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ABSTRACT

This paper introduces a groundbreaking metaheuristic algorithm named Magnificent Frigatebird Optimization
(MFO), inspired by the unique behaviors observed in magnificent frigatebirds in their natural habitats. The
foundation of MFO is based on the kleptoparasitic behavior of these birds, where they steal prey from other
seabirds. In this process, a magnificent frigatebird targets a food-carrying seabird, aggressively pecking at it until
the seabird drops its prey. The frigatebird then swiftly dives to capture the abandoned prey before it falls into the
water. The theoretical framework of MFO is thoroughly detailed and mathematically represented, mimicking the
frigatebird’s kleptoparasitic behavior in two distinct phases: exploration and exploitation. During the exploration
phase, the algorithm searches for new potential solutions across a broad area, akin to the frigatebird scouting for
vulnerable seabirds. In the exploitation phase, the algorithm fine-tunes the solutions, similar to the frigatebird
focusing on a single target to secure its meal. To evaluate MFO’s performance, the algorithm is tested on twenty-
three standard benchmark functions, including unimodal, high-dimensional multimodal, and fixed-dimensional
multimodal types. The results from these evaluations highlight MFO’s proficiency in balancing exploration and
exploitation throughout the optimization process. Comparative studies with twelve well-known metaheuristic algo-
rithms demonstrate that MFO consistently achieves superior optimization results, outperforming its competitors
across various metrics. In addition, the implementation of MFO on four engineering design problems shows the
effectiveness of the proposed approach in handling real-world applications, thereby validating its practical utility
and robustness.
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1 Introduction

In the realm of scientific inquiry, optimization problems present a crucial challenge, defined by
an objective function and constraints, with multiple feasible solutions. The quest for the optimal
solution among these options is recognized as optimization. Across various domains like mathematics,
engineering, industry, and economics, a myriad of optimization problems necessitate tailored solutions
[1]. Approaches to solving these problems are broadly categorized into deterministic and stochastic
methods [2]. Deterministic strategies, subdivided into gradient-based and non-gradient-based meth-
ods, excel in addressing linear, convex, continuous, and differentiable problems, particularly those
with lower dimensions [3,4]. However, deterministic approaches falter in tackling higher-dimensional,
non-linear, non-convex, and discontinuous problems often encountered in real-world applications,
compelling the exploration of stochastic techniques [5,6].

Among stochastic approaches, metaheuristic algorithms stand out for their efficacy in navigating
complex problem spaces through random search and trial-and-error processes [7]. Renowned for their
conceptual simplicity, universality, and effectiveness in handling intricate, high-dimensional, non-
deterministic polynomial (NP)-hard, and non-linear problems, metaheuristic algorithms have gar-
nered substantial research interest [8]. These algorithms initiate optimization by randomly generating
a set of candidate solutions, which are iteratively refined based on algorithmic instructions, ultimately
converging to the best solution [9].

An effective metaheuristic algorithm must strike a delicate balance between global exploration
and local exploitation [10]. Global exploration entails a comprehensive search of the problem space to
avoid local optima and identify the main optimal region, while local exploitation focuses on refining
solutions in promising areas to converge towards a global optimum. Despite the stochastic nature of
metaheuristic algorithms, they provide near-optimal solutions without guaranteeing a global optimum
[11]. Consequently, the quest for more effective optimization solutions has spurred the continual design
of new metaheuristic algorithms.

The No Free Lunch (NFL) theorem underscores the necessity for diverse metaheuristic algo-
rithms, as no single algorithm universally excels across all optimization problems [12]. While an
algorithm may converge to a global optimum for one problem, it may fail for another. Therefore, the
NFL theorem fosters ongoing exploration in metaheuristic algorithm design to devise more effective
optimization strategies.

Although numerous metaheuristic algorithms have been designed and introduced, based on the
best knowledge obtained from the literature review, it is confirmed that no metaheuristic algorithm has
been designed based on simulating the natural behavior of magnificent frigatebirds. This is observed
although the kleptoparasitic behavior of the magnificent frigatebird is an intelligent strategy that has
a special potential for designing a new metaheuristic algorithm. Therefore, the originality and novelty
of the design of the proposed approach are guaranteed.

The primary contribution of this paper is the introduction of Magnificent Frigatebird Optimiza-
tion (MFO), a novel metaheuristic algorithm inspired by the behavior of magnificent frigatebirds
in nature. Key features of MFO include its emulation of frigatebirds’ kleptoparasitic behavior and
its mathematical modeling, which encompasses exploration and exploitation phases. Evaluation of
MFO’s performance on standard benchmark functions demonstrates its efficacy in optimization tasks,
outperforming twelve established metaheuristic algorithms.

The remainder of this paper unfolds as follows: Section 2 provides a literature review, Section 3
introduces and models the proposed MFO approach, Section 4 presents simulation studies and
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results, Section 5 evaluates the effectiveness of MFO for handling optimization tasks in real-world
applications, and Section 6 concludes with reflections and suggestions for future research directions.

2 Literature Review

Metaheuristic algorithms are derived from a vast array of natural phenomena, encompassing the
behaviors of living organisms, fundamental principles in physics, mathematics, and human decision-
making strategies. These algorithms are typically organized into five primary categories: swarm-
based approaches, which draw from the collective behavior observed in groups of animals, insects,
or aquatic life; evolutionary-based approaches, which are inspired by the concepts of natural selection
and genetics; physics-based approaches, which model various physical laws and phenomena; human-
based approaches, which emulate human behavior and social dynamics in problem-solving scenarios,
and mathematics-based approaches, which employ mathematical concepts and operators.

Swarm-based metaheuristic algorithms emulate the collective behaviors of animals, insects, and
birds in nature. Notable examples include Particle Swarm Optimization (PSO) [13], Ant Colony
Optimization (ACO) [14], Artificial Bee Colony (ABC) [15], and Firefly Algorithm (FA) [16]. These
algorithms simulate behaviors such as foraging and communication, offering efficient search strategies
for optimization problems. Frilled Lizard Optimization (FLO) is a recently published swarm-based
approach whose design is inspired by the sit-and-wait strategy observed in frilled lizards during hunting
[17]. Additionally, algorithms like the African Vultures Optimization Algorithm (AVOA) [18], White
Shark Optimizer (WSO) [19], Beluga whale optimization [20], and Emperor Penguin Optimizer (EPO)
[21] draw inspiration from various animal behaviors to enhance optimization performance.

Evolutionary-based metaheuristic algorithms are inspired by biological concepts such as natural
selection and genetic evolution. Genetic Algorithm (GA) [22] and Differential Evolution (DE) [23]
are prominent examples, mimicking reproduction and survival processes observed in nature. Other
algorithms like Genetic Programming (GP) [24] leverage biological principles to explore optimization
spaces effectively.

Physics-based metaheuristic algorithms simulate physical laws and phenomena to navigate opti-
mization landscapes. Simulated Annealing (SA), for instance, replicates the annealing process in
metallurgy, while algorithms like Spring Search Algorithm (SSA) [25] and Gravitational Search
Algorithm (GSA) [26] simulate forces and transformations from physics. These algorithms capitalize
on physical principles to guide search processes efficiently. Equilibrium Optimizer (EO) [27], and Water
Flow Optimizer (WFO) [28] are other examples of physics-based metaheuristic algorithms.

Human-based metaheuristic algorithms model human behaviors and decision-making strategies.
Teaching-Learning Based Optimization (TLBO) [29] mirrors the educational environment, while
Following Optimization Algorithm (FOA) [30] replicates societal influences on individual progress.
Language Education Optimization (LEO) [31] and Election Based Optimization Algorithm (EBOA)
[32] draw inspiration from language learning and electoral processes, respectively. These algorithms
harness human-centric strategies to tackle optimization challenges.

Mathematics-based metaheuristic algorithms have been developed by using the concepts and
operators of mathematics. Arithmetic Optimization Algorithm (AOA) [33] and One-to-One Based
Optimizer (OOBO) [34] are examples of algorithms of this group that are inspired by mathematics.

Despite the wealth of existing metaheuristic algorithms, none have been specifically designed
based on the natural behavior of magnificent frigatebirds. The kleptoparasitic behavior of these birds
presents an intelligent strategy ripe for algorithmic exploration. Thus, this paper introduces a new
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metaheuristic algorithm inspired by the mathematical modeling of magnificent frigatebird behavior,
addressing a notable gap in existing research.

