number of buckets (A) 10 44
2 Mass rate feed in (B) (kg/s) 0.2 2
3 Velocity of belt (C) (m/s) 0.2 1.27

Table 3: Screening experiment of polypropylene particles through EDEM simulation software

No. A B (kg/s) C (m/s) Mass out (kg) Mass flow rate (kg/s)

1 44 0.2 0.200 3.51547407 0.100442116
2 44 1.1 1.270 8.562007827 0.244628795
3 27 1.1 0.735 8.719856981 0.249138771
4 10 0.2 1.270 4.578199709 0.130805706

(Continued)
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Table 3 (continued)

No. A B (kg/s) C (m/s) Mass out (kg) Mass flow rate (kg/s)

5 10 0.2 0.735 4.662069536 0.133201987
6 44 0.2 1.270 4.979784855 0.142279567
7 44 2.0 0.735 8.77520692 0.250720198
8 27 0.2 0.200 3.647585172 0.104216719
9 44 2.0 0.200 4.20501506 0.120143287
10 10 2.0 1.270 8.230297029 0.235151344
11 10 2.0 0.200 1.973790355 0.05639401
12 27 2.0 1.270 8.554897877 0.244425654
13 10 1.1 0.200 1.954221579 0.055834902

Table 4: Screening experiment of soybean particles through EDEM simulation software

No. A B (kg/s) C (m/s) Mass out (kg) Mass flow rate (kg/s)

1 44 0.2 0.200 3.73866 0.106819
2 44 1.1 1.270 8.51002 0.243143
3 27 1.1 0.735 8.56170 0.244620
4 10 0.2 1.270 4.12236 0.117782
5 10 0.2 0.735 4.31375 0.123250
6 44 0.2 1.270 4.67221 0.133492
7 44 2.0 0.735 8.48052 0.242301
8 27 0.2 0.200 3.92847 0.112242
9 44 2.0 0.200 6.96587 0.199025
10 10 2.0 1.270 8.13588 0.232454
11 10 2.0 0.200 2.04278 0.058365
12 27 2.0 1.270 8.23059 0.235160
13 10 1.1 0.200 2.03498 0.058142

4.2 Central Composite Design (CCD) for Process Variables

During this phase, a Face Centered Composite Design, known as the Central Composite Design
(CCD), is employed to orchestrate experiments conducted via EDEM simulation. Following the
screening phase, specific process parameters influencing the optimization of transport mass and
mass flow rate discharge are identified for inclusion, detailed in Table 5. Adhering to the CCD
methodology outlined in reference [29], three factors are selected and categorized into five levels,
comprising eight cube points, six central points, and six axial points, with an α value of 1. Subsequently,
20 experimental runs are established according to the CCD method, presented in Tables 6 and 7.
Upon establishing the CCD results, the Response Surface Methodology (RSM) is utilized to formulate
nonlinear mathematical models based on second-order quadratic equations for maximizing transport
mass and mass flow rate discharge, as depicted in Eqs. (9) and (10), respectively.
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Table 5: Central composite design (CCD) as face centered composite design type

Factor Symbol Level Unit

−α −1 0 1 α

Number of buckets A 10 10 27 44 44 –
Mass rate feed input B 0.2 0.2 1.1 2.0 2.0 kg/s
Velocity of belt C 0.2 0.2 0.735 1.27 1.27 m/s

Table 6: Design and results of central composite design experiments of polypropylene particles

No. A B (kg/s) C (m/s) Mass out (kg) Mass flow rate (kg/s)

1 44 0.2 1.270 4.979784855 0.142279567
2 44 2.0 0.200 4.20501506 0.120143287
3 44 2.0 1.270 8.590662176 0.245447491
4 27 2.0 0.735 8.746097765 0.249888508
5 10 0.2 0.200 1.71252222 0.048929206
6 10 1.1 0.735 7.839113388 0.223974668
7 27 1.1 0.735 8.719856981 0.249138771
8 27 1.1 0.735 8.719856981 0.249138771
9 44 0.2 0.200 3.51547407 0.100442116
10 27 1.1 0.735 8.719856981 0.249138771
11 27 1.1 0.735 8.719856981 0.249138771
12 27 1.1 0.735 8.719856981 0.249138771
13 10 0.2 1.270 4.578199709 0.130805706
14 27 0.2 0.735 5.721294904 0.163465569
15 10 2.0 1.270 8.230297029 0.235151344
16 44 1.1 0.735 8.75726034 0.250207438
17 27 1.1 0.735 8.719856981 0.249138771
18 27 1.1 0.200 4.640676486 0.132590757
19 27 1.1 1.270 8.641677048 0.246905059
20 10 2.0 0.200 1.973790355 0.05639401

Table 7: Design and results of central composite design experiments of soybean particles

No. A B (kg/s) C (m/s) Mass out (kg) Mass flow rate (kg/s)

1 44 0.2 0.200 3.73866 0.106819
2 44 0.2 1.270 4.67221 0.133492
3 27 1.1 0.200 5.36315 0.153233

(Continued)
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Table 7 (continued)

No. A B (kg/s) C (m/s) Mass out (kg) Mass flow rate (kg/s)

4 27 1.1 0.735 8.56170 0.244620
5 44 1.1 0.735 8.79538 0.251296
6 27 1.1 0.735 8.56170 0.244620
7 10 1.1 0.735 7.82780 0.223652
8 44 2 1.270 8.38401 0.239543
9 10 2 0.200 2.04278 0.058365
10 44 2 0.200 6.96587 0.199025
11 10 2 1.270 8.13588 0.232454
12 27 1.1 0.735 8.56170 0.244620
13 27 0.2 0.735 5.62462 0.160703
14 10 0.2 0.200 1.82401 0.052114
15 27 1.1 0.735 8.56170 0.244620
16 27 2 0.735 8.37109 0.239174
17 27 1.1 0.735 8.56170 0.244620
18 27 1.1 0.735 8.56170 0.244620
19 10 0.2 1.270 4.12236 0.117782
20 27 1.1 1.270 8.48208 0.242345

4.3 Generating a Predictive Model

Prior to advancing to the optimization methodology stage, it is essential for the response surface
methodology to construct a nonlinear mathematical model founded on polynomial equations aimed
at maximizing both transport mass and mass flow rate discharge, illustrated in Eqs. (9) and (10),
respectively.

M = A0 +
∑k

i=1
AiXi +

∑k

i<j
AijXiXj +

∑k

i=1
AiiX 2

i (9)

MR = B0 +
∑k

i=1
BiXi +

∑k

i<j
BijXiXj +

∑k

i=1
BiiX 2

i (10)

In the given context, X i denotes the independent variables, while M represents the response for
transport mass and MR represents the response for mass flow rate discharge. Here, k stands for
the number of design variables, A0 and B0 represent the constant coefficients, Ai and Bi denote the
coefficients for the linear terms, Aij and Bij signify the coefficients for cross-product terms, and Aii and
Bii indicate the coefficients for quadratic terms.

4.4 The Firefly Algorithm Implemented for Optimizing Process Parameters

The Firefly Algorithm (FA) is a metaheuristic optimization method inspired by the natural
behavior of fireflies, developed by Yang [30]. It mimics the flashing behavior fireflies use to attract
mates or prey, where the brightness of a firefly indicates its attractiveness, causing less bright fireflies
to be attracted to brighter ones. In optimization, this brightness corresponds to the objective function
to be maximized. The FA operates on three principles: all fireflies are unisex and can attract each
other regardless of sex; attractiveness is proportional to brightness, with less bright fireflies moving
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towards brighter ones and brightness diminishing over distance, causing random movement if no
brighter firefly is found; and the brightness is determined by the objective function, reflecting the
solution’s quality. In this research, the FA is used to optimize the design and operational parameters
of bucket elevators to improve their performance. Its suitability for this task lies in its ability to
effectively explore large, complex solution spaces and find near-optimal solutions, making it ideal
for optimizing parameters that influence transport mass and mass flow rate discharge in bucket
elevators. Polynomial equations for transport mass and mass flow rate discharge to be a fitness in
a multi-objective function (transport mass and mass flow rate discharge) in Firefly Algorithm (FA)
were created. Firstly, transport mass and mass flow rate discharge equations were employed to be a
combined objective function as shown in Eq. (11).