3 Magnificent Frigatebird Optimization
3.1 Inspiration

The Magnificent Frigatebird Optimization (MFO) is introduced in this section, drawing inspira-
tion from the behavior of magnificent frigatebirds in their natural habitat. These seabirds, found in
tropical and subtropical waters off the coasts of America, exhibit distinctive characteristics such as
kleptoparasitic behavior. An image of the magnificent frigatebird is shown in Fig. 1.

Figure 1: Magnificent frigatebird took from: free media wikimedia commons

The magnificent frigatebird exhibits a kleptoparasitic strategy, engaging in behavior where it
aggressively attacks and pecks at other seabirds, compelling them to relinquish their prey. Sub-
sequently, the frigatebird swiftly descends towards the discarded food, seizing the prey before it
descends to the water’s surface. This kleptoparasitic behavior stands out prominently among the
natural tendencies of the magnificent frigatebird. Leveraging the mathematical modeling of this
kleptoparasitic behavior forms a foundational aspect of the design of the Magnificent Frigatebird
Optimization (MFO), as elaborated below.

3.2 Initialization

MFO is a population-based metaheuristic algorithm designed for iterative optimization processes.
Each magnificent frigatebird in the MFO population represents a candidate solution, with its position
in the problem-solving space modeled as a vector according to Eq. (1). The initial positions of the
frigatebirds are determined within specified bounds using Eq. (2).
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X =

⎡
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X1

...
Xi

...
XN

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

N×m

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x1,1 · · · x1,j · · · x1,m

...
. . .

... . .. ...
xi,1 · · · xi,j · · · xi,m

... . .. ...
. . .

...
xN,1 · · · xN,j · · · xN,m

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

N×m

(1)

Xi : xi,j = lbj + r · (ubj − lbj

)
, i = 1, 2, . . . , N, j = 1, 2, . . . , m, (2)

where X is the population matrix of the proposed MFO, N denotes the number of magnificent
frigatebirds, m represents the number of decision variables, Xi is the ith magnificent frigatebird (i.e., a
candidate solution), xi,j denotes its jth variable, r is a random number from the interval [0, 1], lbj is a
lower bound and ubj is an upper bound on the jth decision variable.

Subsequently, the objective function corresponding to each frigatebird’s position is evaluated that
the set of these evaluated values for the objective function can be represented using a vector according
to Eq. (3).

F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

F1

...
Fi

...
FN

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

N×1

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

F(X1)
...

F(Xi)
...

F(XN)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

N×1

, (3)

where F is the vector of values of the objective function and Fi is the value of the objective function
for the ith magnificent frigatebird (i.e., the candidate solution).

In the design of MFO, in each iteration, each magnificent frigatebird is updated in two phases of
exploration and exploitation described below.

3.3 Phase 1: Selecting, Attacking, and Pecking at Seabirds Carrying Prey (Exploration Phase)

The kleptoparasitic behavior of the magnificent frigatebird is a defining characteristic of this
species. This strategy begins with the magnificent frigatebird attacking another seabird that is carrying
prey. The frigatebird repeatedly pecks at the seabird, forcing it to release the prey. This aggressive
interaction results in substantial and abrupt movements of the magnificent frigatebird as it maneuvers
to intercept the dropped prey. These significant displacements are mathematically modeled in the
Magnificent Frigatebird Optimization (MFO) algorithm to simulate global search and exploration
within the problem-solving space.

In the design of MFO, each magnificent frigatebird considers the positions of other population
members that have achieved better objective function values as the targets, akin to seabirds carrying
prey. The positions of these targeted birds for each frigatebird are determined using Eq. (4). The
algorithm assumes that each magnificent frigatebird randomly selects one of these potential targets
and initiates an attack. The movement of the magnificent frigatebird towards the selected seabird is
then mathematically modeled, resulting in a new position, which is calculated using Eq. (5). If the new
position yields an improved objective function value, this new position replaces the previous one as
per the rules defined in Eq. (6).

CSi = {Xk, Fk < Fi and k ∈ {1, 2, . . . , N}} , where i = 1, 2, . . . , N, (4)
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xP1
i,j = xi,j + (

1 − 2ri,j

) · (SSi,j − Ii,j · xi,j), (5)

Xi =
{

X P1
i , FP1

i ≤ Fi,
Xi, else,

(6)

where CSi is the set of presumed food-carrying seabirds for the ith magnificent frigatebird, Xk denotes
the kth row of the matrix X which has a better objective function value than the ith one, where CSi

is the set of presumed food-carrying seabirds for the ith magnificent frigatebird, SSi represents the
selected food-carrying seabird for the ith magnificent frigatebird, SSi,j gives its jth dimension, X P1

i is
the new position calculated for the ith magnificent frigatebird based on the first phase of the proposed
MFO, xP1

i,j gives its jth dimension, FP1
i denotes its objective function value, ri,j are random numbers

from the interval [0, 1], and Ii,j are numbers which are randomly selected as 1 or 2.

3.4 Phase 2: Diving towards the Dropped Prey (Exploitation Phase)

In the second stage of the kleptoparasitic behavior, the magnificent frigatebird dives toward the
prey released by the attacked seabird, catching it before it reaches the water’s surface. This behavior
is simulated in the Magnificent Frigatebird Optimization (MFO) algorithm through small, precise
displacements near the bird’s current position. These minor adjustments are mathematically modeled
to facilitate local search and exploitation within the problem-solving space.

In the design of MFO, these displacements are assumed to occur within a neighborhood centered
around the magnificent frigatebird, with a radius defined by ( bestj−xi,j

t
), where bestj represents the best-

known position in the jth dimension, xi,j is the current position of the ith bird in the jth dimension,
and t is a control parameter. To model this process, a new position for each magnificent frigatebird
is calculated based on its simulated movement toward the abandoned prey, using Eq. (7). If this new
position yields an improved value for the objective function, it replaces the bird’s previous position
according to the update rule in Eq. (8). This method ensures that the MFO algorithm effectively
performs local search, refining solutions and enhancing the optimization process by exploiting
promising areas in the search space.

xP2
i,j = xi,j + (

1 − 2ri,j

) · bestj − xi,j

t
(7)

Xi =
{

X P2
i , FP2

i ≤ Fi

Xi, else
(8)

where X P2
i is the new position calculated for the ith magnificent frigatebird based on the second phase

of the proposed MFO, xP2
i,j represents its jth dimension, bestj is the jth dimension of the best member,

FP2
i denotes its objective function value, ri,j are random numbers from the interval [0, 1], and t is the

iteration counter.

3.5 Repetition Process, Flowchart, and Pseudo-Code of MFO

Upon completing the first iteration, the Magnificent Frigatebird Optimization (MFO) algorithm
updates the positions of all magnificent frigatebirds by applying both the exploration and exploitation
phases. After these updates, the algorithm proceeds to the next iteration using the newly acquired
values. This iterative process continues, adhering to the guidelines set forth by Eqs. (4) to (8) until the
predetermined maximum number of iterations is reached.
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Throughout each iteration, the best solution found so far is continually updated based on the latest
results. At the end of the entire iterative process, MFO provides the best solution obtained during its
execution as the final solution to the problem. The steps of the MFO implementation are presented in
the form of a flowchart in Fig. 2, and its pseudo-code is presented in Algorithm 1.

Input information of optimization problem.

Set parameters of N and T. Set � 1 and � 1.

Create and evaluate the initial population.

Determine candidate food-carrying seabirds using Eq. (4).

Start MFO.

Select selected seabird from the set at random.

Calculate based on the first phase of MFO using Eq. (5).

Update using Eq. (6).

Update using Eq. (8).

�

Calculate based on the second phase of MFO using Eq. (7).

Output the best quasi-optimal solution of the objective function found by MFO.

�

End MFO.

Yes

Yes

No

No

� � 1

� � 1

� 1

Figure 2: Flowchart of the proposed MFO

Algorithm 1: Pseudo-code of the proposed MFO
Start MFO.
1. Input problem details.
2. Specify iteration count (T) and magnificent frigatebird count (N).
3. Randomly generate initial population by Eq. (2).
4. Assess initial population.
5. For t = 1: T

(Continued)
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Algorithm 1 (continued)
6. For i = 1: N
7. Phase 1: Selecting, Attacking, and Pecking at Seabirds Carrying Prey.
8. Identify candidate food-carrying seabirds for the ith frigatebird based on Eq. (4).
9. Compute new position of ith frigatebird via Eq. (5).
10. Update position of ith frigatebird using Eq. (6).
11. Phase 2: Diving Towards Dropped Prey.
12. Calculate a new proposed position for the ith magnificent frigatebird based on Eq. (7)
13. Update the position of ith magnificent frigatebird using Eq. (8).
14. end
15. Save best solution attained.
16. end
17. Output best solution obtained.
End MFO.

3.6 Computational Complexity of MFO

In this subsection, the computational complexity of MFO is evaluated. The preparation and
initialization process of MFO has a complexity equal to O(Nm), where N is the number of magnificent
frigatebirds and m is the number of decision variables of the problem. Each magnificent frigatebird
is updated in each iteration during two phases of exploration and exploitation. Therefore, the
process of updating magnificent frigatebirds has a complexity equal to O(2NmT), where T is the
maximum number of iterations of the algorithm. Therefore, the computational complexity of MFO is
O(Nm(1+2T)).

4 Simulation Studies

In this section, the effectiveness of the Magnificent Frigatebird Optimization (MFO) algorithm
in addressing optimization problems is thoroughly evaluated. For this assessment, a set of twenty-
three standard benchmark functions, which include unimodal, high-dimensional multimodal, and
fixed-dimensional multimodal types [35] is utilized. The mathematical model, the best value (which
is denoted by the symbol Fmin), and information about these functions are provided in Appendix A
and Tables A1 to A3. The performance of MFO is compared against twelve well-known metaheuristic
algorithms: Genetic Algorithm (GA) [22], PSO [13], GSA [26], TLBO [29], Multi-Verse Optimization
(MVO) [36], Grey Wolf Optimizer (GWO) [37], Whale optimization Algorithm (WOA) [38], Marine
Predators Algorithm (MPA) [39], Tunicate Swarm Algorithm (TSA) [40], Rivest-Shamir-Adleman
(RSA) [41], AVOA [18], and WSO [19]. The values of the control parameters of the metaheuristic
algorithms are specified in Table 1. The optimization results are reported using six statistical indicators:
mean, best, worst, standard deviation, median, and rank. The ranking criterion of the metaheuristic
algorithms for each of the benchmark functions is the value of the mean index.
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Table 1: Parameter values for the competitive algorithms

Algorithm Parameter Value

GA
Type Real coded.
Selection Roulette wheel (Proportionate).
Crossover Whole arithmetic (Probability = 0.8,

α ∈ [−0.5, 1.5]).
Mutation Gaussian (Probability = 0.05).

PSO
Topology Fully connected.
Cognitive and social constant (C1, C2) = (2, 2).
Inertia weight Linear reduction from 0.9 to 0.1.
Velocity limit 10% of the dimension range.

GSA
Alpha, G0, Rnorm, Rpower 20, 100, 2, 1.

TLBO
TF : the teaching factor TF = round [(1 + rand)].
Random number rand rand is a random number from the interval

[0, 1] .
GWO

Convergence parameter (a) a: Linear reduction from 2 to 0.
MVO

Wormhole existence probability (WEP) Min(WEP) = 0.2 and Max(WEP) = 1.
Exploitation accuracy over the iterations (p) p = 6.

WOA
Convergence parameter a a: Linear reduction from 2 to 0.
Parameters r and l r is a random vector in [0, 1] ,

l is a random number in [−1, 1] .
TSA

Pmin and Pmax 1, 4.
c1, c2, c3 Random numbers lie in the range [0, 1] .

MPA
Constant number P = 0.5.
Random vector R is a vector of uniform random numbers

from [0, 1] .
Fish aggregating devices (FADs) FADs = 0.2.
Binary vector U = 0 or 1.

RSA
Sensitive parameter β = 0.01.
Sensitive parameter α = 0.1.

(Continued)
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Table 1 (continued)

Algorithm Parameter Value

Evolutionary sense (ES) ES are randomly decreasing values
between 2 and −2.

AVOA
L1, L2 (L1, L2) = (0.8, 0.2) .
w w = 2.5.
P1, P2, P3 (P1, P2, P3) = (0.6, 0.4, 0.6).

WSO
Fmin and Fmax (Fmin, Fmax) = (0.07, 0.75) .
τ , a0, a1, a2 (τ , a0, a1, a2) = (4.125, 6.25, 100, 0.0005) .

4.1 Results for Unimodal Objective Functions

Table 2 illustrates the performance outcomes for unimodal functions F1 through F7, comparing
MFO with various competing algorithms. Since unimodal functions F1 to F7 are devoid of local
optima, they provide an ideal testbed for evaluating the local search and exploitation efficiencies
of metaheuristic algorithms. Impressively, MFO exhibits exceptional exploitation capabilities, suc-
cessfully converging to the global optimum for functions F1, F2, F3, F4, F5, and F6. Notably,
MFO outperforms all other algorithms as the leading optimizer for function F7. These results
highlight MFO’s proficiency in managing unimodal functions, surpassing its competitors with its
strong exploitation prowess.

Table 2: Performance of the metaheuristic algorithms for unimodal functions
F MFO AVOA WSO MPA MVO RSA TSA GSA WOA PSO GWO TLBO GA
F1 Mean 0 0 63.71104 1.85E−49 0.144648 0 4.50E−47 1.29E−16 1.30E−151 0.097592 1.71E−59 2.44E−74 29.48527

Best 0 0 5.118651 3.68E−52 0.101992 0 1.40E−50 5.18E−17 9.00E−171 0.00047 1.44E−61 5.67E−77 17.3294
Worst 0 0 230.9467 1.60E−48 0.194588 0 3.19E−46 3.61E−16 2.60E−150 1.351153 7.46E−59 2.51E−73 55.03039
Std 0 0 52.03747 3.88E−49 0.027372 0 9.87E−47 7.06E−17 5.90E−151 0.30646 2.11E−59 6.07E−74 10.31744
Median 0 0 43.90597 4.02E−50 0.14551 0 4.13E−48 1.09E−16 2.10E−159 0.009396 1.04E−59 1.64E−75 27.25901
Rank 1 1 11 5 9 1 6 7 2 8 4 3 10

F2 Mean 0 1.10E−276 2.068512 6.73E−28 0.250534 0 2.04E−28 5.30E−08 2.40E−105 0.865655 1.31E−34 6.54E−39 2.695448
Best 0 1.30E−306 0.640394 1.78E−29 0.154739 0 1.96E−30 3.37E−08 7.60E−118 0.043772 4.71E−36 8.53E−40 1.687178
Worst 0 2.10E−275 7.197314 4.55E−27 0.35236 0 1.76E−27 1.19E−07 2.70E−104 2.410205 7.65E−34 2.36E−38 3.679671
Std 0 0 1.749618 1.08E−27 0.062116 0 5.22E−28 1.85E−08 6.80E−105 0.712678 1.93E−34 5.50E−39 0.537216
Median 0 6.30E−290 1.479446 3.40E−28 0.259403 0 1.91E−29 4.96E−08 3.30E−108 0.564692 6.29E−35 4.81E−39 2.65017
Rank 1 2 11 7 9 1 6 8 3 10 5 4 12

F3 Mean 0 0 1726.767 2.43E−12 15.44089 0 1.14E−10 459.6498 19293.91 375.1938 2.10E−14 3.71E−24 2096.683
Best 0 0 1005.766 5.98E−19 5.775132 0 1.33E−21 237.7651 1996.051 21.04265 2.28E−19 2.13E−29 1376.714
Worst 0 0 3425.01 1.39E−11 47.30844 0 1.89E−09 1146.773 33532.16 991.2134 3.91E−13 3.49E−23 3343.637
Std 0 0 619.0675 4.32E−12 10.61524 0 4.30E−10 217.222 8438.217 284.4219 8.89E−14 1.07E−23 630.8007
Median 0 0 1506.347 1.77E−13 11.48329 0 1.04E−13 386.9903 19646.79 283.2763 4.51E−16 3.91E−26 2030.676
Rank 1 1 9 4 6 1 5 8 11 7 3 2 10