ϕ (x) =
∑M

k=1
ωkfk,

∑M

k=1
ωk = 1 (11)

Here ϕ (x) is a multi-objective function; ωk = pk

M
, where pk are the random numbers generated

from a distributed uniform [0, 1]. The operating performance of rescaling happens after generating M
uniformly distributed numbers. Then the non-dominated solution can be provided along the Pareto
front. Second FA used idealized rules of flashing patterns and behavior of fireflies [30]. FA establishes
the initial population of n fireflies as represented in the search set of solutions and parameters of the
attractiveness, light absorption coefficient, and randomization factors.

A firefly will try to approve other fireflies by seeking a firefly which has a high proportion of
brightness that can calculate the movement of firefly i to another attractive firefly j in Eq. (12).

Xi = Xi + β∗ (
Xj − Xi

) + α ∗ (rand − 0.5) (12)

Here β and α are parameters of attractiveness and randomization by which both parameters were
affected from Cartesian distance (rij) (distance between two fireflies).

The attractiveness parameter can be generated from Eq. (13).

β = β0e
−γ r2

ij (13)

Here β0 is the attractiveness at r = 0 and γ is a light absorption coefficient. The methodology can
summarize the step-by-step stages of this algorithm as the flow chart of the algorithm shown in Fig. 4.

4.5 Optimal Model

The optimization process aims to create a multi-objective model that maximizes both transport
mass and mass flow rate discharge, as shown in Eqs. (14) and (15), respectively.

Find X = [A, B, C] (14)

Minimize ϕ (x) =
∑M

k=1
(ωkMk + (1 − ωk)MRk) ,

∑M

k=1
ωk = 1 (15)

Subject to : 10 ≤ A ≤ 44 (16)

0.2 ≤ B ≤ 2 kg/s (17)

0.2 ≤ C ≤ 1.27 m/s (18)
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Figure 4: Flow chart of multi-objective firefly algorithm

With reference to Table 1, which outlines the micro material properties of polypropylene and
soybean grains, the function ϕ(X ) depicts the combined quantification of transport mass and mass
flow rate discharge for the experimental specimen.

5 Results and Discussion

At this stage, the outcomes from screening factors, central composite design, and multi-objective
firefly algorithm experimentation are presented, along with velocity profiles derived from DEM
simulation and empirical tests.

5.1 Plackett-Burmann Screening Experiments of Process Parameters

After analyzing the simulation results generated by EDEM software, as outlined in Tables 3 and
4, an assessment of variance was performed on three variables. ANOVA revealed significant factors
affecting both transport mass and mass flow rate discharge, with Table 8 showing contributions
exceeding 90%. These tables highlight that the Number of buckets (A), Mass rate feed input (B), and
Belt velocity (C) substantially influence transport mass and mass flow rate discharge. Table 8 further
illustrates the significant impact of belt velocity (C) on both polypropylene and soybean particles,
contributing 53.19% and 49.1%, respectively, to transport mass and mass flow rate discharge. This
highlights the critical importance of belt velocity in enhancing system performance.
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Table 8: DEM parameters from the screening factor design of the experiment according to their order
of the percent contribution

For polypropylene particles

Parameters symbol Mean square F-value Percent
contribution (%)

Contribution
order

A 0.010905 2.13 17.59 3
B 0.024612 4.81 27.14 2
C 0.062017 12.12 53.19 1

For soybean particles

Parameters symbol Mean square F-value Percent
contribution (%)

Contribution
order

A 0.011208 5.2 17.8 3
B 0.013967 6.47 32.2 2
C 0.01827 8.47 49.1 1

5.2 Creating Modeling through Central Composite Design

Simulation tests conducted using EDEM are documented in Tables 6 and 7. Subsequently, the
CCD method was utilized to generate predicted models for transport mass and mass flow rate
discharge objectives. ANOVA was then applied, as illustrated in Tables 9 and 10, respectively, to
assess the significance of model terms for both objectives. Key terms in ANOVA include “Seq SS”
for the sum of squares validating the data, “df” indicating degrees of freedom contributing to error
prediction, and “Adj SS” representing the adjusted sum of squares for a term. Following parameter
validation, a backward-term elimination stage was employed to remove unnecessary factors. An
important consideration during ANOVA is the “p-value,” which should be below 0.05, and the “R-
Sq (prediction)” values, which should exceed 80% for both objectives. In Tables 9 and 10, the “R-Sq
(prediction)” values were above 90% for both objectives. Consequently, these tables indicate a situation
of backward elimination where the Number of buckets (A), Mass rate feed input (B), and Velocity
of the belt (C) predominantly influence transport mass and mass flow rate discharge. Furthermore,
Tables 9 and 10 demonstrate factor interactions between A, B, and C factors, and the squared action
of A, B, and C for both transport mass and mass flow rate discharge models of polypropylene and
soybean particles. Applying the response surface methodology [29] to create polynomial equations,
the final predictive models for transport mass (Mpp) and mass flow rate discharge (MRpp) for
polypropylene are shown in Eqs. (19) and (20), while the final predictive models for transport mass
(Msb) and mass flow rate discharge (MRsb) for soybean particles are detailed in Eqs. (21) and (22),
respectively.

Mpp = −2.963 + 0.1461A + 4.091B + 13.653C − 0.001472A ∗ A − 1.839B ∗ B − 7.275C ∗ C

− 0.04497A∗C + 1.639B∗C (19)
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MRpp = −0.08465 + 0.004176A + 0.1169B + 0.3901C − 0.000042A∗A − 0.05255B∗B − 0.2079C∗C

− 0.001285A∗C + 0.04682B∗C (20)

Msb = −2.476 + 4.802B + 0.0873A + 12.83C − 2.122B∗B − 6.269C∗C + 0.02211B∗A + 1.111B∗C

− 0.0830A∗C (21)

MRsb = −0.0707 + 0.1372B + 0.002494A + 0.3664C − 0.06064B∗B − 0.1791C∗C + 0.000632B∗A

+ 0.03174B∗C − 0.002372A∗C (22)

Table 9: The ANOVA table pertains to the optimization of both transport mass and mass flow rate
discharge of polypropylene particles, following a process of backward elimination

Source DF Adj SS Adj MS F-value p-value

Model 8 0.097655 0.012207 341.32 >0.0001
Linear 3 0.042362 0.014121 394.84 >0.0001
A 1 0.002666 0.002666 74.53 >0.0001
B 1 0.010311 0.010311 288.30 >0.0001
C 1 0.029386 0.029386 821.68 >0.0001
Square 3 0.050135 0.016712 467.28 >0.0001
A2 1 0.000406 0.000406 11.36 0.006
B2 1 0.004983 0.004983 139.33 >0.0001
C2 1 0.009734 0.009734 272.19 >0.0001
2-Way interaction 2 0.005158 0.002579 72.12 >0.0001
A∗C 1 0.001093 0.001093 30.55 >0.0001
B∗C 1 0.004066 0.004066 113.68 >0.0001
Error 11 0.000393 0.000036
Lack-of-fit 6 0.000393 0.000066
Pure error 5 0.000 0.0000
Total 19 0.08049
Note: S = 0.0061491, R-Sq = 99.61%, R-Sq (adjust) = 99.27%, R-Sq (prediction) = 96.65%.

Table 10: The ANOVA table pertains to the optimization of both transport mass and mass flow rate
discharge of soybean particles, following a process of backward elimination

Source DF Adj SS Adj MS F-value p-value

Model 8 0.084192 0.010524 69.32 >0.0001
Linear 3 0.037541 0.012514 82.43 >0.0001
A 1 0.006042 0.006042 39.80 >0.0001
B 1 0.015813 0.015813 104.16 >0.0001
C 1 0.015686 0.015686 103.33 >0.0001

(Continued)
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Table 10 (continued)

Source DF Adj SS Adj MS F-value p-value

Square 2 0.040313 0.020156 132.77 >0.0001
B2 1 0.007720 0.007720 50.85 >0.0001
C2 1 0.008411 0.008411 55.40 >0.0001
2-Way interaction 3 0.006339 0.002113 13.92 >0.0001
A∗C 1 0.003722 0.03722 24.52 >0.0001
A∗B 1 0.000748 0.000748 4.92 0.048
B∗C 1 0.001869 0.001869 12.31 0.005
Error 11 0.001670 0.0000152
Lack-of-fit 6 0.001670 0.000278
Pure error 5 0.000 0.0000
Total 19 0.085862

Note: S = 0.0121441, R-Sq = 98.28%, R-Sq (adjust) = 96.74%, R-Sq (prediction) = 96.35%.