F4 Mean 0 3.10E−265 16.71946 2.88E−19 0.52888 0 0.004275 1.194685 50.09396 6.070553 1.19E−14 1.78E−30 2.735082
Best 0 0 11.51766 2.92E−20 0.257061 0 9.33E−05 9.57E-09 0.874419 2.213925 6.34E−16 5.62E−32 2.142586
Worst 0 4.40E−264 23.04121 9.29E−19 0.930945 0 0.034633 4.763438 88.65274 12.9149 5.55E−14 7.85E−30 3.859647
Std 0 0 2.84729 2.26E−19 0.189536 0 0.007834 1.367867 29.20309 2.4676 1.44E−14 2.36E−30 0.460447
Median 0 1.90E−282 17.18027 2.50E−19 0.513343 0 0.001421 0.876717 53.57697 5.686389 6.14E−15 6.31E−31 2.690695
Rank 1 2 11 4 7 1 6 8 12 10 5 3 9

F5 Mean 0 1.38E−05 10439.42 22.54652 93.01417 12.56534 27.5281 42.58157 26.39938 4458.203 25.69554 25.895 575.5392
Best 0 1.34E−06 1302.4 22.04833 26.71068 8.41E−29 24.81534 25.02178 25.83133 25.40496 24.71433 24.73574 221.1811

(Continued)
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Table 2 (continued)
F MFO AVOA WSO MPA MVO RSA TSA GSA WOA PSO GWO TLBO GA

Worst 0 5.71E−05 89625.35 23.24763 365.3073 28.02387 27.92861 161.6694 27.77752 87074.7 26.25085 27.79425 2181.823
Std 0 1.43E−05 19789.47 0.383231 100.0539 14.5397 0.777176 43.70737 0.569688 19837.02 0.519015 0.923329 419.0801
Median 0 9.07E−06 5422.705 22.51843 29.01745 1.18E−28 27.86183 25.4682 26.18393 83.2281 25.35729 25.45025 459.7206
Rank 1 2 13 4 10 3 8 9 7 12 5 6 11

F6 Mean 0 4.81E−08 97.54328 1.75E−09 0.145969 6.242621 3.559177 1.01E−16 0.078854 0.061331 0.638821 1.219358 33.00921
Best 0 6.87E−09 16.3879 7.81E−10 0.076592 3.541149 2.467719 5.34E−17 0.01017 1.84E−06 0.238505 0.22535 15.09203
Worst 0 1.32E−07 369.7445 4.64E−09 0.241773 7.008337 4.628086 1.75E−16 0.315856 0.523673 1.210535 2.092633 60.67478
Std 0 3.24E−08 94.15036 9.23E−10 0.046722 1.013656 0.683722 3.66E−17 0.100208 0.146498 0.302348 0.490315 13.36167
Median 0 4.46E−08 67.25731 1.54E−09 0.154817 6.655456 3.669462 9.16E−17 0.030554 0.001989 0.703072 1.176844 30.62611
Rank 1 4 13 3 7 11 10 2 6 5 8 9 12

F7 Mean 2.54E−05 6.13E−05 8.79E−05 0.000529 0.011228 2.99E−05 0.004199 0.05105 0.001236 0.178004 0.000804 0.001479 0.010236
Best 2.35E−06 1.40E−06 1.12E−05 0.000108 0.00384 3.61E−06 0.001444 0.013655 2.08E−05 0.066717 0.000176 8.74E−05 0.002932
Worst 6.89E−05 0.000255 0.000328 0.00087 0.021817 0.000129 0.009642 0.092389 0.00522 0.397642 0.001892 0.002849 0.021209
Std 2.02E−05 7.23E−05 8.82E−05 0.000212 0.004964 3.41E−05 0.002309 0.024611 0.001425 0.077917 0.00046 0.000867 0.004752
Median 1.83E−05 3.94E−05 6.31E−05 0.000516 0.010939 1.51E−05 0.003598 0.050106 0.000792 0.171807 0.000817 0.001457 0.00984
Rank 1 3 4 5 11 2 9 12 7 13 6 8 10

Sum rank 7 15 72 32 59 20 50 54 48 65 36 35 74
Mean rank 1 2.142857 10.28571 4.571429 8.428571 2.857143 7.142857 7.714286 6.857143 9.285714 5.142857 5 10.57143
Total rank-
ing

1 2 12 4 10 3 8 9 7 11 6 5 13

4.2 Results for High-Dimensional Multimodal Objective Functions

Table 3 showcases the performance results for functions F8 to F13, evaluated using the MFO
algorithm and its competing counterparts. These functions, characterized by numerous local optima
alongside the primary optima, serve as ideal benchmarks for assessing the global search and discov-
ery capabilities of metaheuristic algorithms. The findings underscore MFO’s exceptional discovery
abilities, particularly its successful convergence to the global optimum for functions F9 and F11,
and its effective identification of the primary optimal region within the problem-solving space.
Furthermore, MFO distinguishes itself as the leading optimizer for functions F8, F10, F12, and
F13. These results highlight MFO’s superior performance in managing high-dimensional multimodal
functions, showcasing its robust exploration capabilities and its ability to consistently outperform
other algorithms.

Table 3 : Performance of metaheuristic algorithms for high-dimensional multimodal functions
F MFO AVOA WSO MPA MVO RSA TSA GSA WOA PSO GWO TLBO GA
F8 Mean −12498.6 −12471.6 −7232.86 -9.78E+03 −7988.47 −5671.63 −6.35E+03 −3.11E+03 −1.11E+04 −6745.79 −6.29E+03 −5.83E+03 −8557.4

Rank 1 2 7 4 6 12 9 13 3 8 10 11 5
Std 194.2272 192.1199 725.2644 3.64E+02 720.1164 222.0492 7.21E+02 4.91E+02 1.71E+03 735.248 4.72E+02 6.02E+02 632.7039
Best −12622.8 −12571.3 −9119.64 -1.05E+04 −9302.53 −5888.22 −7.49E+03 −4.26E+03 −1.26E+04 −8371.19 −7.04E+03 −7.21E+03 −9777.72
Median −12577.8 −12567.9 −7160.74 −9.81E+03 −7871.29 −5716.74 −6.31E+03 −3.02E+03 −1.21E+04 −6887.85 −6.29E+03 −5.84E+03 −8538.1
Worst −11936.3 −11919.4 −6290.08 −9.20E+03 −7069.45 −5156.23 −4.64E+03 −2.47E+03 −7.90E+03 −5242.88 −5.30E+03 −4.82E+03 −7213.97

F9 Mean 0 0.00E+00 23.80915 0.00E+00 94.56873 0 1.67E+02 2.76E+01 0.00E+00 65.45725 1.65E−14 0.00E+00 52.85852
Rank 1 1 3 1 7 1 8 4 1 6 2 1 5
Std 0 0 8.498359 0.00E+00 24.84678 0 5.03E+01 9.04E+00 0.00E+00 18.57926 3.20E−14 0.00E+00 13.61568
Best 0 0.00E+00 14.13232 0.00E+00 51.02728 0 8.68E+01 1.35E+01 0.00E+00 38.47175 0.00E+00 0.00E+00 22.45798
Median 0 0.00E+00 21.93243 0.00E+00 93.84687 0 1.61E+02 2.55E+01 0.00E+00 62.89961 0.00E+00 0.00E+00 50.86062
Worst 0 0.00E+00 44.41892 0.00E+00 144.3046 0 2.79E+02 4.71E+01 0.00E+00 110.7433 1.10E−13 0.00E+00 74.3375

F10 Mean 8.88E−16 8.88E−16 5.115004 4.15E−15 0.558636 8.88E−16 1.20E+00 7.94E−09 3.98E−15 2.636326 1.62E−14 4.32E−15 3.45593
Rank 1 1 11 3 7 1 8 6 2 9 5 4 10
Std 0 0 1.204492 7.83E−16 0.667773 0 1.55E+00 2.31E−09 2.24E−15 0.845876 3.50E−15 0.00E+00 0.391131
Best 8.88E−16 8.88E−16 3.270175 8.88E−16 0.097247 8.88E−16 7.76E−15 4.50E−09 8.88E−16 1.637001 7.76E−15 4.32E−15 2.785897
Median 8.88E−16 8.88E−16 5.00683 4.32E−15 0.187838 8.88E−16 2.15E−14 7.47E−09 4.32E−15 2.64279 1.46E−14 4.32E−15 3.508594
Worst 8.88E−16 8.88E−16 7.925416 4.32E−15 2.431349 8.88E−16 3.26E+00 1.40E−08 7.76E−15 4.888503 2.15E−14 4.32E−15 4.487235

F11 Mean 0 0.00E+00 1.658952 0.00E+00 0.386353 0 0.008548 6.967747 0 0.17909 1.30E−03 0.00E+00 1.424355