Tables 9 and 10 further validate these findings by employing backward elimination to enhance
model accuracy, achieving R-Sq (prediction) values exceeding 90%. This rigorous process confirms the
reliability of models in predicting transport mass and mass flow rate discharge. Overall, the ANOVA
results not only identify critical factors influencing these outcomes but also validate their significance
through thorough statistical analysis and model refinement. The high R-Sq (prediction) values (>90%)
underscore the robustness of predictive models derived from DEM simulations and empirical tests,
ensuring their effectiveness in optimizing bucket elevator performance for polypropylene and soybean
particles.

5.3 Optimization through FA

During this phase, Eqs. (19)–(22) are inserted into Eq. (15) for each material experiment to opti-
mize parameter processes using the FA method. Tables 9 and 10 showcase the outcomes of identifying
the Number of buckets (A), Mass rate feed input (B), and Velocity of the belt (C) through the Firefly
algorithm, with parameters set at a population size of 50, 200 iterations, maximum attractiveness at
0.5, absorption coefficient at 0.5, and random perturbation rate at 0.2, following Sudsawat et al.’s
methodology [31]. The attainment of convergence within 200 iterations indicates effective performance
with these parameter configurations. Subsequently, the results highlight significant parameters: 34 for
the Number of buckets (A), 1.56 kg/s for Mass rate feed input (B), and 1.01 m/s for Velocity of belt
(C) concerning polypropylene particles, and 44 for the Number of buckets (A), 1.58 kg/s for Mass rate
feed input (B), and 0.87 m/s for Velocity of belt (C) regarding soybean particles.

The models’ validation was then conducted using optimal values derived from the FA algorithm
for experimental tests consisting of 5 test runs, as detailed in Table 11. The results yielded the
average absolute percentage deviation of each model for transport mass and mass flow rate discharge,
compared against both simulation and empirical tests. Upon examination, the investigation focused
on the objective values (transport mass and mass flow rate discharge) of the predicted model,
DEM simulation results, and actual tests, revealing the percentage deviation between predicted and
simulated values, predicted and actual test values, as well as simulated and actual test values for both
polypropylene and soybean particles. It was observed that the percentage deviations for transport
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mass and mass flow rate discharge of both polypropylene and soybean particles were less than 10%
and 15%, respectively. Consequently, it can be concluded that these models exhibit reliability and can
be effectively utilized in the optimization phase.

Table 11: The models’ validation was assessed by conducting experimental tests using optimal values,
with a total of 5 test runs

Comparison of predicted, DEM simulation vs. actual run based on EDEM software (polypropylene
particles)

No. A B
(kg/s)

C (m/s) Predicted
trans-
port
mass
(kg)

Predicted
flow rate
dis-
charge
(kg/s)

Simulated
trans-
port
mass
(kg)

Simulated
flow rate
dis-
charge
(kg/s)

Actual
trans-
port
mass
(kg)

Actual
mass
flow
rate dis-
charge
(kg/s)

1 34 1.56 1.01 9.61 0.27 8.68 0.25 9.26 0.26
2 34 1.56 1.01 9.61 0.27 8.68 0.25 9.25 0.26
3 34 1.56 1.01 9.61 0.27 8.68 0.25 9.25 0.26
4 34 1.56 1.01 9.61 0.27 8.68 0.25 9.24 0.26
5 34 1.56 1.01 9.61 0.27 8.68 0.25 9.20 0.26

(soybean particles)

No. A B
(kg/s)

C (m/s) Predicted
trans-
port
mass
(kg)

Predicted
flow rate
dis-
charge
(kg/s)

Simulated
trans-
port
mass
(kg)

Simulated
flow rate
dis-
charge
(kg/s)

Actual
trans-
port
mass
(kg)

Actual
mass
flow
rate dis-
charge
(kg/s)

1 44 1.58 0.87 9.96 0.28 8.57 0.24 9.64 0.27
2 44 1.58 0.87 9.96 0.28 8.57 0.24 9.61 0.27
3 44 1.58 0.87 9.96 0.28 8.57 0.24 9.61 0.27
4 44 1.58 0.87 9.96 0.28 8.57 0.24 9.62 0.27
5 44 1.58 0.87 9.96 0.28 8.57 0.24 9.62 0.27

Based on the optimal values presented in Table 11, the maximized values of transport mass
and mass flow rate discharge obtained through the FA method offer suitable operating parameters
for each material experiment. It is evident that the results for the bucket elevator, which handles
polypropylene particles, suggest a significantly different number of buckets compared to soybean
particles, with 34 and 44 buckets, respectively. This outcome underscores the substantial influence of
material properties on material handling via bucket elevators. Consequently, conventional methods for
designing bucket elevators, often derived from basic mathematical equations, may prove insufficient,
given the significant impact of material properties and particle geometry on handling behavior.
Additionally, when examining belt velocity, which is typically categorized into gravitational, mixed,
and centrifugal discharge sections [18,28], It is common practice to set belt velocities below 1 m/s,
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around 1 m/s, and above 1 m/s for operational parameters [28]. However, the results in Table 11
demonstrate notable differences in belt velocity for handling polypropylene and soybean particles,
recorded at 1.01 and 0.87 m/s, respectively, even within the same bucket elevator structure.

Moreover, focusing on the mass flow rate for inlet feeding parameters in both material tests, the
results indicate slight variations in the inlet feed rates for bulk materials. Furthermore, a comparison
of the objective results derived from quadratic models, EDEM simulation, and empirical tests reveals
a consistent trend, with the majority of results aligning closely. Specifically, the percentage of deviation
between results from quadratic equations and empirical tests is consistently less than 5%.

5.4 Velocity Profiles of Optimization Values

Following the DEM simulations to validate both objectives (maximum transport mass and
mass flow rate discharge), another crucial aspect to consider is the velocity profiles of particles.
This is important because the velocity profiles during bucket elevator operation directly impact the
performance of bulk material handling.

In Fig. 5, the velocity profiles for polypropylene and soybean particles are depicted, showcasing
variations that can be discerned by the color of particle velocities. Despite the inlet feed particles being
mostly similar and the belt velocity used to track the buckets for handling bulk materials having slight
differences for both materials, around the discharge section, the discharge angle and velocity values
for polypropylene particles are notably similar or higher compared to the discharge profiles of soybean
particles.

Figure 5: Simulation of a bucket elevator using the DEM approach involved (a) simulating the handling
of polypropylene particles and (b) simulating the handling of soybean particles

Further examination of the head bucket elevator section in Fig. 6 clarifies the velocity profiles.
Fig. 6a shows that the discharge profiles of polypropylene particles resemble centrifugal discharge
profiles, while Fig. 6b illustrates that the discharge profiles of soybean particles resemble mixed
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discharge profiles. These observations align with the theoretical distance of poles related to the
discharge velocity of particles as described in Eq. (20) [18,28].

lp = g
ω2

(23)

Figure 6: The DEM method used in the simulation of the bucket elevator focused on the behavior of
discharged material, with (a) simulating the handling of polypropylene particles and (b) simulating the
handling of soybean particles

By considering the discharge profiles according to the distance of poles, as shown in Fig. 6, the
classification algorithm is as follows: for gravity discharge, lp ≥ r2; for centrifugal discharge, lp ≤ r1;
and for mixed discharge, r1 ≤ lp ≤ r2.

Figs. 5 and 6 illustrate the velocity profiles during the handling of polypropylene and soybean
particles using the DEM approach. In Fig. 5, the velocity profiles at the discharge section show
that polypropylene particles exhibit higher velocities resembling centrifugal discharge, while soybean
particles display mixed discharge characteristics. This distinction is further clarified in Fig. 6, where
polypropylene particles maintain high velocities throughout the discharge process, characteristic
of centrifugal discharge, whereas soybean particles exhibit varying velocities indicative of mixed
discharge behavior. These differences can be attributed to operational parameters such as belt velocity
and the number of buckets. Higher belt velocities, as seen with polypropylene particles, contribute
to centrifugal discharge patterns where particles are thrown outward due to centrifugal forces. In
contrast, lower belt velocities, as observed with soybean particles, lead to mixed discharge profiles
where particles follow a more varied trajectory.