(Continued)
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Table 3 (continued)
F MFO AVOA WSO MPA MVO RSA TSA GSA WOA PSO GWO TLBO GA

Rank 1 1 7 1 5 1 3 8 1 4 2 1 6
Std 0 0 0.535069 0.00E+00 0.080719 0 0.006206 2.68309 0 0.225311 4.42E−03 0.00E+00 0.122147
Best 0 0 1.067082 0.00E+00 0.245676 0 0.00E+00 2.90E+00 0 0.002288 0.00E+00 0.00E+00 1.245159
Median 0 0.00E+00 1.547617 0.00E+00 0.402634 0 0.008694 7.067426 0 0.118278 0.00E+00 0.00E+00 1.399452
Worst 0 0.00E+00 3.175238 0.00E+00 0.51812 0 0.019862 12.21652 0 0.846654 1.82E−02 0.00E+00 1.66833

F12 Mean 1.57E−32 2.49E−09 3.160713 1.97E−10 0.884154 1.273695 5.599698 0.203036 0.019427 1.451023 0.038549 0.068951 0.265731
Rank 1 3 12 2 9 10 13 7 4 11 5 6 8
Std 2.86E−48 1.63E−09 1.803987 9.47E−11 1.180104 0.299644 3.826503 0.303146 0.039446 1.267759 0.021036 0.020659 0.136721
Median 1.57E−32 2.31E−09 2.795586 1.99E−10 0.40627 1.34E+00 4.161408 0.077525 0.005591 1.242425 0.036647 0.0664 0.255609
Best 1.57E−32 3.90E−10 0.921364 5.02E−11 0.000966 7.44E−01 1.002296 4.59E−19 0.001186 0.000103 0.012144 0.023306 0.058812
Worst 1.57E−32 7.57E−09 7.142397 3.69E−10 3.719777 1.591042 13.6648 0.900712 0.132338 5.045246 0.083891 0.130631 0.629147

F13 Mean 1.35E−32 9.69E−09 3479.692 2.42E−03 0.031682 3.03E−31 2.626328 5.48E−02 0.207451 3.487367 0.496693 1.065263 2.617574
Rank 1 3 13 4 5 2 11 6 7 12 8 9 10
Std 2.86E−48 8.66E−09 13661.44 6.26E−03 0.024442 2.22E−31 0.549782 2.11E−01 0.18097 2.988888 0.254246 0.228154 0.74399
Best 1.35E−32 1.11E−09 13.33768 9.62E−10 0.006227 6.35E−32 1.945369 4.50E−18 0.035963 9.25E−03 4.53E−05 0.568876 1.248893
Median 1.35E−32 6.30E-09 42.7561 2.73E−09 0.022846 3.88E−31 2.450665 1.72E−17 0.160271 3.195604 0.499913 1.077463 2.771648
Worst 1.35E−32 3.68E−08 60089.28 2.45E−02 0.088573 5.26E−31 3.590139 9.26E−01 0.677 12.16611 0.918449 1.489831 3.80889

Sum rank 6 11 53 15 39 27 52 44 18 50 32 32 44
Mean rank 1 1.833333 8.833333 2.5 6.5 4.5 8.666667 7.333333 3 8.333333 5.333333 5.333333 7.333333
Total rank-
ing

1 2 11 3 7 5 10 8 4 9 6 6 8

4.3 Results for Fixed-Dimensional Multimodal Objective Functions

Table 4 presents the outcomes of evaluating the MFO algorithm alongside its competitors for
functions F14 to F23. These functions are designed to test the balance between exploration and
exploitation in metaheuristic algorithms. The results highlight MFO’s effectiveness, establishing it as
the top optimizer across all functions F14 to F23. Even in cases where MFO matches other algorithms
in mean index value, it consistently outperforms them in the standard deviation (std) index, indicating
more reliable and consistent performance. These findings emphasize MFO’s exceptional capability
to balance exploration and exploitation, yielding superior results in comparison to other algorithms
when dealing with multi-modal functions of fixed dimensions.

Table 4: Performance of metaheuristic algorithms for fixed-dimensional multimodal functions
F MFO AVOA WSO MPA MVO RSA TSA GSA WOA PSO GWO TLBO GA
F14 Mean 0.998004 1.094295 1.094486 1.009791 0.998397 3.037353 8.392305 3.476264 2.517753 3.509593 3.605663 0.998398 1.047371

Rank 1 6 7 4 2 9 13 10 8 11 12 3 5
Std 0 0.437402 0.301571 0.053711 1.79E−03 3.01391 4.981633 2.715566 2.905095 3.736073 3.678825 1.79E-03 0.218891
Best 0.998004 0.998004 0.998004 0.998004 0.998004 0.998034 1.958897 0.998004 0.998004 0.998004 0.998004 0.998004 0.998004
Median 0.998004 0.998004 0.998004 0.998004 0.998004 2.18421 11.35955 2.828583 0.998008 1.958898 2.915968 0.998004 0.998006
Worst 0.998004 2.915968 1.958897 1.233486 1.005853 12.28142 15.02814 11.50749 10.43767 12.28142 10.43768 1.005853 1.958903

F15 Mean 0.000307 0.000384 0.001352 0.001207 0.002599 0.001126 0.015919 0.002314 0.000822 0.002456 0.003294 0.000615 0.014916
Rank 1 2 7 6 10 5 13 8 4 9 11 3 12
Std 2.59E−19 9.47E−05 0.00442 0.000558 0.005974 0.000461 0.029608 0.001352 0.000488 0.006043 0.007221 0.000395 0.015999
Best 0.000307 0.000311 0.000308 0.000309 0.000311 0.000743 0.000311 0.000871 0.000325 0.000308 0.000311 0.000317 0.000812
Median 0.000307 0.000354 0.000353 0.0016 0.000693 0.001024 0.000867 0.002148 0.000688 0.000353 0.000353 0.000363 0.01383
Worst 0.000307 0.000718 0.01974 0.001674 0.019711 0.00284 0.106662 0.006783 0.002233 0.01974 0.01974 0.001264 0.064742

F16 Mean −1.03163 −1.03155 −1.03155 −1.02929 −1.03155 −1.02941 −1.03002 −1.03155 −1.03155 −1.03155 −1.03155 −1.03155 −1.03155
Rank 1 2 6 11 5 10 9 2 3 2 4 8 7
Std 1.87E−16 2.35E−04 2.35E−04 0.007045 2.35E-04 0.006888 0.006966 2.35E−04 2.35E−04 2.35E−04 2.35E−04 2.35E−04 2.34E−04
Best −1.03163 −1.03163 −1.03163 −1.03163 −1.03163 −1.03161 −1.03163 −1.03163 −1.03163 −1.03163 −1.03163 −1.03163 −1.03163
Median −1.03163 −1.03163 −1.03163 −1.0316 −1.03163 −1.03129 −1.03163 −1.03163 −1.03163 −1.03163 −1.03163 −1.03163 −1.03163
Worst −1.03163 −1.03061 −1.03061 −1.00093 −1.03061 −1.00105 −1.00102 −1.03061 −1.03061 −1.03061 −1.03061 −1.0306 −1.03061

F17 Mean 0.397887 0.397904 0.397905 0.398401 0.397905 0.410187 0.39794 0.397904 0.397905 0.733096 0.397905 0.397975 0.463769
Rank 1 2 4 9 3 10 7 2 5 12 6 8 11
Std 0 3.25E−05 3.25E−05 0.000975 3.25E−05 0.019174 7.05E-05 3.25E−05 3.25E−05 0.699436 3.25E−05 6.90E-05 0.29852

(Continued)
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Table 4 (continued)
F MFO AVOA WSO MPA MVO RSA TSA GSA WOA PSO GWO TLBO GA

Best 0.397887 0.397887 0.397887 0.397887 0.397887 0.398612 0.397891 0.397887 0.397887 0.397887 0.397888 0.397895 0.397887
Median 0.397887 0.39789 0.39789 0.397974 0.39789 0.403587 0.397911 0.39789 0.397891 0.3979 0.39789 0.39797 0.397956
Worst 0.397887 0.397996 0.397996 0.401154 0.397996 0.482351 0.398195 0.397996 0.397997 2.711409 0.397997 0.398163 1.707037

F18 Mean 3 3.10539 3.105389 6.161661 3.105389 5.787686 11.32378 3.105389 3.105414 3.105389 3.105401 3.10539 7.264861
Rank 1 6 2 11 5 10 13 4 9 3 8 7 12
Std 1.19E−15 2.16E−01 2.16E−01 6.48712 2.16E−01 8.388869 25.80118 2.16E−01 2.16E−01 2.16E−01 2.16E−01 2.16E−01 10.35747
Best 3 3.000465 3.000464 3.013933 3.000465 3.00123 3.000472 3.000464 3.000465 3.000464 3.000468 3.000466 3.001383
Median 3 3.018789 3.018788 3.563655 3.018789 3.05925 3.059243 3.018788 3.018796 3.018788 3.01881 3.018789 3.076207
Worst 3 3.900043 3.900043 30.00128 3.900043 30.37419 89.07078 3.900043 3.900044 3.900043 3.900054 3.900045 33.90749

F19 Mean −3.86278 −3.85818 −3.85818 −3.72483 −3.85818 −3.83319 −3.8578 −3.85818 −3.8559 −3.85818 −3.85671 −3.85712 −3.85802
Rank 1 3 2 11 4 10 6 2 9 2 8 7 5
Std 2.32E−15 4.67E−03 4.67E−03 0.140189 4.67E-03 0.022469 0.004646 4.67E-03 0.004935 4.67E-03 0.005119 0.004533 0.004817
Best −3.86278 −3.86278 −3.86278 −3.86278 −3.86278 −3.85462 −3.86267 −3.86278 −3.86276 −3.86278 −3.86278 −3.86262 −3.86276
Median −3.86278 −3.85821 −3.85821 −3.72574 −3.85821 −3.8384 −3.8579 −3.85821 −3.85577 −3.85821 −3.85718 −3.8571 −3.85814
Worst −3.86278 −3.84379 −3.84379 −3.2931 −3.84379 −3.77725 −3.8437 −3.84379 −3.84337 −3.84379 −3.84367 −3.84354 −3.84346

F20 Mean −3.322 −3.24396 −3.27844 −2.53258 −3.24961 −2.75749 −3.23097 −3.29568 −3.22598 −3.24022 −3.23481 −3.21907 −3.20511
Rank 1 5 3 13 4 12 8 2 9 6 7 10 11
Std 4.53E−16 0.061068 0.043697 0.343753 0.063354 0.310937 0.068242 1.15E-02 0.08269 0.078508 0.079053 0.083616 0.073815
Best −3.322 −3.30645 −3.31876 −3.22483 −3.31876 −3.05377 −3.31656 −3.31876 −3.31327 −3.31876 −3.31875 −3.3014 −3.29077
Median −3.322 −3.27557 −3.29621 −2.58954 −3.29198 −2.83137 −3.23001 −3.29758 −3.27301 −3.28752 −3.27557 −3.25326 −3.21757
Worst −3.322 −3.16228 −3.17906 −1.78365 −3.15575 −1.68042 −3.07807 −3.27072 −3.06908 −3.099 −3.05099 −2.97928 −2.98892

F21 Mean −10.1532 −10.0667 −8.37825 −7.55876 −8.84127 −5.13865 −5.97966 −7.20628 −9.32454 −5.68831 −9.32929 −6.87626 −6.30352
Rank 1 2 6 7 5 13 11 8 4 12 3 9 10
Std 2.12E−15 6.98E−02 3.115756 2.093732 2.21318 6.98E-02 3.201509 3.426227 1.842108 2.834435 1.832443 2.045191 2.715594
Best −10.1532 −10.1531 −10.1496 −10.1515 −10.1531 −5.22507 −10.1267 −10.1531 −10.1524 −10.1469 −10.153 −9.40037 −9.67362
Median −10.1532 −10.0781 −10.0515 −7.90122 −10.011 −5.15006 −5.05576 −9.98327 −10.0486 −5.12189 −10.0508 −7.23947 −7.06123
Worst −10.1532 −9.98327 −2.76194 −5.0552 −5.05519 −5.0552 −2.69157 −2.76194 −5.06542 −2.72152 −5.09897 −3.39667 −2.47476

F22 Mean −10.4029 −10.3258 −9.95603 −8.0897 −8.4232 −5.18774 −6.92458 −10.0613 −8.10789 −6.43982 −10.3253 −7.95447 −7.3958
Rank 1 2 5 8 6 13 11 4 7 12 3 9 10
Std 3.58E−15 7.12E−02 1.672377 2.134656 2.734411 7.12E-02 3.503065 1.204233 3.000267 3.441722 0.071209 1.656718 1.915935
Best −10.4029 −10.4029 −10.4029 −10.4005 −10.3929 −5.26476 −10.3285 −10.4029 −10.3921 −10.3945 −10.4026 −9.95397 −9.98558
Median −10.4029 −10.3577 −10.3191 −9.04577 −10.2463 −5.21961 −7.57779 −10.3312 −10.2225 −5.16087 −10.3574 −8.30637 −7.84449
Worst −10.4029 −10.2258 −2.99691 −5.08767 −2.96311 −5.08767 −1.94131 −5.05462 −1.96279 −2.84329 −10.2244 −4.14987 −2.75718

F23 Mean −10.5364 −10.4903 −10.4903 −9.15341 −9.45157 −5.26264 −7.47297 −10.2496 −8.60245 −6.51191 −10.4899 −8.12171 −6.45327
Rank 1 3 2 7 6 13 10 5 8 11 4 9 12
Std 2.82E−15 5.01E−02 5.01E-02 1.503609 2.185049 5.01E-02 3.406413 1.0987 3.232484 3.793662 0.050104 1.633702 2.557243
Best −10.5364 −10.5335 −10.5335 −10.4492 −10.5335 −5.30583 −10.441 −10.5335 −10.5325 −10.5301 −10.5332 −9.7088 −10.016
Median −10.5364 −10.5034 −10.5034 −9.54713 −10.4927 −5.27576 −10.2177 −10.5034 −10.484 −4.01965 −10.5032 −8.6941 −6.97761
Worst −10.5364 −10.3561 −10.3561 −5.12848 −5.17406 −5.12847 −2.67772 −5.67849 −1.92102 −2.62894 −10.3558 −4.4165 −2.62735

Sum rank 10 33 44 87 50 105 101 47 66 80 66 73 95
Mean rank 1 3.3 4.4 8.7 5 10.5 10.1 4.7 6.6 8 6.6 7.3 9.5
Total
ranking

1 2 3 9 5 12 11 4 6 8 6 7 10

The convergence curves of MFO and the competing algorithms in handling functions F1 to F23
are drawn in Fig. 3. The convergence analysis shows that when dealing with unimodal functions F1
to F7, where these functions have no local optimum, MFO has identified the main optimum region
in the initial iterations and is converging towards the global optimum with high exploitation ability.
When dealing with multimodal functions F8 to F23, where these functions have local optima, the
convergence curves show that MFO with the exploration ability, during successive repetitions of the
algorithm, has tried to identify the main optimal area by escaping from local optima and then, relying
on the exploitation ability, until the last iterations of the algorithm, it goes through the process of
convergence towards better solutions.
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Figure 3: Convergence curves of MFO and the competing algorithms for F1 to F23
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4.4 Statistical Analysis

In this subsection, using a statistical analysis, it is checked whether the superiority of MFO
compared to the competing algorithms is significant from a statistical point of view. For this purpose,
the Wilcoxon sign-rank test is used, which is a non-parametric statistical test and has an application
to determine a significant difference between the averages of two data samples. In this test, using an
index called p-value, it is determined whether there is a significant difference between the performance
of the two algorithms or not.

The results of implementing the Wilcoxon sign-rank statistical analysis on the performance of
MFO and the metaheuristic algorithms are presented in Table 5. Based on the obtained results, in the
cases where the p-value is less than 0.05, MFO has a significant statistical superiority compared to the
corresponding competing algorithm. Therefore, it can be seen that MFO has a significant statistical
superiority against twelve competing metaheuristic algorithms in handling the evaluated benchmark
functions.