Additionally, in Fig. 7, one of the particles was tracked to observe the transportation behavior of
these materials. For the polypropylene particle (PP), it can be observed that initially, the velocity profile
is nearly identical to that of the soybean particles. However, as it reaches the discharge section, the
velocity profile of the PP particles appears to have a higher velocity compared to the soybean particles,
as depicted in Fig. 7. Specifically, when the particle emerges from the discharge section, it reaches a
velocity of 4.53 m/s, whereas the soybean particle reaches a velocity of 3.05 m/s at the discharge section.
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This difference highlights the impact of operational settings, such as belt velocity adjustments, on the
final discharge characteristics.

Figure 7: The velocity pattern of a tracked particle, which was introduced as an inlet particle into a
bucket elevator, was examined through DEM simulation alongside both polypropylene and soybean
particles until it exited around the discharge section

Figs. 8 and 9 compare DEM simulations with experimental data on the handling behavior of
polypropylene and soybean particles. The results indicate that DEM simulations accurately reproduce
the discharge output seen in empirical tests, as shown in Fig. 8a,b. These figures highlight the distinct
velocity profiles of each material. Additionally, Fig. 9 presents the mass flow rate and total handling
mass, demonstrating a close match between simulation and experimental results. The maximum mass
flow rate for soybean is 1.89 kg/s, while for polypropylene, it is 1.13 kg/s, as depicted in Fig. 9a. The
cumulative handling mass from Fig. 9b shows an error percentage of less than 10% between DEM
simulations and empirical tests. These figures demonstrate that DEM simulations closely replicate
empirical results, confirming the reliability of the simulation approach in predicting particle handling
characteristics. This suggests that polypropylene particles are well-suited for centrifugal discharge han-
dling, while soybean particles are more suitable for mixing discharge handling. The observed velocity
profiles highlight that adjusting operational parameters like belt velocity and optimizing the number of
buckets significantly impacts particle handling efficiency. For polypropylene particles, characterized by
centrifugal discharge, higher belt velocities and specific bucket configurations are optimal. Conversely,
soybean particles, exhibiting mixed discharge behavior, benefit from lower belt velocities and different
bucket configurations. Understanding these velocity profiles helps in optimizing bucket elevator
designs tailored to specific material properties, enhancing overall handling efficiency and minimizing
operational discrepancies. This detailed analysis underscores the importance of simulation-based
optimization approaches like DEM coupled with empirical validation, ensuring accurate predictions
and effective operational adjustments in industrial material handling systems.
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Figure 8: The DEM method employed in simulating the bucket elevator was juxtaposed with empirical
tests, emphasizing the behavior of discharged material, with (a) simulating the handling of polypropy-
lene particles and (b) simulating the handling of soybean particles

Figure 9: The mass flow rate (a) and cumulative total mass (b) of both polypropylene and soybean
particles
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Overall, the integration of CCD, FA, and DEM simulations allows for the precise optimization
of bucket elevator operations, tailored to specific material properties, thereby enhancing handling
efficiency and minimizing operational discrepancies. The detailed analysis of velocity profiles further
supports the theoretical models and empirical observations, ensuring accurate predictions and effective
operational adjustments.

6 Conclusions

Based on the comprehensive analysis conducted throughout this research, several key findings
and conclusions can be drawn:

• A systematic optimization approach, combining experiments and FA algorithms, identifies the
best parameters for maximizing transport mass and flow rate.

• Key factors influencing transport mass and flow rate include the number of buckets, feed input
rate, and belt velocity.

• Models developed were validated with experiments, showing reliable predictions closely match-
ing actual results.

• The optimized parameters derived from the FA algorithm offer practical operating parameters
for handling polypropylene and soybean particles. The study highlights the importance of
considering material properties and particle geometry in designing bucket elevators, to ensure
efficient and effective operation.

• Analysis of velocity profiles reveals differences in particle behavior, emphasizing the importance
of understanding particle movement for system optimization.

In summary, the study offers valuable insights into enhancing material handling processes within
bucket elevators. It underscores the importance of factoring in material properties, process parameters,
and particle behavior to ensure industrial systems operate efficiently and effectively.
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