Table 5: Obtained results from the Wilcoxon sum-rank test

Compared algorithms Unimodal High-multimodal Fixed-multimodal

MFO vs. WSO 1.81E−24 1.93E−21 3.61E−06
MFO vs. AVOA 2.96E−11 4.89E−05 2.51E−21
MFO vs. RSA 4.17E−07 1.60E−11 1.41E−34
MFO vs. MPA 9.90E−25 1.02E−14 2.05E−34
MFO vs. TSA 9.90E−25 1.28E−20 1.41E−34
MFO vs. WOA 2.39E−24 6.01E−11 1.41E−34
MFO vs. MVO 9.90E−25 1.93E−21 1.41E−34
MFO vs. GWO 9.90E−25 5.23E−16 1.41E−34
MFO vs. TLBO 9.90E−25 6.84E−15 1.41E−34
MFO vs. GSA 9.90E−25 1.93E−21 4.55E−13
MFO vs. PSO 9.90E−25 1.93E−21 3.84E−17
MFO vs. GA 9.90E−25 1.93E−21 1.41E−34

5 Application of MFO to Real-World Optimization Problems

In this section, the effectiveness of the MFO proposed approach in dealing with real-world
applications is investigated. For this purpose, MFO has been implemented on four engineering design
issues: tension/compression spring (TCS) design, welded beam (WB) design, speed reducer (SR)
design, and pressure vessel (PV) design. The full description and mathematical model of these problems
are provided for TCS in [38], WB in [38], SR in [42,43], and PV in [44].

The results of employing MFO and the competing algorithms in solving the aforementioned
engineering problems are reported in Tables 6 and 7. Based on the simulation results, MFO has
provided the best design for the TCS problem with the values of the design variables equal to
(0.051689061 0.356717739 11.28896583) and the value of the corresponding objective function equal
to 0.012665233. In dealing with the WB problem, MFO has presented the best design with the
values of the design variables equal to (0.778027075 0.384579186 40.3122837200) and the value of
the corresponding objective function equal to 5882.901334. In solving the SR problem, the proposed
approach of MFO has provided the best design with the values of the design variables equal to
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(3.5 0.7 17 7.3 7.8 3.350214666 5.28668323) and the value of the corresponding objective function
equal to 2996.348165. MFO has presented the best design of the PV problem with the values of
the design variables equal to (0.20572964 3.470488666 9.03662391 0.20572964) and the value of the
corresponding objective function equal to 1.724852309.

Table 6: Evaluation results for real-world applications

DP MFO WSO AVOA RSA MPA TSA WOA MVO GWO TLBO GSA PSO GA

TCS Mean 0.012602 0.012675 0.013367 0.013267 0.012663 0.012972 0.013294 0.016619 0.012723 1.83E−02 0.019682 2.17E+13 1.70E+12

Best 0.012602 0.012663 0.012669 0.013182 0.012663 0.012681 0.012669 0.012752 0.012669 0.017728 0.013093 0.017621 0.018142

Worst 0.012602 0.01283 0.014208 0.013416 0.012663 0.013557 0.014568 0.018112 0.012955 1.89E−02 0.03281 3.85E+14 1.76E+13

Std 7.58E−18 0.000041 0.000638 0.0000794 3.26E−09 0.000276 0.000691 0.001885 0.0000633 4.10E−04 0.004875 9.51E+13 5.58E+12

Median 0.012602 0.012664 0.013296 0.013245 0.012663 0.012896 0.013088 0.01757 0.012721 1.82E−02 0.019239 1.76E−02 2.60E−02

Rank 1 3 8 6 2 5 7 9 4 10 11 13 12

WB Mean 5882.895 5892.851 6285.246 13683.51 5882.901 6346.909 8411.601 6642.085 6037.637 32643.66 23524.68 34333.94 29242.67

Best 5882.895 5882.901 5882.909 8126.174 5882.901 5914.542 6346.587 6027.457 5891.637 11768.56 13175.35 10801.98 11903.52

Worst 5882.895 5981.068 7273.405 22745.64 5882.901 7156.346 14156.57 7278.287 6824.82 70935.42 37223.74 59462.42 53269.7

Std 2.06E−12 29.26527 464.1028 4118.759 4.85E−06 438.8137 2215.282 421.9025 315.3024 18170.7 8840.155 17011.18 14262.98

Median 5882.895 5882.902 6079.861 12480.85 5882.901 6194.503 7910.813 6706.73 5901.603 28702.12 22552.76 37945.51 25804.7

Rank 1 3 5 9 2 6 8 7 4 12 10 13 11

SR Mean 2996.348 2996.647 3001.095 3291.635 2996.348 3034.028 3158.194 3031.596 3005.06 7.32E+13 3478.921 1.08E+14 5.20E+13

Best 2996.348 2996.348 2996.348 3192.706 2996.348 3014.804 3040.469 3008.864 3001.787 5390.679 3178.905 3318.752 3365.418

Worst 2996.348 2998.929 3011.855 3353.032 2996.348 3048.486 3468.881 3074.088 3011.34 5.30E+14 4132.84 5.48E+14 3.36E+14

Std 1.03E−12 6.79E−01 4.604449 66.74101 3.70E-06 11.76609 123.3479 15.38387 2.909441 1.34E+14 304.2616 1.44E+14 9.03E+13

Median 2996.348 2996.365 3000.99 3307.301 2996.348 3035.91 3123.09 3032.059 3004.514 2.87E+13 3342.405 7.73E+13 2.09E+13

Rank 1 3 4 9 2 7 8 6 5 12 10 13 11

PV Mean 1.72468 1.724848 1.763113 2.205535 1.724847 1.744102 2.341388 1.742075 1.727373 3.5E+13 2.481338 4.83E+13 1.18E+13

Best 1.72468 1.724847 1.725971 1.988618 1.724847 1.734312 1.826383 1.728544 1.725554 3.091744 2.103332 4.143315 2.815268

Worst 1.72468 1.724853 1.848847 2.57137 1.724847 1.753776 4.167689 1.777672 1.731629 3.38E+14 2.80607 2.92E+14 1.28E+14

Std 2.51E−16 1.45E−06 0.042294 1.67E−01 3.89E−09 0.006501 0.744221 0.015955 1.58E−03 9.41E+13 0.222108 1.02E+14 4.01E+13

Median 1.72468 1.724847 1.748494 2.179187 1.724847 1.744203 2.104666 1.737791 1.727115 5.899168 2.512428 6.992042 5.864015

Rank 1 3 7 8 2 6 9 5 4 12 10 13 11

Sum rank 4 12 24 32 8 24 32 27 17 46 41 52 45

Mean rank 1 3 6 8 2 6 8 6.75 4.25 11.5 10.25 13 11.25

Total ranking 1 3 5 7 2 5 7 6 4 10 8 11 9

p-value 7.85E−15 7.85E−15 7.84E−15 7.85E−15 7.85E−15 7.85E−15 7.85E−15 7.85E−15 7.85E−15 7.85E−15 7.47E−15 7.85E−15

Table 7: Values of the design variables in real-world applications

DP MFO WSO AVOA RSA MPA TSA WOA MVO GWO TLBO GSA PSO GA
TCS x1 0.051689 0.051687 0.051166 0.05005 0.051691 0.050952 0.051139 0.05005 0.05197 0.06857 0.055289 0.068484 0.069062

x2 0.356718 0.356668 0.34426 0.311938 0.35676 0.339229 0.343629 0.318037 0.363498 0.919695 0.445535 0.91642 0.9279

x3 11.28897 11.29191 12.05975 14.89054 11.28646 12.40322 12.10105 14.02097 10.90649 2.273998 7.639465 2.273998 2.273998

WB x1 0.778027 0.778027 0.778032 1.276407 0.778027 0.779787 0.937572 0.845435 0.778544 1.715331 1.198716 1.700751 1.529071

x2 0.384579 0.384579 0.384581 0.690309 0.384579 0.386061 0.464051 0.422617 0.386053 0.500182 1.308525 0.669686 0.861097

x3 40.31228 40.31228 40.31251 64.49933 40.31228 40.40101 47.386 43.78489 40.32226 49.13719 44.85134 67.59505 61.75523

x4 200 200 199.9968 18.3698 200 200 120.9257 156.8619 199.9575 109.9405 188.9895 20.46493 49.36398

SR x1 3.5 3.5 3.5 3.59705 3.5 3.513581 3.592103 3.502371 3.500675 3.559067 3.524123 3.508617 3.582145

x2 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.704209 0.702899 0.700076 0.70586

x3 17 17 17 17 17 17 17 17 17 26.81737 17.38869 18.15368 17.85692

x4 7.3 7.30001 7.300001 8.270503 7.3 7.3 7.3 7.3 7.305416 8.143807 7.848094 7.404283 7.766019

x5 7.8 7.8 7.8 8.285251 7.8 8.285251 8.020414 8.083288 7.8 8.16348 7.894355 7.871633 7.858801

x6 3.350215 3.350215 3.350215 3.355952 3.350215 3.350558 3.362215 3.370621 3.364675 3.680018 3.411876 3.608438 3.720167

x7 5.286683 5.286683 5.286683 5.493708 5.286683 5.290403 5.28676 5.286892 5.288923 5.342147 5.391191 5.34706 5.349493

PV x1 0.20573 0.20573 0.204924 0.196219 0.20573 0.204115 0.214149 0.206007 0.205585 0.321003 0.298461 0.381288 0.225283

x2 3.470489 3.470489 3.487949 3.538053 3.470489 3.496686 3.322339 3.464512 3.473811 4.471499 2.68242 3.422277 7.095157

x3 9.036624 9.036624 9.036512 9.971583 9.036624 9.065638 8.970518 9.045109 9.03622 6.680154 7.336434 7.255857 7.696643

x4 0.20573 0.20573 0.205735 0.218432 0.20573 0.206179 0.2218 0.206073 0.205802 0.436605 0.313307 0.593261 0.30954
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It can be concluded from the simulation results that MFO has provided a superior performance
compared to the competing algorithms by providing better designs and better values for statistical
indicators in solving four engineering design problems. Also, the values obtained for the p-value index
from the Wilcoxon statistical analysis show that MFO has a significant statistical advantage compared
to the competing algorithms. Based on the simulation results, MFO has an acceptable efficiency in
handling optimization problems in real-world applications.

6 Concluding Remarks and Future Works

This paper introduces a novel metaheuristic algorithm called Magnificent Frigatebird Opti-
mization (MFO), inspired by the natural behaviors of magnificent frigatebirds. MFO draws its
fundamental principles from the kleptoparasitic behavior exhibited by these birds in the wild. The
theory behind MFO is elucidated and mathematically formulated into two distinct phases: exploration,
which simulates the frigatebird’s attack on food-carrying seabirds, and exploitation, which mimics its
diving towards abandoned prey. The efficacy of MFO in solving optimization problems is evaluated
across twenty-three standard benchmark functions, encompassing both unimodal and multimodal
types. Results indicate MFO’s proficiency in exploration, exploitation, and maintaining a balance
between the two, leading to favorable solutions for optimization tasks. Comparative analysis against
twelve established metaheuristic algorithms highlights MFO’s superior performance across a range
of benchmark functions. Also, the application of MFO to four engineering design problems showed
the effective capability of the proposed approach in handling optimization problems in real-world
optimization applications.

Moreover, future research avenues include extending MFO to binary and multi-objective opti-
mization problems, as well as exploring its applicability in various scientific domains and real-world
applications.

Acknowledgement: Many thanks to the Republic of Kazakhstan and the Committee of Science,
Ministry of Science and Higher Education of the Republic of Kazakhstan, for their financial support
for research and the promotion of science on a global scale.

Funding Statement: This research is funded by the Science Committee of the Ministry of Science and
Higher Education of the Republic of Kazakhstan (Grant No. AP19674517).

Author Contributions: The authors confirm contribution to the paper as follows: study conception
and design: Tareq Hamadneh, Khalid Kaabneh, Frank Werner, Gulnara Bektemyssova, Dauren
Umutkulov; data collection: Khalid AbuFalahah, Galymzhan Shaikemelev, Frank Werner, Dauren
Umutkulov; analysis and interpretation of results: Khalid Kaabneh, Khalid AbuFalahah, Gulnara
Bektemyssova, Zeinab Monrazeri, Mohammad Dehghani; draft manuscript preparation: Zeinab
Monrazeri, Mohammad Dehghani, Tareq Hamadneh, Galymzhan Shaikemelev, Sayan Omarov. All
authors reviewed the results and approved the final version of the manuscript.

Availability of Data and Materials: The authors confirm that the data supporting the findings of this
study are availale within the article.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.



2738 CMC, 2024, vol.80, no.2

References
[1] A. S. Assiri, A. G. Hussien, and M. Amin, “Ant lion optimization: Variants, hybrids, and applications,”

IEEE Access, vol. 8, pp. 77746–77764, 2020. doi: 10.1109/ACCESS.2020.2990338.
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Appendix A. Information about the Test Objective Functions

The information about the objective functions used in the simulation section is presented in
Tables A1 to A3.

Table A1: Unimodal functions

Objective function Range Dimensions Fmin

F1 (x) = ∑m
i=1 x2

i [−100, 100] 30 0
F2 (x) = ∑m

i=1 |xi| + ∏m
i=1 |xi| [−10, 10] 30 0

F3 (x) = ∑m
i=1

Ä∑i
j=1 xi

ä2
[−100, 100] 30 0

F4 (x) = max {|xi| , 1 ≤ i ≤ m} [−100, 100] 30 0
F5 (x) = ∑m−1

i=1

î
100

(
xi+1 − x2

i

)2 + (xi − 1)2)
ó

[−30, 30] 30 0
F6 (x) = ∑m

i=1 ([xi + 0.5])2 [−100, 100] 30 0
F7 (x) = ∑m

i=1 ix4
i + random (0, 1) [−1.28, 1.28] 30 0

Table A2: High-dimensional multimodal functions

Objective function Range Dimensions Fmin

F8 (x) = ∑m
i=1 −xi sin

(√|xi|) [−500, 500] 30 −12569

F9 (x) = ∑m
i=1

[
x2

i − 10 cos (2πxi) + 10
]

[−5.12, 5.12] 30 0

F10 (x) =
−20 exp

(
−0.2

 
1
m

∑m
i=1 x2

i

)
− exp

Å 1
m

∑m
i=1 cos (2πxi)

ã
+ 20 + e

[−32, 32] 30 0

F11 (x) = 1
4000

∑m
i=1 x2

i − ∏m
i=1 cos

Ç
xi√

i

å
+ 1 [−600, 600] 30 0

F12 (x) = π

m

{
10 sin (πy1)

+∑m
i=1 (yi − 1)

2
î
1 + 10 sin2

(πyi+1)
ó

+ (yn − 1)
2
}

+ ∑m
i=1 u (xi, 10, 100, 4)

u (xi, a, i, n) =
⎧⎪⎨
⎪⎩

k (xi − a)
n xi > −a

0 −a < xi < a
k (−xi − a)

n xi < −a

[−50, 50] 30 0

F13 (x) = 0.1
{

sin2
(3πx1)

+∑m
i=1 (xi − 1)

2
î
1 + sin2

(3πxi + 1)
ó

+ (xn − 1)
2
î
1 + sin2

(2πxm)
ó}

+∑m
i=1 u (xi, 5, 100, 4)

[−50, 50] 30 0
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Table A3: Fixed-dimensional multimodal functions

Objective function Range Dimensions Fmin

F14 (x) =
(

1
500

+ ∑25
j=1

1

j + ∑2
i=1

(
xi − aij

)6

)−1

[−65.53, 65.53] 2 0.998

F15 (x) = ∑11
i=1

ñ
ai − x1

(
b2

i + bix2
)

b2
i + bix3 + x4

ô2

[−5, 5] 4 0.00030

F16 (x) = 4x2
1 − 2.1x4

1 + 1
3

x6
1 + x1x2 − 4x2

2 + 4x4
2 [−5, 5] 2 −1.0316

F17 (x) =
Å

x2 − 5.1
4π2

x2
1 + 5

π
x1 − 6

ã2

+ 10
Å

1 − 1
8π

ã
cosx1 + 10 [−5, 10] × [0, 15] 2 0.398

F18 (x) =î
1 + (x1 + x2 + 1)2 (19 − 14x1 + 3x2

1 − 14x2 + 6x1x2 + 3x2
2

)ó ×î
30 + (2x1 − 3x2)

2 × (
18 − 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2

)ó
[−5, 5] 2 3

F19 (x) = −∑4
i=1 ci exp

Ä
−∑3

j=1 aij
(
xj − Pij

)2
ä

[0, 1] 3 −3.86

F20 (x) = −∑4
i=1 ci exp

Ä
−∑6

j=1 aij
(
xj − Pij

)2
ä

[0, 1] 6 −3.22

F21 (x) = −∑5
i=1

[
(X − ai) (X − ai)

T + 6ci
]−1

[0, 10] 4 −10.1532

F22 (x) = −∑7
i=1

[
(X − ai) (X − ai)

T + 6ci
]−1

[0, 10] 4 −10.4029

F23 (x) = −∑10
i=1

[
(X − ai) (X − ai)

T + 6ci
]−1

[0, 10] 4 −10.5364
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